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Abstract: In this paper, we present a finite-time synchronization (FTS) for quantized Markovian-jump
time-varying delayed neural networks (QMJTDNNs) via event-triggered control. The QMJTDNNs
take into account the effects of quantization on the system dynamics and utilize a combination of FTS
and event-triggered communication to mitigate the effects of communication delays, quantization
error, and efficient synchronization. We analyze the FTS and convergence properties of the proposed
method and provide simulation results to demonstrate its effectiveness in synchronizing a network
of QMJTDNNs. We introduce a new method to achieve the FTS of a system that has input constraints.
The method involves the development of the Lyapunov–Krasovskii functional approach (LKF), novel
integral inequality techniques, and some sufficient conditions, all of which are expressed as linear
matrix inequalities (LMIs). Furthermore, the study presents the design of an event-triggered controller
gain for a larger sampling interval. The effectiveness of the proposed method is demonstrated through
numerical examples.

Keywords: Lyapunov–Krasovskii functional; event-triggered control; neural networks; synchronization;
finite-time stability

MSC: 37C75; 60J25; 93D40; 34D20

1. Introduction

Because of their superiority in managing data and learning algorithms, neural net-
works (NNs) have piqued the interest of numerous academics in many domains over the
past several decades. As a result, NNs have extensive applications in a variety of fields,
including image processing, financial markets, combinatorial optimization, and fixed-point
calculations [1–3]. Meanwhile, Markovian-jump time-varying delayed neural networks
(MJTDNNs) are a type of neural network that incorporates a Markovian-jump process into
their dynamics. This allows the network to switch between different modes of operation,
depending on the system’s present condition [4–6]. The Markovian-jump process is a
mathematical model that describes how the system state changes over time, with different
modes or states having different dynamics. The transmission of axonal signals usually
creates delays in all neural networks, causing unexpected changing network phenomena,
such as oscillation and instability [1–4].

In recent years, research on neural networks has been increasingly preoccupied with
the concept of finite-time (FT) stability. For a very long time, one of the most important
areas of research has concerned the stability of dynamic systems. The Lyapunov stability
methodology has been extensively employed by academics for the purpose of assessing
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system stability [7–10]. Yet, throughout the course of the past several years, academics have
additionally been focusing more of their attention on the performance needs of dynamic
systems in finite time. Since Dorato and Weiss first presented the idea of FT stability in
1961 and 1967, respectively [11,12], numerous facets of FT stability, such as boundedness,
stability, stabilization, and synchronization, have also been extensively researched, includ-
ing both linear as well as nonlinear systems [8,9,13]. The issue of achieving FT stability
or synchronization in quantized Markovian-jump time-varying delayed neural networks
(QMJTDNNs) is a crucial and difficult field of research. Markovian-jump neural networks
have the ability to undergo sudden changes in their dynamics or structure due to external
factors or disturbances. Quantization introduces additional complexity, as it causes errors
that can affect the system’s stability and synchronization. The interaction between random
jumps, quantization errors, and control laws presents a significant challenge, and develop-
ing effective control laws for these systems is crucial for their performance in areas such as
robotics, communication, and signal processing. However, there is a dearth of literature on
the topic of FT stability or synchronization for QMJTDNNs [14–17].

Synchronization is an important topic that has gained a lot of attention due to its wide
range of applications in secure communication [18], image encryption [19], and information
science [16]. Drive–response synchronization is a popular area of research, where the goal is
to synchronize a drive model with a response model using appropriate controllers. Several
control methods have been developed, such as intermittent control [20], impulsive con-
trol [21], and sliding-mode control [22]. However, constant control gains are often designed
to satisfy the synchronization condition, which can be far greater than necessary, making it
uneconomical. Adaptive control can address this issue by designing dynamic control gains
that adjust automatically based on the system’s state. In neuroscience, synchronization is a
critical mechanism of neural information transmission and processing and is a typical form
of neuronal cluster firing activity, which promotes normal brain functions such as cognition,
emotion, and behavior. NNs are made up of many nodes that are connected to each other
and have the following key features: (1) NNs contain a large number of interconnected
neurons, (2) they have diverse junctions where the weights of connections can vary and
point in different directions, and (3) the activation function of neurons is nonlinear [23].
Since NNs have such complicated properties, they may be utilized in a wide variety of
contexts, with the specific applications being determined by the dynamic properties of the
linked networks, notably in terms of synchronization [17]. At present, the synchronization
of QMJTDNNs is still a challenging research field, and the related research is scarce [24,25].
Furthermore, the synchronization of NNs has been recognized as a key research topic due
to the complex and dynamic behavior of coupled nodes. This dynamic behavior allows
for a broad variety of applications, including the detection of shock patterns in physical
systems and secure communication using synchronization-based cryptography, amongst
others [15,26], and so on.

Quantization is an essential aspect in the process of networked control systems, as it
reduces the communication burden and reduces the effect of noise and quantization er-
rors [27–30]. However, the presence of quantization may also result in a decline in the
performance of the system. In addition, the presence of time-varying delays in the networks
can lead to additional difficulties in achieving synchronization. To address these challenges,
we propose a system based on the combination of quantized control and event-triggered
(ET) strategies, which effectively reduces the communication burden and improves the
system’s performance [31–33]. The ET scheme only updates the control inputs when the
system’s state deviates from a predefined neighborhood, thus reducing the number of
transmissions and improving the system’s efficiency [34–38]. Actuator saturation is a
typical event in the field of control systems where the actuator, which is responsible for
controlling the system’s behavior, reaches its maximum or minimum limit. ET control can
also be used to mitigate actuator saturation by reducing the frequency of updates to the
actuator. This is because ET control only updates the actuator when a triggering event
occurs, rather than continuously, which can reduce the likelihood of the actuator becoming
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saturated. However, ET control can also introduce new challenges, such as determining
the appropriate triggering threshold and ensuring that the triggering events occur often
enough to maintain the system’s performance. An investigation of ET synchronization for
time-delayed recurrent neural networks was carried out by the authors [38], who also took
into account the limits imposed by actuators. The event-based control issue of a dissipative
type-two fuzzy Markovian-jump system was also taken into consideration in these studies,
which took into consideration sensor saturation as well as actuator nonlinearity. While this
was going on, ref. [34] focused on creating an ET control mechanism that would provide
both asymptotic and L2 stability. Despite the existing research on ET synchronization and
control problems for various types of systems, however, to the best of our knowledge, none
of the previous studies have tackled the ET control problem of MJTDNNs considering
actuator saturation, FT synchronization (FTS), and quantization.

Motivated by the above analyses, we present an FTS for QMJTDNNs with an ET
scheme under actuator saturation.

The main contributions of this paper are listed as follows:

(i) The proposed approach integrates the ET scheme that can achieve synchronization
in finite time despite the presence of quantization and actuator saturation in the
proposed neural networks.

(ii) Compared to the sampled-data control scheme in [39], the paper develops an ET scheme
under the actuator saturation scheme, which can save communication resources efficiently.
The problems of FTS and MJTDNNs are discussed in this article, whose settling times do
not depend on any initial values of the corresponding systems. The derived results can
further complement previous work and they are more generalized.

(iii) By employing advanced integral inequalities to construct a suitable Lyapunov–Krasovskii
functional (LKF), sufficient conditions are acquired. According to the analytical framework
in this paper, we investigate the synchronization of MJTDNNs by using an LMI approach.
Moreover, the obtained results are studied via the quantization with actuator saturation.
That is, the proposed method is applicable to various different situations.

(iv) Additionally, we investigate the ET scheme, saturation, and quantization. ET scheme
can reduce network burden. The effectiveness of the ET scheme in achieving for
FTS in QMJTDNNs. The ET scheme with quantization and actuator saturation is
demonstrated through numerical simulations. Additionally, the potential impact of
the intended MJTDNNs is demonstrated via numerical examples.

The structure of this paper is outlined as follows. In Section 2, we present the problem
formulation and the system model. In Section 3, we talk about the theoretical analysis for
synchronizing QMJTDNNs in a finite amount of time. In Section 4, we present the numerical
simulations to validate the effectiveness of the proposed scheme. Finally, in Section 5, we
draw conclusions and future research directions.

Notation: In this context, the notation Rn refers to the n-dimensional Euclidean
space, whereas the term Rm×n stands for the collection of all m× n real matrices. Matrix
transposition is denoted by the symbol “T”, and the variable P can either be a symmetric or
positive definite matrix. ‖ . ‖ is the notation that is used to describe the Euclidean norm in
Rn, and sig(·) is the symbol that is used to represent the signum function. When discussing
square matrices, the terms λmax(P) and λmin(P) refer, respectively, to the greatest and
the lowest eigenvalues. In a symmetric matrix, a term that is induced as a result of the
symmetry is denoted by the symbol “*”, whereas the notation diag(·) indicates a diagonal
matrix. In addition, we can define a probability space that consists of the symbols (Ω̂,F,P),
where Ω̂ stands for the sample space, F stands for the σ-algebra of events, and P stands for
the probability measure that is defined on F.

2. Preliminaries and Problem Formulation

In this study, we consider MJTDNNs described by the following equation:

ζ̇(t) = −Art ζ(t) +Brt η̄(ζ(t)) + Crt η̄(ζ(t− ρ(t))) + V (t), (1)



Mathematics 2023, 11, 2257 4 of 24

where ζ(t) ∈ Rn is the notation for the state vector, and η̄(ζ(t)) ∈ Rn is the representa-
tion of the neuron activation function. V (t) represents the external input of the system,
and there are three matrices Art , Brt , and Crt , respectively. The matrix Art > 0 is diagonal,
and the matrices Brt and Crt are connection weight matrices with the necessary dimen-
sions. In addition to this, there is a time-varying delay denoted by ρ(t), which is given as
0 ≤ ρ(t) ≤ ρ2. The delay’s derivative, denoted by ρ̇(t), must satisfy the condition ρ̇(t) ≤ µ.

A conventional Markov process can be characterized with probability transitions in
the set S = 1, 2, 3, . . . , s, if it is assumed that a right-continuous Markov chain indicated by
rt is specified to have values within a finite set S, as defined in [40,41],

Pr{(rt+∆t = j)|rt = i} =
{

πij∆t + o(∆t), i 6= j,
1 + πii∆t + o(∆t), i = j,

where t, rt ∈ S, ∆t > 0, lim∆t→0(o(∆t)/∆) = 0, and πij denote the transition probability
from modes i to j satisfying πij ≥ 0 for i 6= j with πii = −Σs

j=1,j 6=iπij, i, j ∈ S.
The focus of our paper is on utilizing the master–slave concept, where we designate

the system (1) as the master system and construct the slave system accordingly.

˙̃ζ(t) = −Art ζ̃(t) +Brt η̃(ζ̃(t)) + Crt η̃(ζ̃(t− ρ(t))) + V (t) + δ(u(t)), (2)

where ζ̃(t) ∈ Rn is a state vector and δ(u(t)) is the actuator saturation function.

The Design of Error System and Quantized ET Scheme

Define v(t) = ζ̃(t)− ζ(t). Then, we can express the error system as follows:

v̇(t) = −Art v(t) +Brt η(v(t)) + Crt η(v(t− ρ(t))) + δ(u(t)), (3)

where η(v(t)) = η̃(ζ̃(t))− η̄(ζ(t)), and we can simplify our calculations by substituting
rt = i into Equation (3),

v̇(t) = −Aiv(t) +Biη(v(t)) + Ciη(v(t− ρ(t))) + δ(u(t)). (4)

Assumption 1 ([42]). Each neuron activation function ηk(·) (k = 1, 2, . . . , n) is continuous and
bounded and satisfies the following condition:

ν−k ≤
ηk(ζ1)− ηk(ζ2)

ζ1 − ζ2
≤ ν+k ∀ ζ1, ζ2 ∈ R, ζ1 6= ζ2,

where ν−k and ν+k are known positive scalars and L1 = diag{ν−1 ν+1 , ν−2 ν+2 , ..., ν−n ν+n }, L2 =

diag{ ν−1 +ν+1
2 , ν−2 +ν+2

2 , . . . , ν−n +ν+n
2 }.

Remark 1 ([43]). The saturation function δl(u(t)) can be decomposed into a linear and a nonlinear
segment, which helps clarify its behavior and implications for the model at hand

δl(u(t)) = u(t)− φ(u(t)),

where φ(u(t)) = [φ1(u(t)), φ2(u(t)), . . . , φj̄(u(t))]
T ∈ Rm, and φl(u(t)) = ul(t)− δl(u(t)),

(l = 1, 2, . . . , j̄). Subsequently, a scalar value 0 < ε < 1 exists, satisfying the condition

εuT(t)u(t) ≥ φT(u(t))φ(u(t)).

An ET strategy was developed to increase the efficiency of transmission resources by
reducing the communication load, as shown in Figure 1. This scheme was implemented
between the sampler and the quantizer, with the objective of saving limited communication
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resources. The ET sampling approach is based on periodically sampled data and can be
expressed using the inequality proposed by Yue and Wang [44].

[v(m + κ)d−v(md)]TΨ[v(m + κ)d)−v(md)] ≤ σvT((m + κ)d)Ψv((m + κ)d), (5)

where Ψ is a symmetric positive definite matrix, and m, κ denote integers (m, κ = 1, 2, . . .).
Here, md denotes the sampling instants, where d is the sampling period (d = 1, 2, . . .), while
σ is a given event parameter and σ ∈ [0, 1). Notably, when σ = 0 in (5), the inequality is
not satisfied for almost all the sampled states v(md + κd), and the ET scheme reduces to a
periodic time-triggered scheme.

Figure 1. A schematic representation of the proposed system (4).

The inequality (5) defines the release times t0d, t1d, t2d, etc., where t0 = 0 is the initial
time. The time between two consecutive release times, minκ∈N tκ+1d− tκd, corresponds
to the sampling period set by the event generator in (5). The sampling period is bounded
below by d > 0, and the zero phenomenon is excluded. To determine whether to transmit
the current sampled signal, an ET correspondence plan compares the difference between
the current sampled sensor measurements v(md + κd) and the latest transmitted sensor
measurements v(md) to a specified threshold given by (5).

A logarithmic quantizer is defined as follows

Fw(·) =
[
F1(·) F2(·) . . . Fn(·)

]
, (6)

where w = 1, 2, . . . n. The quantization levels for Fw(·) are given as

Λw =
{
± p(q)w = c̄(q)w p0, q = ±1,±2, . . .

}⋃
{0}, (7)

where each of the quantization levels is denoted by p(q)w . The quantizer density is repre-
sented by 0 < c̄(q)w < 1. The initial quantization values of the subquantizer Fw(·) are p(0)w ,
where p0 > 0.
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The following describes the definition of the logarithmic quantization law denoted
by Fw(·).

Fw(v(t)) =


p(q)w , if p(q)w

1+( 1−c̄w
1+c̄w )

< v(t) ≤ p(q)w
1−( 1−c̄w

1+c̄w )
, if v(t) > 0

0, if v(t) = 0,
−F (−v(t)), if v(t) < 0.

(8)

where 1−c̄w
1+c̄w

(w = 1, 2, . . . , n) is the quantizer parameters and considering 1−c̄w
1+c̄w

= bw,
b = max bw. Using the method given in [45], due to the symmetry of the logarithmic
quantizer, F (−v(t)) = −F (v(t)), it can be obtained that the logarithmic quantizer maps
are intervals within a quantization level. Note that for

v > 0,

(1− bw)(v(t)) ≤ p(q)w < (1 + bw)(v(t)),

and for v < 0,

(1 + bw)(v(t)) ≤ p(q)w < (1− bw)(v(t)).

Thus, the quantizer is characterized as follows:

Fw(v(t)) = v(t) + Ωv(t),

Then, we can easily get

Fw(v(t)) = (I + Ω)v(t), (9)

where Ω = diag{Ω1, Ω2, . . . , Ωn}, and Ω ∈ [−bw, bw] denotes an uncertain scalar. It is easy
to see that ΩTΩ ≤ I.

We now consider the case of time-varying delays in the network communication,
denoted by τm, where τm is a value that varies over time and belongs to the interval [0, τ̄),
with τ̄ being a positive real number. To handle this, we first divide the time interval
[tmd + τm, tm+1d + τm+1) into tm+1 − tm subintervals. We then define τ(t) as follows.

We now consider the following two cases:
Case (i): If tmd + d + τ̄ ≥ tm+1d + τm+1, where τ̄ = max{τm}, define a function τ(t)

as

τ(t) = t− tmd, t ∈ [tmd + τm, tm+1d + τm+1).

Obviously,

τm ≤ τ(t) ≤ (tm+1 − tm)d + τm+1 ≤ d + τ̄.

Case (ii): If tmd + d + τ̄ < tm+1d + τm+1, consider the following intervals

[tmd + τm, tmd + d + τ̄), [tmd + nd + τ̄, tmd + nd + d + τ̄).

Since τm ≤ τ̄, it can be easily shown that rM exists such that

tmd + rMd + τ̄ < tm+1d + τm+1 ≤ tmd + rMd + d + τ̄,
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and v(tmd) and v(tmd + nd) with n = 1, 2, . . . , rM satisfying (5). Let
∆0 = [tmd + τm, tmd + d + τ̄),
∆1 = [tmd + d + τ̄, tmd + 2d + τ̄),

...
∆rM = [tmd + rMd + τ̄, tm+1d + τm+1).

(10)

To satisfy the ET condition in (5), we introduce two piecewise functions for τ(t),
as follows:

τ(t) =


t− tmd, t ∈ ∆0,
t− tmd− d, t ∈ ∆1,

...
t− tmd− rMd, t ∈ ∆rM .

(11)

In case (i), for t ∈ [tmd + τm, tm+1d + τm+1), define E (t) = 0. In case (ii), define

E (t) =


v(tmd)−v(tmd), t ∈ ∆0,
v(tmd)−v(tmd + d), t ∈ ∆1,

...
v(tmd)−v(tmd + rMd), t ∈ ∆rM .

(12)

From the above condition, τ(t) is defined as τ(t) ∈ [τm, d + τ̄). It is easy to prove
that 0 ≤ τm ≤ τ(t) ≤ d + τ̄ = τ2, t ∈ [tmd + τm, tm+1d + τm+1). Finally, we define
v(tmd) = E (t) + v(t− τ(t)).

Combining (5) and (12),

E T(t)ΨE (t) ≤ σvT(t− τ(t))Ψv(t− τ(t)), (13)

where t ∈ [tmd + τm, tm+1d + τm+1).
The quantized controller is defined as

u(t) = Kv(tmd), t ∈ [tmd + τm, tm+1d + τm+1),

where K = Ki(I + Ω), Ki is the controller gain matrix to be determined. Since v(tmd) =
v(t− τ(t)) + E (t), based on the quantization function, we can write the following:

u(t) = Ki(I + Ω)[v(t− τ(t) + E (t)], (14)

By utilizing Remark 1, we can determine the impact of actuator saturation on the
system being considered at the same time,

δ(u(t)) = u(t)− φ(u(t)). (15)

From Equations (4), (14), and (15), the error system can be rewritten as

v̇(t) = −Aiv(t) +Biη(v(t)) + Ciη(v(t− ρ(t))) + Ki(I + Ω)v(t− τ(t)

+ Ki(I + Ω)E (t)− φ(u(t)). (16)

From Remark 1, there exists a scalar 0 < ε < 1 satisfying:

εuT(t)u(t)− φT(u(t))φ(u(t)) ≥ 0. (17)
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Substituting (14) in inequality (17), the saturation nonlinearities can be written as

ε[Ki(I + Ω)v(t− τ(t) + Ki(I + Ω)E (t)]T [Ki(I + Ω)v(t− τ(t)

+ Ki(I + Ω)E (t)]− φT(u(t))φ(u(t)) ≥ 0.

Therefore, for any ς > 0, we can derive

ες[Ki(I + Ω)v(t− τ(t) + Ki(I + Ω)E (t)]T [Ki(I + Ω)v(t− τ(t) + Ki(I + Ω)E (t)]

− ςφT(u(t))φ(u(t)) ≥ 0. (18)

Definition 1 ([46]). We can use the notation δ(l(·)) : Rm → Rm to represent the saturation
function of δ(u(·)). This function is defined as

δl(u) := [δ1(u1), δ2(u2), . . . , δj̄(u j̄)]
T ,

where δl(ul) = sig(ul)min{ρl , |ul |}, or we can write it as follows:
ϑl ul > ϑl ,
ul , −ϑl ≤ ul ≤ ϑl , l = 1, 2, . . . , j̄,
−ϑl , ul < −ϑl .

Definition 2 ([47]). The MJTDNNs (16) are said to be FTS with respect to (c1, c2, T), if

E||v(t1)||2 ≤ c1 ⇒ E||v(t2)||2 < c2, t1 ∈ [−ρ2, 0], t2 ∈ [0, T], (19)

where c1 and c2 are scalars and satisfy 0 ≤ c1 < c2.

Definition 3 ([48]). Assume that V(v(t), rt) is a positive stochastic functional, and let us define
its weak infinitesimal operator as

L(V(v(t), rt = i)) = lim
∆→0

1
∆

[
E
{

V(v(t + ∆t), r(t + ∆))

|v(t), rt = i
}
−V(v(t), rt = i)

]
.

Lemma 1 ([49]). Assume that v is a differentiable function defined as v : [a, b]→ Rn. Let R be a
symmetric matrix in Rn×n, and let M1, M3 ∈ R3n×3n be symmetric matrices. Consider also any
matrices M2 ∈ R3n×3n and N1, N2 ∈ R3n×n that satisfy M1 M2 N1

∗ M3 N2
∗ ∗ R

; (20)

then, the following inequality holds:

−
∫ b

a
v̇T(s)Rv̇(s)ds ≤ χT(a, b)Ωχ(a, b),

where χ(a, b) = [vT(b) vT(a) 1
b−a

∫ b
a vT(s)ds],

Ω = (b− a)(M1 +
1
3 M3) + Sym{N1Π1 + N2Π2}

Π1 = e1 − e2, Π2 = 2e3 − e1 − e2
e1 = [I 0 0], e2 = [0 I 0], e3 = [0 0 I].
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Lemma 2 ([50]). For matrices X > 0 and G T = G , we have

−G X −1G ≤ γ2
1X − 2γ1G ,

where γ1 is any chosen constant.

Lemma 3 ((Schur Complement) [50]). The LMI
[

Z Y
YT W

]
< 0 is equivalent to W < 0,

Z−YW−1YT < 0.

Lemma 4 ([51]). Suppose we have x, y ∈ Rn, as well as a positive definite matrix Q ∈ Rn×n.
Then, we can state the following inequality

2xTy ≤ xTQx + yTQ−1y.

3. Main Results

Based on the above discussions, this section uses a suitable LKF for the error sys-
tem (16) as FTS under a quantized ET control scheme. For convenience, we establish the
following naming conventions for vectors and matrices:

ρ(t) = ρ1, ρd = ρ2 − ρ1, v(tρ1) = v(t− ρ1), v(tρ2) = v(t− ρ2), τ̃ = τ2,
τ(t) = τ1, τd = τ2 − τ1, v(tτ1) = v(t− τ1), v(tτ2) = v(t− τ2),

υ(tρ1 , t) = 1
ρ1

∫ t
tρ1

v(s)ds, υ(tρ2 , tρ2) =
1
ρd

∫ tρ1
tρ2

v(s)ds,

υ(tτ1 , t) = 1
τ1

∫ t
tτ1

v(s)ds, υ(tτ2 , tτ2) =
1
τd

∫ tτ1
tτ2

v(s)ds,

ξ(t) = col[v(t), v̇(t), v(tρ1), v(tρ2), η(v(t)), η(v(t− ρ(t))), υ(tρ1 , t), υ(tρ1 , tρ2),
v(tτ1), v(tτ2), υ(tτ1 , t), υ(tτ1 , tτ2), E (t), φ(u(t))],
Π1 = col[v(t) v(tρ1) υ(tρ1 , t)],
Π2 = col[v(t)−v(tρ1)],
Π3 = col[2υ(tρ1 , t)−v(t)−v(tρ1)],
Π4 = col[v(tρ1) v(tρ2) υ(tρ1 , tρ2)],
Π5 = col[v(tρ1)−v(tρ2)],
Π6 = col[2υ(tρ1 , tρ2)−v(tρ1)−v(tρ2)],
Π7 = col[v(t) v(tτ1) υ(tτ1 , t)],
Π8 = col[v(t)−v(tτ1)],
Π9 = col[υ(tτ1 , t)−v(t)−v(tτ1)],
Π10 = col[v(tτ1) v(tτ2) υ(tτ1 , tτ2)],
Π11 = col[v(tτ1)−v(tτ2)],
Π12 = col[2υ(tτ1 , tτ2)−v(tτ1)−v(tτ2)],

ek̄ =
[

0n×(k̄−1)n In 0n×(14−k̄)n

]
, k̄ = (1, 2, . . . , 14).

Theorem 1. For given scalars ρ2 > 0, τ2 > 0, α > 0, δ > 0, ε > 0, ς > 0, µ > 0, c2 > c1 > 0,
and time constant T > 0, and control gain Ki, the MJTDNNs (16) can achieve stochastic FTS with
respect to (c1, c2, T) if the following conditions are satisfied: Symmetric positive-definite matrices
Pi, Q1i, Q2, Q3, Q4, Q5 exist, along with appropriate dimension matrices G , X1, X2, X1, X2, Y1,
Y2, Y1, Y2, Mk, (k = 1, 2, 3), Mk, (k = 1, 2, 3), Nl (l = 1, 2, 3) and Nl (l = 1, 2, 3). Diagonal
matrices U and U, and scalars λl (l = 1, 2, . . . , 7) also exist. The above matrices and scalars must
satisfy certain matrix inequalities:  M1 M2 X1

∗ M3 X2
∗ ∗ Q4

 ≥ 0, (21)
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 N1 N2 Y1
∗ N3 Y2
∗ ∗ Q4

 ≥ 0, (22)

 M1 M2 X1
∗ M3 X2
∗ ∗ Q5

 ≥ 0, (23)

 N1 N2 Y1
∗ N3 Y2
∗ ∗ Q5

 ≥ 0, (24)

s

∑
j=1

πij(Q1j)−Q3 < 0, (25)

Ξ1i =

[
Θ̂1(ρ(t) = 0, τ(t) = 0) Θ̂2

∗ −I

]
< 0, (26)

Ξ2i =

[
Θ̂1(ρ(t) = ρ2, τ(t) = 0) Θ̂2

∗ −I

]
< 0, (27)

Ξ3i =

[
Θ̂1(ρ(t) = 0, τ(t) = τ2) Θ̂2

∗ −I

]
< 0, (28)

Ξ4i =

[
Θ̂1(ρ(t) = ρ2, τ(t) = τ2) Θ̂2

∗ −I

]
< 0, (29)

Θ̂1 = 2eT
1 Pie2 + eT

1

(
s

∑
j=1

πijPj

)
e1 + eT

5 Q1ie5 − (1− µ)eT
6 Q1ie6 + eT

1 Q2e1 − eT
10Q2e10

+ ρ1eT
5 Q3e5 + ρ2eT

2 Q4e2 + τ2eT
2 Q5e2 + ρ1ΠT

1 M1Π1 + Sym{ΠT
1 X1Π2 + ΠT

1 X2Π3}
+ ρdΠT

4 N1Π4 + Sym{ΠT
4 Y1Π5 + ΠT

4 Y2Π6}+ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8

+ ΠT
7 X2Π9}+ τdΠT

10N2Π10 + Sym{ΠT
10Y1Π11 + ΠT

10Y2Π12}

+ 2[eT
1 + eT

2 ]G
[
− e2 −Aie1 +Bie5 + Cie6 + Ki(I + Ω)e9 + Ki(I + Ω)e13 − ςe14

]
− eT

1 L1Ue1 + eT
1 L2Ue5 − eT

5 Ue5 − e3L1UeT
3 + eT

3 L2Ue6 − eT
6 Ue6

− ςeT
14e14 + σeT

9 e9 − eT
13Ψe13,

Θ̂2 = col[

8 times︷ ︸︸ ︷
0 . . . 0

√
εςKi(I + Ω) 0 0 0

√
εςKi(I + Ω) 0],

M1 = M1 +
1
3

M3, N1 = N1 +
1
3

N3,

M2 = M1 +
1
3

M3, N2 = N1 +
1
3

N3,

c2λ1 > c1eαT
(

λ2 + ρ2ν̄kλ3 + τ2λ4 + ρ2
2ν̄2

k λ5 + τ2
2 λ6 + ρ2

2λ7

)
, (30)

where λ1 = maxi∈s λmin(P1i), λ2 = maxi∈s λmax(P1i), λ3 = maxi∈s λmax(Q1i), λ4 =
λmax(Q2), λ5 = λmax(Q3), λ6 = λmax(Q4), λ7 = λmax(Q5), ν̄ = max(νk).

Proof. Construct the LKF as follows:

V(v(t), i) =
4

∑̄
n=1

Vn̄(v(t), i), (31)
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where

V1(v(t), i) = vT(t)Piv(t),

V2(v(t), i) =
∫ t

t−ρ(t)
ηT(v(s))Q1iη(v(s))ds,

V3(v(t), i) =
∫ t

t−τ2

vT(s)Q2v(s)ds,

V4(v(t), i) =
∫ 0

−ρ(t)

∫ t

t+θ
ηT(v(s))Q3η(v(s))dsdθ +

∫ 0

−ρ2

∫ t

t+θ
v̇T(s)Q4v̇(s)dsdθ

+
∫ 0

−τ2

∫ t

t+θ
v̇T(s)Q5v̇(s)dsdθ.

Consequently, the weak infinitesimal operator L of V(v(t), i) is defined as follows:

L(v(t), i) = lim
∆→0

1
∆

[
E{V(v(t + ∆))} − {V(v(t + ∆))}

]
.

Applying the techniques presented in [52], we can obtain an equation for the weak
infinitesimal generator of V(v(t), i) by computing it along the system trajectory, as shown
in Equation (16). This can be achieved using the following expression:

L
(

V1(v(t), i)
)
= 2vT(t)Piv̇(t) + vT(t)

(
s

∑
j=1

πijPj

)
v(t), (32)

L
(

V2(v(t), i)
)
≤ ηT(v(t))Q1iη(v(t))− (1− µ)ηT(v(t− ρ(t)))Q1iη(v(t− ρ(t)))

+
s

∑
j=1

πij

∫ t

t−ρ(t)
ηT(v(s))Q1iη(v(s))ds, (33)

From (25), we can write the term from (33) as follows∫ t

t−ρ(t)
ηT(v(s))

( s

∑
j=1

πij(h)Q1j

)
η(v(s))ds ≤

∫ t

t−ρ(t)
ηT(v(s))

( s

∑
j=1

πijQ1j

)
η(v(s))ds,

≤
∫ t

t−ρ(t)
ηT(v(s))Q3η(v(s))ds, (34)

L
(

V3(v(t), i)
)
≤ vT(t)Q2v(t)−vT(t− τ2)Q2v(t− τ2), (35)

L
(

V4(v(t), i)
)
= ρ(t)ηT(v(t))Q3η(v(t))−

∫ t

t−ρ(t)
ηT(v(s))

×Q3η(v(s)) + ρ2v̇T(t)Q4v̇(t)

−
∫ t

t−ρ2

v̇T(s)Q4v̇(s)ds + τ2v̇T(t)Q5v̇(t)

−
∫ t

t−τ2

v̇T(s)Q5v̇(s)ds, (36)

By using Lemma 1, we can get

−
∫ t

t−ρ2

v̇T(s)Q4v̇(s)ds = −
∫ t

t−ρ1

v̇T(s)Q4v̇(s)ds−
∫ t−ρ1

t−ρ2

v̇T(s)Q4v̇(s)ds,

≤ ρ1ΠT
1 M1Π1 + Sym{ΠT

1 X1Π2 + ΠT
1 X2Π3}

+ ρdΠT
4 N1Π4 + Sym{ΠT

4 Y1Π5 + ΠT
4 Y2Π6}, (37)

−
∫ t

t−τ2

v̇T(s)Q5v̇(s)ds = −
∫ t

t−τ1

v̇T(s)Q5v̇(s)ds−
∫ t−τ1

t−τ2

v̇T(s)Q5v̇(s)ds,
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≤ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8 + ΠT
7 X2Π9}

+ τdΠT
10N2Π10 + Sym{ΠT

10Y1Π11 + ΠT
10Y2Π12}, (38)

For any appropriate dimension matrix G , we can consider the following equality,

0 = 2[v(t) + v̇(t)]G [−v̇(t)−Aiv(t) +Biη(v(t)) + Ciη(v(t− ρ(t)))
+Ki(I + Ω)[v(t− τ(t) + E (t))].

(39)

Based on Assumption 1, we can write[
v(t)

η(v(t))

]T[ −L1U L2U
∗ −U

][
v(t)

η(v(t))

]
≥ 0; (40)

similarly, we get[
v(t− ρ(t)))

η(v(t− ρ(t))))

]T[ −L1U L2U
∗ −U

][
v(t− ρ(t)))

η(v(t− ρ(t))))

]
≥ 0, (41)

where U = diag{u1, u2, . . . , un}, U = diag{ū1, ū2, . . . , ūn}.
We can obtain the following inequality from Equations (32)–(41), as well as from

Equations (13) and (18)

L
(

V(v(t), i)
)
≤ 2vT(t)Piv̇(t) + vT(t)

(
s

∑
j=1

πijPj

)
v(t) + η>(v(t))Q1iη(v(t)

− (1− µ)ηT(v(t− ρ(t)))Q1iη(v(t− ρ(t))) +
∫ t

t−ρ(t)
ηT(e(s))Q3η(v(s))ds

+ vT(t)Q2v(t)−vT(t− τ2)Q2v(t− τ2) + ρ(t)ηT(v(t))Q3η(v(t))

+ ρ2v̇T(t)Q4v̇(t) + τ2v̇T(t)Q5v̇(t)−
∫ t

t−ρ(t)
ηT(v(s))Q3η(v(s))ds

+ ρ1ΠT
1 M1Π1 + Sym{ΠT

1 X1Π2 + ΠT
1 X2Π3}+ ρdΠT

4 N1Π4

+ Sym{ΠT
4 Y1Π5 + ΠT

4 Y2Π6}+ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8

+ ΠT
7 X2Π9}+ τdΠT

10N2Π10 + Sym{ΠT
10Y1Π11 + ΠT

10Y2Π12}
+ 2[v(t) + v̇(t)]G [−v̇(t)−Aiv(t) +Biη(v(t)) + Ciη(v(t− ρ(t)))

+ Ki(I + Ω)[v(t− τ(t) + E (t))]−vT(t)L1Uv(t) + 2vT(t)L2Uη(v(t))

− ηT(v(t))Uη(v(t))−vT(tρ1)L1Uv(tρ1) + 2vT(tρ1)L2Uη(v(t− ρ(t)))

− ηT(v(t− ρ(t)))Uη(v(t− ρ(t))) + ες
[
Ki(I + Ω)v(t− τ(t)

+ Ki(I + Ω)E (t)
]T[

Ki(I + Ω)v(t− τ(t) + Ki(I + Ω)E (t)
]

− ςφT(u(t))φ(u(t)) + σvT(t− τ(t))Ψv(t− τ(t))− E T(t)ΨE (t), (42)
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L
(

V(e(t), i)
)
≤ ξT(t)

{
2eT

1 Pie2 + eT
1

(
s

∑
j=1

πijPj

)
e1 + eT

5 Q1ie5 − (1− µ)eT
6 Q1ie6

+ eT
1 Q2e1 − eT

10Q2e10 + ρ1eT
5 Q3e5 + ρ2eT

2 Q4e2 + τ2eT
2 Q5e2

+ ρ1ΠT
1 M1Π1 + Sym{ΠT

1 X1Π2 + ΠT
1 X2Π3}+ ρdΠT

4 N1Π4

+ Sym{ΠT
4 Y1Π5 + ΠT

4 Y2Π6}+ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8

+ ΠT
7 X2Π9}+ τdΠT

10N2Π10 + Sym{ΠT
10Y1Π11 + ΠT

10Y2Π12}

+ 2[eT
1 + eT

2 ]G
[
− e2 −Aie1 +Bie5 + Cie6 + Ki(I + Ω)e9

+ Ki(I + Ω)e13 − ςe14

]
− eT

1 L1Ue1 + eT
1 L2Ue5 − eT

5 Ue5 − e3L1UeT
3

+ eT
3 L2Ue6 − eT

6 Ue6 + ες
[
Ki(I + Ω)e9 + Ki(I + Ω)e13

]T

×
[
Ki(I + Ω)e9 + Ki(I + Ω)e13

]
− ςeT

14e14 + σeT
9 e9 − eT

13Ψe13

}
ξ(t). (43)

By utilizing the Schur complement (Lemma 3) with Equation (42), we can arrive at
the following:

L
(

V(v(t), i)
)
< 0. (44)

Based on Equation (44), and under the assumption of a positive constant α satisfying
certain conditions, it follows that

E
{
L
(

V(v(t), i)
)}

< αE
{

V(v(t), i)
}

. (45)

The following inequality can be derived from inequality (45):

e−αtE
{

V(v(t), i)
}
< E

{
V(v(0), 0)

}
. (46)

It is worth noting that the value of t lies between 0 and T. Utilizing this fact, we can
derive the following inequality,

E
{

V(v(t), i)
}
< eαTE

{
V(v(0), 0)

}
< eαT

[
vT(0)Piv(0) +

∫ 0

ρ(0)
ηT(v(s))Q1iη(v(s))ds

+
∫ 0

τ2

vT(s)Q2v(s)ds +
∫ 0

−ρ(0)

∫ 0

θ
ηT(v(s))Q3η(v(s))dsdθ

+
∫ 0

−ρ2

∫ 0

θ
ηT(v(s))Q4η(v(s))dsdθ +

∫ 0

−τ2

∫ 0

θ
vT(s)Q5v(s)dsdθ

]
,

eαTE
{

V(e(0), 0)
}
< eαT

[
max

i∈s
λmax(Pi) + ρ(0)ν̄k max

i∈s
λmax(Q1i) + τ2λmax(Q2)

+ ρ2
2ν̄2

k λmax(Q3) + ρ2
2λmax(Q4) + τ2

2 λmax(Q5)

]
sup

−ρ2≤s≤0,−τ2≤s≤0

{
vT(s)v(s), v̇T(s)v̇(s)

}
,

eαTE
{

V(v(0), 0)
}
< c1eαT

(
λ2 + ρ2ν̄kλ3 + τ2λ4 + ρ2

2ν̄2
k λ5 + τ2

2 λ6 + ρ2
2λ7

)
.
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We can obtain the following information by utilizing Equation (30),

E{vT(t)Piv(t)} ≥ max
i∈s

λmin(Pi)E||v(t)||2. (47)

Subsequently, we can attain,

E||v(t)||2 <
c1eαT

(
λ2 + ρ2ν̄kλ3 + τ2λ4 + ρ2

2ν̄2
k λ5 + τ2

2 λ6 + ρ2
2λ7

)
λ1

; (48)

from the above inequality, we can obtain

E||v(t)||2 < c2. (49)

Based on Definition 2, we can determine that the system described by Equation (16)
achieves stochastic FTS with respect to (c1, c2, T).

Remark 2. In our approach, we utilized an ET mechanism and free-weighting matrices to derive
(16) in Theorem 1. However, due to the presence of condition (5), directly obtaining the gains Ki for
(16) is not possible. To address this challenge, we introduce a new theorem that allows us to obtain
the gain Ki needed to meet the requirements of the system. This theorem is crucial for enabling us to
effectively implement the ET control scheme and ensure the synchronization and performance of
the MJTDNNs.

Now, we are in a position to design the ET controller for the error system (16).

Theorem 2. Suppose we have a time constant T > 0 and scalars ρ2 > 0, τ2 > 0, α > 0, δ > 0,
ε > 0, µ > 0, γ1 > 0, b > 0, and c2 > c1 > 0. Let the MJTDNNs (16) be subject to the ET
condition (5) and gain matrix Ki = G−1Yi. If there exist symmetric positive-definite matrices Pi,
Q1i, Q2, Q3, Q4, and Q5, as well as appropriately dimensioned matrices G , X1, X2, X1, X2, Y1,
Y2, Y1, Y2, Mk (k = 1, 2, 3), Mk (k = 1, 2, 3), Nl (l = 1, 2, 3), and Nl (l = 1, 2, 3), as well as
diagonal matrices U and U, and scalars λl (l = 1, 2, . . . , 7), γ2 > 0, γ3 > 0, γ4 > 0, and γ5 > 0
such that the inequalities for the matrices are as follows, then the MJTDNNs are stochastically FTS
with respect to (c1, c2, T):  M1 M2 X1

∗ M3 X2
∗ ∗ Q4

 ≥ 0, (50)

 N1 N2 Y1
∗ N3 Y2
∗ ∗ Q4

 ≥ 0, (51)

 M1 M2 X1
∗ M X2
∗ ∗ Q5

 ≥ 0, (52)

 N1 N2 Y1
∗ N3 Y1
∗ ∗ Q5

 ≥ 0, (53)

s

∑
j=1

πij(Q1j)−Q3 < 0, (54)
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Ξ̂1i =


Θ̃1(ρ(t) = 0, τ(t) = 0) Θ̃2 b(γ2 + γ3)Yi b(γ4 + γ5)Yi

∗ γ2
1 I − 2γ1G 0 0

∗ ∗ −(γ2 + γ3)I 0
∗ ∗ ∗ −(γ2 + γ3)I

 < 0, (55)

Ξ̂2i =


Θ̃1(ρ(t) = ρ2, τ(t) = 0) Θ̃2 b(γ2 + γ3)Yi b(γ4 + γ5)Yi

∗ γ2
1 I − 2γ1G 0 0

∗ ∗ −(γ2 + γ3)I 0
∗ ∗ ∗ −(γ4 + γ5)I

 < 0, (56)

Ξ̂3i =


Θ̃1(ρ(t) = 0, τ(t) = τ2) Θ̃2 b(γ2 + γ3)Yi b(γ4 + γ5)Yi

∗ γ2
1 I − 2γ1G 0 0

∗ ∗ −(γ2 + γ3)I 0
∗ ∗ ∗ −(γ4 + γ5)I

 < 0, (57)

Ξ̂4i =


Θ̃1(ρ(t) = ρ2, τ(t) = τ2) Θ̃2 b(γ2 + γ3)Yi b(γ4 + γ5)Yi

∗ γ2
1 I − 2γ1G 0 0

∗ ∗ −(γ2 + γ3)I 0
∗ ∗ ∗ −(γ4 + γ5)I

 < 0, (58)

where

Θ̃1 = 2eT
1 Pie2 + eT

1

(
s

∑
j=1

πijPj

)
e1 + eT

5 Q1ie5 − (1− µ)eT
6 Q1ie6 + eT

1 Q2e1 − eT
10Q2e10

+ ρ1eT
5 Q3e5 + ρ2eT

2 Q4e2 + τ2eT
2 Q5e2 + ρ1ΠT

1 M1Π1 + Sym{ΠT
1 X1Π2 + ΠT

1 X2Π3}
+ ρdΠT

4 N1Π4 + Sym{ΠT
4 Y1Π5 + ΠT

4 Y2Π6}+ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8

+ ΠT
7 X2Π9}+ τdΠT

10N2Π10 + Sym{ΠT
10Y1Π11 + ΠT

10Y2Π12}

+ 2[eT
1 + eT

2 ]G
[
− e2 −Aie1 +Bie5 + Cie6 − ςe14

]
+ 2eT

1 YiI e9 + 2eT
1 YiI e13

+ 2eT
2 YiI e9 + 2eT

2 YiI e13 + γ−1
2 eT

9 e9 + γ−1
3 eT

13e13 + γ−1
4 eT

9 e9 + γ−1
5 eT

13e13

− eT
1 L1Ue1 + eT

1 L2Ue4 − eT
4 Ue4 − e2L1UeT

2 + eT
2 L2Ue5 − eT

5 Ue5 − ςeT
14e14

+ σeT
9 e9 − eT

13Ψe13,

Θ̃2 = col[

8 times︷ ︸︸ ︷
0 . . . 0

√
εςYi 0 0 0

√
εςYi 0],

M1 = M1 +
1
3

M3, N1 = N1 +
1
3

N3,

M2 = M1 +
1
3

M3, N2 = N1 +
1
3

N3,

c2λ1 > c1eαT
(

λ2 + ρ2ν̄kλ3 + τ2λ4 + ρ2
2ν̄2

k λ5 + τ2
2 λ6 + ρ2

2λ7

)
, (59)

where λ1 = maxi∈s λmin(P1i), λ2 = maxi∈s λmax(P1i), λ3 = maxi∈s λmax(Q1i), λ4 =
λmax(Q2), λ5 = λmax(Q3), λ6 = λmax(Q4), λ7 = λmax(Q5), ν̄ = max(νk).

Proof. To prove Theorem 2, we can follow the same approach as in Theorem 1. First, let
us define Ki = G−1Yi. Next, we can multiply Equations (26)–(29) on the left and right by
diag{I, I, I, I, I, I, I, I, I, I, I, I, I, I, G }, respectively. Then, by defining a new matrix
variable Yi = G Ki, we can use Theorem 1 to define the subsequent steps,
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Ξ̃ = ξT(t)
{

2eT
1 Pie2 + eT

1

(
s

∑
j=1

πijPj

)
e1 + eT

5 Q1ie5 − (1− µ)eT
6 Q1ie6 + eT

1 Q2e1 − eT
10Q2e10

+ ρ1eT
5 Q3e5 + ρ2eT

2 Q4e2 + τ2eT
2 Q5e2 + ρ1ΠT

1 M1Π1 + Sym{ΠT
1 X1Π2 + ΠT

1 X2Π3}
+ ρdΠT

4 N1Π4 + Sym{ΠT
4 Y1Π5 + ΠT

4 Y2Π6}+ τ1ΠT
7 M2Π7 + Sym{ΠT

7 X1Π8

+ ΠT
7 X2Π9}+ τdΠT

10N2Π10 + Sym{ΠT
10Y1Π11 + ΠT

10Y2Π12}

+ 2[eT
1 + eT

2 ]G
[
− e2 −Aie1 +Bie5 + Cie6 − ςe14

]
+ 2eT

1 YiI e9 + 2eT
1 YiΩe9

+ 2eT
1 YiI e13 + 2eT

1 YiΩe13 + 2eT
2 YiI e9 + 2eT

2 YiΩe9 + 2eT
2 YiI e13 + 2eT

2 YiΩe13

− eT
1 L1Ue1 + eT

1 L2Ue4 − eT
4 Ue4 − e2L1UeT

2 + eT
2 L2Ue5 − eT

5 Ue5 − ςeT
14e14

+ σeT
9 e9 − eT

13Ψe13

}
ξ(t), (60)

Θ̃2 = col[

8 times︷ ︸︸ ︷
0 . . . 0

√
εςYi 0 0 0

√
εςYi 0]. (61)

For the uncertain terms from (60), ξT(t)(2eT
1 YiΩe9)ξ(t), ξT(t)(2eT

1 YiΩe13)ξ(t),
ξT(t)(2eT

2 YiΩe9)ξ(t), and ξT(t)(2eT
2 YiΩe13)ξ(t) there exist scalars γ2, γ3, γ4, and γ5

such that

2vT(t)YiΩv(t− τ(t)) ≤ γ2b2vT(t)YiY
T

i v(t) + γ−1
2 vT(t− τ(t))v(t− τ(t)), (62)

2vT(t)YiΩE (t) ≤ γ3b2vT(t)YiY
T

i v(t) + γ−1
3 E T(t)E T(t), (63)

2v̇T(t)YiΩv(t− τ(t)) ≤ γ4b2v̇T(t)YiY
T

i v̇(t) + γ−1
4 eT(t− τ(t))v(t− τ(t)), (64)

2v̇T(t)YiΩE (t) ≤ γ5b2v̇T(t)YiY
T

i v̇(t) + γ−1
5 E T(t)E T(t). (65)

By using Lemma 3 in (62)–(65) and by Lemma 2, −G IG ≤ γ2
1 I − 2γ1G , we easily

obtain (50)–(58). That is, if (50)–(58) hold, the MJTDNNs (16) is stochastically FTS under
the event-triggered condition (5).

Remark 3. We already knew that the research object of articles [2,3,53,54] was MJNNs, but we
can see that these articles mainly discussed stability, state estimation, and synchronization research.
Different from the method of constructing functionals in these articles, this article discusses a kind of
FTS with quantization and actuator saturation problems, which is rare. On the other hand, the issue
of FTS is also not involved in QMJTDNNs.

Remark 4. Many existing works with respect to finite-time synchronization conditions for NNs,
see [15–17], address these in terms of inequalities. Compared with the approach used in [17],
the finite-time synchronization conditions obtained in Theorem 2 can be addressed in terms of
LMIs, which can be solved by utilizing the LMI toolbox in Matlab. It should be mentioned that
condition (31) cannot be solved directly in terms of LMIs; however, by constructing an LKF with free-
matrix-based integral inequalities and utilizing Schur complement lemma, the matrix inequalities
are turned into the linear matrix inequalities, which can be solved in terms of LMIs.

Remark 5. By utilizing the novel LKF, more information about the time-delay variation can be
incorporated into the synchronization existence conditions. Therefore, compared to the approach
presented in [17] and Theorem 2 in this paper, the latter can yield less-conservative results. For-
tunately, only the LMIs in Theorem 2 need to be solved, allowing for the establishment of the
relationship between neural network synchronization and time delays, although the proposed method
with free-weighting matrices and zero inequality has a higher complexity than existing results
in [17]. Using the MATLAB LMI toolbox, the calculations are no longer a huge problem. Therefore,
compared with existing results, the proposed conditions can still be viewed as an improvement over
existing results.
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4. Numerical Examples

Example 1. Consider a two-neuron two-mode MJTDNN (16) with the following system parameters with

A1 =

[
1 0

0.12 0.98

]
, B1 =

[
−1.28 −2.651
16.4 5.2

]
,

C1 =

[
−1.5

√
(2)π

4 −0.1
−0.2 −1.2

√
(2)π

4

]
,

A2 =

[
1.9 0
5 2.3

]
, B2 =

[
1.735 19

0.1 1.735

]
,

C2 =

[
−1.2

√
(2)π

4 0.1
0.1 −1.3

√
(2)π

4

]
,

η(v(t)) =
[

tanh(0.04v1(t)) tanh(0.04v2(t))
]T ,

and the Markovian process with transition matrix πij =

[
−0.2 0.2
0.1 −0.1

]
. The delays and the

other parameter (c1, T, α) are given as follows: τ2 = 0.9, ρ2 = 1.2, c1 = 0.5, T = 2.5, α =
0.005, δ = 0.5, µ = 0.2, ς = 0.1, σ = 0.15, c̄w = 1/2. By solving LMIs (50)–(58), we get
c2 = 3.58; then, the feasible solutions are as follows:

P1 =

[
6.9858 −0.1599
−0.1599 6.0090

]
, P2 =

[
6.9895 −0.1698
−0.1698 6.3921

]
,

Q11 =

[
2.4847 −0.0167
−0.0167 2.4442

]
, Q12 =

[
2.4355 −0.0464
−0.0464 2.4271

]
,

Q2 =

[
2.6012 −0.0032
−0.0032 2.5801

]
, Q3 =

[
2.8989 −0.0385
−0.0385 2.8680

]
,

Q4 =

[
0.0094 0.0001
0.0001 0.0107

]
, Q5 =

[
0.0173 0.0001
0.0001 0.0182

]
,

U =

[
6.4938 −0.0231
−0.0231 6.5516

]
, U =

[
2.5292 0.0098
0.0098 2.5371

]
,

Ψ =

[
3.5872 −0.0001
−0.0001 3.5875

]
.

Then, according to (16), we can obtain the following parameters of the desired control gain:

K1 =

[
6.1574 −0.0220
−0.0221 5.6325

]
, K2 =

[
6.1552 −0.0227
−0.0226 6.1381

]
.

The flowchart of event-triggered control is illustrated in Figure 2. Moreover, the simulation
results for Example 1 are presented in Figures 3–5. A sampling period of d = 0.05 was set, and the
initial condition was [−10, 10]T . Figures 3 and 4 show the evolution of ζ(t) and ζ̃(t), respectively,
while Figure 5 displays the trajectories of v(t). It is evident from the figures that the system
reached a synchronized state for a certain period of time under the action of the controller (14), thus
validating the effectiveness of the proposed control method.

Table 1 provides a summary of the maximum upper bound (MUB) that is appropriate for each
separate µ, as determined by Theorem 2, along with the upgrade values that correspond to those upper
bounds. The findings of this research indicate that the method that was suggested is an impactful means
of determining the highest permissible upper bound, as shown by the obtained results.
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Figure 2. The flowchart of the proposed controller in Example 1.
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Figure 3. The time response of state variable ζ1(t), ζ̃1(t) in Example 1.

0 5 10 15 20 25 30 35 40 45 50

Time (sec)

-10

-5

0

5

10

15

Figure 4. The time response of state variable ζ2(t), ζ̃2(t) in Example 1.
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Figure 5. The time evolution of the error system states in Example 1.

Table 1. Maximum allowable bound ρ2 for different values of µ, for Example 1.

Method 0.5 0.7 0.9 Unknown

Theorem 2 1.0335 0.9002 0.8012 0.7521

Example 2. Consider the MJTDNs from (16) with three neurons and three modes, which has the
known values:

Mode 1:

A1 =

 0.12 0 0
0 0.24 0
0 0 0.36

,

B1 =

 1 + π
4 0

√
2π
4

1.20
√

2π
6 2.18

1−
√

2π
4

√
2π
2 −1.34

,

C1 =

 −1.5
√

2π
4 0.92 −1.54

−0.45 1.8
√

2π
6 0.08

−1.3
√

2π
4

√
2π
8 0.35

,

Mode 2:

A2 =

 0.32 0 0
0 0.18 0
0 0 0.26

,

B2 =

 5.62 1 +
√

2π
4 2− 2

√
2π
4

−1.2
√

2 9
√

2π
2 −

√
2π
4

2−
√

2 2.98 −5
√

2π
4

,

C2 =

 −1.5
√

2π
4 0.92 −1.54

−0.45 1.8
√

2π
6 0.08

−1.3
√

2π
4

√
2π
8 0.35


Mode 3:

A3 =

 0.42 0 0
0 0.98 0
0 0 0.74

,
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B3 =

 −
√

2π
√

2π
5

√
2π√

2π
2 3

√
2π
4 0

0 −1.2
√

2π
4 5

√
2π
6

,

C3 =


√

2π
6 −

√
2π −1.2

√
2π

−
√

2π
4

√
2π
8 0.6

1.0
√

2π
6

√
2π

10

,

The activation functions are chosen as η(·) = tan h(0.5), which can be easily obtained from
Assumption 1.

Assuming that the Markov process is satisfied, the transition matrix for the MJTDNN with
three jumping modes specified in Equation (16) can be represented in the following manner:

πij =

 −1.5 0.6 0.9
0.7 −1.2 0.5
1.5 1.4 −2.9

.

Here, σ = 0.25 is the value that we chose to specify as the value of the parameter for the
triggered scheme that applied to this scenario. In addition, we specified the following values for the
other parameters: τ2 = 0.9, ρ2 = 1.2, c1 = 0.5, T = 2.5, α = 0.005, δ = 1, µ = 0.2, ς = 0.1,
and c̄w = 0.3 for the quantization parameter. By utilizing the LMI toolbox available in MATLAB
and Theorem 2, we obtained c2 = 1.42 and determined that the ET matrix was given by

Ψ =

 1.4172 −0.0000 0.0000
−0.0000 1.4172 −0.0000
0.0000 −0.0000 1.4172

.

Then, according to (16), the gain matrices can be obtained as:

K1 =

 2.6575 −0.0184 −0.0008
−0.0184 2.7107 −0.0271
−0.0008 −0.0271 2.6966

,

K2 =

 2.7961 −0.0130 0.0130
−0.0130 2.9214 −0.0357
0.0130 −0.0357 2.9129

,

K3 =

 2.9404 −0.0135 −0.0263
−0.0135 2.8462 0.0196
−0.0264 0.0196 2.7976

.

Under the obtained gain matrix of Theorem 2, the conditions are satisfied; then, MJTDNN (16)
is FTS, and the simulation results are presented in Figures 6–9.

Figures 6–8 illustrate the state trajectories of the master and slave systems’ state responses,
which show that the slave system ζ̃(t) can track the real states ζ(t). The initial conditions for
the drive and response systems were chosen as ζ(0) = [−10, 10, 10]T and ζ̃(0) = [−10, 10, 10]T ,
respectively. Figure 9 plots the trajectory of the error estimation signal v(t) = ζ(t)− ζ̃(t) where it
can be seen that the designed synchronization satisfied the specified requirements, demonstrating the
effectiveness of the designed FTS. It is observed from Figures 6–9 that the ET controller proposed in
the study effectively achieved the FTS between the response system and the master system.
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Figure 6. State responses for ζ1(t), ζ̃1(t) in Example 2.
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Figure 7. State responses for ζ2(t), ζ̃2(t) in Example 2.
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Figure 8. State responses for ζ3(t), ζ̃3(t) in Example 2.
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Figure 9. State trajectories for the error system in Example 2.

5. Conclusions

This paper studied the problem of an FTS for QMJTDNNs with actuator saturation and
an ET strategy. The proposed controller ensured that the synchronization error converged
to zero within a finite time while reducing the communication burden among nodes by
triggering updates only when necessary. The FTS criteria for QMJTDNNs were derived in
the form of LMIs using a suitable LKF. Then, solving the LMIs, the ET control gains were
obtained. The effectiveness of the proposed approach was demonstrated through numerical
simulations. For future directions, several avenues could be explored. For instance, one
could investigate the robustness of the proposed method under various uncertainties or
disturbances. Moreover, we could extend the main results in this paper to more realistic sys-
tems; for instance, the sliding-mode control with fractional-order reaction–diffusion terms
and other network issues, such as dropouts and denial of service (DoS), will be considered
for the ET sliding-mode control of the concerned system. From a practical perspective,
as network communication continues to evolve and becomes more complex, it will be
increasingly important to explore the diverse range of attack methods that may emerge.
This will be a key area of focus in our future research, as we aim to develop innovative
approaches for detecting and mitigating these threats and enhancing the resilience and
security of network communication systems; the proposed approach can be also suitable
for other systems such as in [14,16].
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