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Abstract: In an m-person symmetric game, all players are identical and indistinguishable. In this
paper, we find that the payoff tensor of the player k in an m-person symmetric game is k-mode
symmetric, and the payoff tensors of two different individuals are the transpose of each other.
Furthermore, we reformulate the m-person symmetric game as a tensor complementary problem and
demonstrate that locating a symmetric Nash equilibrium is equivalent to finding a solution to the
resulting tensor complementary problem. Finally, we use the hyperplane projection algorithm to
solve the resulting tensor complementary problem, and we present some numerical results to find
the symmetric Nash equilibrium.
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1. Introduction

A game is symmetric if all players have the same strategy set and the payoff of a given
strategy is determined merely by the strategy itself and has nothing to do with who plays
it. Since the generation of game theory, symmetrical games have played an important role
in life sciences, economics, and statistical physics. As early as 1951, Nash [1,2] proposed a
class of important equilibrium, the Nash equilibrium, which is a strategic profile. Especially,
when all of the players in the game adopt this strategy, no one within the game can improve
his or her profits by changing his or her strategy unilaterally. For example, Nash [1,2]
proposed a very important concept of equilibrium, called the Nash equilibrium, which is
a strategy profile in which each player’s strategy is an optimal response to the strategies
of the other players. This concept has the nice property that there is at least one Nash
equilibrium for every finite game, and every finite symmetric game leads to a symmetric
Nash equilibrium (an equilibrium in which all players use the same strategy) [1–4]. Some
researchers were devoted to symmetric games; for additional statements, one can refer
to [5–15]. In [16], Passacantando and Raciti offered an improved Nash equilibrium problem
in which everyone is simulated as a node of the network, and the player’s own actions as
well as the actions of their network neighbors have a great influence on the utility function
of the player.

The symmetric game, in particular, is important in the study of economic and biological
models [17–20]. As we know, many interactions have been modeled in terms of one shot
and some of them have been reported as symmetric two-player cooperative dilemmas,
including the Prisoner’s Dilemma [21,22], Hawk–Dove Game [22], Snowdrift Game [23],
and Stag-Hunt Game [24]. If each player has n actions to choose in a two-player symmetric
game, the game can be represented by two n-by-n matrices [25,26]. It is known that the
the-player symmetric game can be formulated as a linear complementary problem. The
Lemke–Howson algorithm [25] is a well-known method which was designed to solve the
above-mentioned linear complementary problem.
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However, in many real-life situations, decisions are made by groups of people that
include more than two individuals [20]. This type of collective-action problem is better
described as an m-person symmetric game [27–29]. We prefer to find symmetric equilibria
for an m-person symmetric game because asymmetric behavior appears relatively unintu-
itive [6] and difficult to explain in a one-shot interaction [30]. Nash proved that there is a
symmetric equilibrium in every m-person symmetric game [2], but the Nash-equilibrium
equations for m-person games are non-linear, which are difficult to solve analytically
in general.

To better address the m-person game, Huang and Qi [31] extended the classic form
of a game to a tensor form using a tensor to represent the utility function of each player.
They demonstrated that solving the Nash equilibrium for multiplayer games is equivalent
to solving a tensor complementarity problem. However, the received tensor has a larger
scale, and its order is equal to the product of the number of people in the game and the
total number of pure strategies related to the game.

They reformulated the m-person game as a tensor complementary problem, and
showed that finding a Nash equilibrium of the m-person is equivalent to finding a solution
to the resulting tensor complementary problem. Abdou et al. [32] presented an efficient
method to solve the pure Nash equilibrium using tensor operations. However, they did
not take the Nash equilibrium of a multiplayer symmetric game into consideration.

In this paper, we consider tensor-based m-person symmetric games. We prove that
the payoff tensor of two different players in an m-person symmetric game is transposed
to each other, so that the payoff tensor of all players can be uniquely determined by the
payoff tensor of the first player in the game. We also reformulate the m-person symmetric
games as a tensor complementary problem. It is worth noting that the order of tensors
in the tensor complementary problem is less than that resulting in [31]. In addition, we
demonstrate that solving an m-person symmetric game’s Nash equilibrium is equivalent
to solving an m-order tensor complementarity problem. Because of the exploitation of the
symmetry property, the size of tensor is smaller than that of mentioned in [31]. Finally, we
solve the tensor complementarity problem by using the hyperplane projection, which can
be applied to the m-person Volunteer’s Dilemma, the m-person Snowdrift Game, and some
randomly constructed multi-player symmetric games.

The rest of this paper is organized as follows: In Section 2, we present some definitions
and notations that will be frequently used in the following parts. In Section 3, we provide
a brief description of the m-person symmetric game. Some experimental results that can
be used to explain our proposed theory’s reliability are shown in Section 4. Finally, we
provide a brief summary in Section 5.

2. Preliminaries

In this section, we introduce some definitions and notations, which will be used in
the sequel. Throughout this paper, we use small letters (e.g., a), small bold letters (e.g., a),
capital letters (e.g., A), and calligraphic letters (e.g., A) to denote scalars, vectors, matrices,
and tensors, respectively. For a positive integer n, let [n] = {1, 2, . . . , n}.

A real m-th order n1 × n2 × · · · × nm-dimensional tensor is a multidimensional array,
and its elementwise form can be denoted as

A = (ai1i2···im), ij ∈ [nj], j = 1, 2, . . . , m.

When m = 2, A is an n1-by-n2 matrix. If n1 = n2 = · · · = nm = n, A is called a
real m-th order n-dimensional tensor. We denote the set of all real m-th order n1 × n2 ×
· · · × nm-dimensional tensors by Rn1×n2×···×nm and denote the set of all real m-th order
n-dimensional tensors by R[m,n]. When m = 1, R[1,n] is simplified as Rn, which is the set of
all n-dimensional real vectors. We denote the set of all non-negative n-dimensional real
vectors by Rn

+. Let 1n, ei, and 0 denote the n-dimensional vector of all ones, the i-th column
of the n-dimensional identity matrix, and the zero vector, respectively. The order x > 0
means that each component of x is non-negative.
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The definition of the k-mode product of a tensor with a vector is recalled as follows.

Definition 1 ([33]). The k-mode (vector) product of a tensorA = (ai1···ik ···im) ∈ Rn1×···×nk×···×nm

multiplied by a vector v = (vi) ∈ Rnk is denoted by A×̄kv, which leads to a real (m− 1)-th order
n1 × · · · × nk−1 × nk+1 × · · · × nm-dimensional tensor with

(A×̄kv)i1···ik−1ik+1···im =
nk

∑
ik=1

ai1···ik ···im vik ,

for any ij ∈ [nj] with j ∈ [m] \ {k}.

Let A = (ai1i2···im) ∈ Rn1×n2×···×nm and u(k) = (u(k)
ij

) ∈ Rnk with k ∈ [m]. According
to Definition 1, it follows that

A×̄mu(m)×̄m−1 · · · ×̄2u(2)×̄1u(1) =
n1

∑
i1=1

n2

∑
i2=1
· · ·

nm

∑
im=1

ai1i2···im u(m)
im · · · u

(2)
i2

u(1)
i1

,

where A×̄mu(m)×̄m−1 · · · ×̄2u(2) is an n1-dimensional vector with entries

(A×̄mu(m)×̄m−1 · · · ×̄2u(2))i =
n2

∑
i2=1
· · ·

nm

∑
im=1

aii2···im u(m)
im · · · u

(2)
i2

.

For simplicity of notion, we use Au(m) · · · u(2)u(1) to denote the scale

A×̄mu(m)×̄m−1 · · · ×̄2u(2)×̄1u(1),

and use Au(m) · · · u(2) to denote the real n1-dimensional vector

A×̄mu(m)×̄m−1 · · · ×̄2u(2).

Particularly, when n1 = n2 = · · · = nm = n, and u, u∗ ∈ Rn, we take the symbols
Aum, Au∗m−1u, and Au∗m−kuu∗k−1 to denote the scales

A×̄mu×̄m−1 · · · ×̄2u×̄1u,

A×̄mu∗×̄m−1 · · · ×̄2u∗×̄1u,

and
A×̄mu∗×̄m−1 · · · ×̄k+1u∗×̄ku×̄k−1u∗ · · · ×̄2u∗×̄1u∗,

respectively. The symbol Aum−1 is short for the n-dimensional vector A×̄mu×̄m−1 · · · ×̄2u.
The definitions of symmetric and semi-symmetric tensors are given as follows.

Definition 2 ([34,35]). A tensor A = (ai1i2···im) ∈ R[m,n] is called symmetric, if

ai1i2···im = aiσ(1)iσ(2) ···iσ(m)
, ∀σ ∈ Πm,

where Πm is the set of permutations of length m.

Definition 3 ([33]). A tensor A = (ai1i2···im) ∈ R[m,n] is called semi-symmetric, if for any
i1 ∈ [n],

ai1i2···im = ai1iσ(2) ···iσ(m)
, ∀σ ∈ Πm−1.

We provide a more general definition for the k-mode symmetric of a tensor.
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Definition 4. A tensor A ∈ R[m,n] is called k-mode symmetric, if for any ik ∈ [n],

ai1···ik−1ik ik+1···im = aiσ(1) ···iσ(k−1)ik iσ(k+1) ···iσ(m)
, ∀σ ∈ Πm−1.

Remark 1. When k = 1, A is 1-mode symmetric if and only if A is semi-symmetric. An m-th
order n-dimensional tensor A has nm independent entries. If A is k-mode symmetric, then A has
n(m+n−2

m−1 ) independent entries. If A is symmetric, then A has only (m+n−1
m ) independent entries.

By Definitions 1, 2 and 4, we have the following lemma.

Lemma 1. Let A ∈ R[m,n]. Then A is k-mode symmetric if and only if A×̄kei ∈ R[m−1,n] is a
symmetric tensor for all i ∈ [n].

Proof. From Definition 1, we obtain

(A×̄kei)j1···jk−1 jk+1···jm =
n

∑
jk=1

aj1···jk−1 jk jk+1···jm(ei)jk = aj1···jk−1ijk+1···jm ,

which implies that for all i ∈ [n],

aj1···jk−1ijk+1···jm = ajσ(1) ···jσ(k−1)ijσ(k+1) ···jσ(m)
, ∀σ ∈ Πm−1,

if and only if

(A×̄kei)j1···jk−1 jk+1···jm = (A×̄kei)jσ(1) ···jσ(k−1) jσ(k+1) ···jσ(m)
, ∀σ ∈ Πm−1.

According to Definitions 2 and 4, A is k-mode symmetric if and only if A×̄kei ∈ R[m−1,n] is
a symmetric tensor for all i ∈ [n].

In [36], the definition of the transpose of a tensor was introduced as follows:

Definition 5 ([36]). Let A = (ai1i2···im) ∈ R[m,n] and σ ∈ Πm. The σ-transpose of A is an m-th
order n-dimensional tensor, denoted by A<σ> = (bi1i2···im) ∈ R[m,n], with entries

bi1i2···im = aiσ(1)iσ(2) ···iσ(m)
.

Remark 2. When m = 2, A is an n-by-n matrix. Let σ ∈ Π2 with σ(1) = 2 and σ(2) = 1; then,
A<σ> reduces to its matrix transpose.

We recall the psdudomonotone mapping and projection operator, which will be used
in Section 4.

Definition 6 ([37]). A mapping F : Rn
+ → Rn is said to be pseudomonotone on Rn

+ if every x and
y is in Rn

+, and it follows that if (x− y)>F(y) > 0 is true then (x− y)>F(x) > 0 is true.

Definition 7 ([37]). Let X be a non-empty convex subset of Rn. PX denotes the projection operator
that maps from R(n) to X and is defined as

PX(y) = arg min{‖ x− y ‖: x ∈ X}, y ∈ Rn,

where ‖ · ‖ is l2-norm in Rn.

Remark 3. When X = Rn
+, PRn

+
(y) is simplified as [y]+. The projection operator [y]+ can be

computed as follows
[y]+ = max{0, y},
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where the max operator denotes the componentwise maximum of two vectors.

3. Description of the m-Person Symmetric Game

In this section, we first provide the definition of a tensor form of an m-person game,
adapted from [31,32].

Definition 8 ([31,32]). An m-person game in a tensor form is a tuple

G = ([m]; {[nk]}m
k=1; {A(k)}m

k=1),

where [m] is the set of players; [nk] is the pure strategy set of player k; and A(k) = (a(k)i1i2···im) ∈
Rn1×n2×···×nm is the payoff tensor of player k, that is, for any ij ∈ [nj] with any j ∈ [m], if player
1 plays his i1-th pure strategy, player 2 plays his i2-th pure strategy, · · · , and player m plays his
im-th pure strategy, then the payoffs of player 1, player 2, · · · , and player m are a(1)i1i2···im , a(2)i1i2···im ,

· · · , and a(m)
i1i2···im , respectively.

Given an m-person game G = ([m]; {[nk]}m
k=1; {A(k)}m

k=1). A mixed strategy of player
k is the probability distribution on the pure-strategy set [nk]. Let

Ωk = {u ∈ Rnk : u > 0 and 1>nk
u = 1}

denote the set of the all probability distributions on [nk]. For u(k) = (u(k)
ij

) ∈ Ωk, the

probability assigned to the ij-th pure strategy of player k is u(k)
ij

.
Using

Ω := ×k∈[m]Ωk = {(u(1), · · · , u(m)) : u(k) ∈ Ωk, k = 1, · · · , m}

denote the set of strategy profiles. We say that (u(1), · · · , u(m)) ∈ Ω is a mixed-strategy
combination if u(k) ∈ Ωk is a mixed strategy of player k for any k ∈ [m]. If a mixed-strategy
combination (u(1), · · · , u(m)) ∈ Ω is played, then the expected payoff of player k is

A(k)u(m) · · · u(2)u(1) =
n1

∑
i1=1
· · ·

nm

∑
im=1

a(k)i1i2···im u(m)
im · · · u

(2)
i2

u(1)
i1

.

Definition 9. [2,31] A mixed strategy combination (u(1∗), · · · , u(m∗)) ∈ Ω is a Nash equilibrium
of the m-person game, if for each strategy combination (u(1), · · · , u(m)) ∈ Ω and k ∈ [m], it
holds that

A(k)u(m∗) · · · u(1∗) > A(k)u(m∗) · · · u(k+1∗)u(k)u(k−1∗) · · · u(1∗).

What we consider here is the m-person symmetric games. In such games, everyone in
the game plays the same role. In other words, their earnings are solely determined by their
own strategies and a combination of strategies utilized by the other players in the game
and have nothing to do with their position in the game.

Definition 10. An m-person game G = ([m]; {[nk]}m
k=1; {A(k)}m

k=1) is symmetric if the players
have an identical pure-strategy set, that is, n1 = n2 = · · · = nm = n, and every payoff tensor
A(k) ∈ R[m,n] satisfies

a(k)i1i2···im = a(σ
−1(k))

iσ(1)iσ(2) ···iσ(m)
, ∀σ ∈ Πm,

where σ−1 is the inverse of the permutation σ.
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It is well known that the payoff matrices of the two-person symmetric game are
transpose of each other [21]. Furthermore, we come to a similar conclusion for the m-person
symmetric game.

Theorem 1. Suppose that G = ([m]; {[nk]}m
k=1; {A(k)}m

k=1) is an m-person game. Then G is
symmetric if and only if

(i) A(k) is k-mode symmetric for all k ∈ [m];
(ii) If k 6= j, then (A(k))<σ> = A(j), for all σ ∈ Πm satisfies σ(k) = j.

Proof. Firstly, we show the necessity. By Definition 10, n1 = n2 = · · · = nm = n. Combin-
ing it with Definition 1, we have

(A(k)×̄kei)j1···jk−1 jk+1···jm =
n

∑
jk=1

a(k)j1···jk−1 jk jk+1···jm(ei)jk

= a(k)j1···jk−1ijk+1···jm . (1)

Let p ∈ Πm−1 be a permutation on set [m] \ {k} and π ∈ Πm satisfies

π(i) =
{

p(i), if i ∈ [m] \ {k},
k, if i = k.

By (1) and Definition 10, we have

(A(k)×̄kei)jp(1) ···jp(k−1) jp(k+1) ···jp(m)
= a(k)jp(1) ···jp(k−1)ijp(k+1) ···jp(m)

= a(π
−1(k))

jπ(1) ···jπ(k−1)ijπ(k+1) ···jπ(m)

= a(k)j1···jk−1ijk+1···jm

= (A(k)×̄kei)j1···jk−1 jk+1···jm .

Therefore, A(k)×̄kei is a symmetric tensor for all i ∈ [n]. By Lemma 1, A(k) is k-mode
symmetric. Hence, statement (i) holds.

Since σ ∈ Πm satisfies σ(k) = j. From Definition 5, we have

((A(k))<σ>)l1···lj ···lk ···lm = a(k)lσ(1) ···lσ(j) ···lσ(k) ···lσ(m)

= a(σ
−1(j))

lσ(1) ···lσ(j) ···lσ(k) ···lσ(m)

= a(j)
l1···lj ···lk ···lm

= (A(j))l1···lj ···lk ···lm ,

which implies (A(k))<σ> = A(j). Hence, statement (ii) holds.
Now, we show the sufficiency. n1 = n2 = · · · = nm for A(k) is k-mode symmetric. For

any σ ∈ Πm and fixed index j, we have σ(j) = j or σ(k) = j(k 6= j). To prove our statement
we have to talk about it in the following two cases.

Case 1. σ(j) = j. Let p ∈ Πm−1 be a permutation on set [m] \ {j} which satisfies p(i) = σ(i).
Since A(k) is k-mode symmetric, we have
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a(j)
i1···ij−1ijij+1···im = a(j)

ip(1) ···ip(j−1)ijip(j+1) ···ip(m)

= a(j)
iσ(1) ···iσ(j−1)ijiσ(j+1) ···iσ(m)

= a(σ
−1(j))

iσ(1) ···iσ(j−1)iσ(j)iσ(j+1) ···iσ(m)
.

Case 2. σ(k) = j(k 6= j). According to (A(k))<σ> = A(j), we obtain

a(j)
i1···ij−1ijij+1···im = a(k)iσ(1) ···iσ(j−1)iσ(j)iσ(j+1) ···iσ(m)

= a(σ
−1(j))

iσ(1) ···iσ(j−1)iσ(j)iσ(j+1) ···iσ(m)
.

By Definition 10, we have G = ([m]; {[nk]}m
k=1; {A(k)}m

k=1) is an m-person symmetric
game.

Remark 4. (I) Consider the m-player Volunteer’s Dilemma [38,39]: m individuals observe an
approaching predator and need to decide whether or not to sound the alarm, independently and
without coordination. If an individual alarms, the predator’s ambush may be ruined. Each individual
has two choices: volunteer (alarm) or ignore (no alarm). An alarm call would benefit everyone
because it would deter the predator from attacking again; each player, however, prefers that the
other players report the presence of the predator because giving the alarm has a cost c > 0. If one
sets the alarm, he has a payoff of b− c, while the others who do not set the alarm have a payoff of
b. If nobody raises the alarm, the predator attacks, inflicting damage a > c and a payoff of b− a
on everyone. Herein, we use the digits “1” and “2" to denote the alarm and non-alarm strategies,
respectively. Therefore, the tensor form of the m-player Volunteer’s Dilemma can be represented as
G = ([m], {[2]}m

k=1, {A(k)}m
k=1), where

a(k)i1···ik−11ik+1···im = b− c

and

a(k)i1···ik−12ik+1···im =

{
b− a, if i1 = · · · = ik−1 = ik+1 = · · · = im = 2,

b, otherwise.

By calculation, we obtain that statements (i) and (ii) of Theorem 1 are held. Therefore, the
m-player Volunteer’s Dilemma is symmetric.

(II) From Theorem 1, we have the first player’s payoff tensor A(1) is 1-mode symmetric. The
payoffs in m-person symmetric games are uniquely determined by the first player’s payoff tensor
A(1). Therefore, in the rest of this paper, we denote an m-person symmetric game by the tuple
G = ([m]; [n];A(1)), and let

Ω1 = · · · = Ωm = {u ∈ Rn : u > 0 and 1>n u = 1}.

Definition 11 ([2]). A Nash equilibrium (u(1∗), u(2∗), · · · , u(m∗)) ∈ Ω is symmetric if all players
take the same strategy, that is, u(1∗) = u(2∗) = · · · = u(m∗).

Nash proved the existence of equilibrium for m-person games and symmetric equilib-
rium for symmetric m-person games in 1951 [2], and the statement is summarized in the
following Lemma.

Lemma 2 ([2]). Every m-person symmetric game has a symmetric Nash equilibrium.
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Now, we are going to propose two equivalent conditions to ensure that a mixed-
strategy combination is a symmetric Nash equilibrium, which are shown in Theorems 2 and 3.

Lemma 3. Suppose that G = ([m]; [n];A(1)) is an m-person symmetric game; then, (x∗, x∗, · · · , x∗)
∈ Ω is a symmetric Nash equilibrium if and only if x∗ is an optimal solution to the following optimiza-
tion problem,

maxA(1)x∗m−1x

s.t. x ∈ {x = (xi) ∈ Rn : x > 0 and 1>n x = 1}.
(2)

Proof. By Definition 9, (x∗, x∗, · · · , x∗) ∈ Ω is a symmetric Nash equilibrium if and only if
for any strategy combination (u(1), · · · , u(n)) ∈ Ω and any k ∈ [m], namely,

A(k)x∗m > A(k)x∗m−ku(k)x∗k−1. (3)

Let σ ∈ Πm with σ(k) = 1, σ(1) = k, and σ(i) = i for all i ∈ [m] \ {1, k}. By
Definition 1, we have

A(k)x∗m = (A(k))<σ>x∗m

and
A(k)x∗m−ku(k)x∗k−1 = (A(k))<σ>x∗m−1u(k).

Together with Theorem 1, we can obtain (A(k))<σ> = A(1). Therefore, the inequality
(3) is equivalent to

A(1)x∗m > A(1)x∗m−1u(k).

The proof is completed.

Let

A = ηE −A(1), (4)

where η = max
i1,i2,··· ,im∈[n]

a(1)i1i2···im + 1 and E ∈ R[m,n] is an m-th order n-dimensional tensor

whose all entries are ones. AaA(1) is 1-mode symmetric, we can see thatA is also a 1-mode
symmetric tensor with all entries are positive.

Theorem 2. Suppose that G = ([m]; [n];A(1)) is an m-person symmetric game, and A is defined
as (4), then (x∗, x∗, · · · , x∗) ∈ Ω is a symmetric Nash equilibrium if and only if x∗ is an optimal
solution to the following optimization problem:

minAx∗m−1x.

s.t. x ∈ {x = (xi) ∈ Rn : x > 0 and 1>n x = 1}
(5)

Proof. For any mix strategy (x∗, · · · , x∗, x) ∈ Ω, we have

Ax∗m−1x =
n

∑
i1,··· ,im−1,im=1

ai1···im−1im x∗i1 · · · x
∗
im−1

xim

=
n

∑
i1,··· ,im−1,im=1

(η − a(1)i1···im−1im)x
∗
i1 · · · x

∗
im−1

xim

= η −
n

∑
i1,··· ,im−1,im=1

a(1)i1···im−1im x∗i1 · · · x
∗
im−1

xim

= η −A(1)x∗m−1x.
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Therefore, x∗ is an optimal solution to the optimization problem (5) if and only if x∗ is an
optimal solution to the optimization problem (2).

We consider the following model: Find a mixed-strategy combination (x∗, x∗, · · · , x∗) ∈
Ω such that x∗ is an optimal solution to the optimization problem (5). Given a tensor
B ∈ R[m,n] and a vector q ∈ Rn, the tensor complementary problem, denoted by TCP(q,B),
is to find a vector z ∈ Rn such that

z > 0, Bzm−1 + q > 0, z>(Bzm−1 + q) = 0.

The TCP(q,B) was introduced by Song and Qi [40] and was further studied by many
researchers [41–50]. The tensor complementary problem is a generalization of the linear
complementary problem (corresponding to m = 2) [51] and also a special instance of a
nonlinear complementary problem, as well as a particular case of a variational inequality
problem corresponding to the close convex cone Rn

+ [37]. Denote the solution set of the
TCP(q,B) by SOL(q,B). In this section, we show that the m-person symmetric game can be
reformulated as a specific tensor complementary problem.

Let G = ([m]; [n];A(1)) be an m-person symmetric game and A defined as (4). We
construct a tensor complementary problem as follows,

y > 0, Aym−1 − 1n > 0, y>(Aym−1 − 1n) = 0. (6)

There is an explicit corresponding relation between the solutions of a symmetric Nash
equilibrium of the m-person symmetric game and a solution to the TCP(−1n,A) (6).

Theorem 3. Suppose that G = ([m]; [n];A(1)) is an m-person symmetric game and A defined as
(4). If (x∗, x∗, · · · , x∗) ∈ Ω is a symmetric Nash equilibrium of the game G = ([m]; [n];A(1)),
then y∗ ∈ SOL (−1n,A), where

y∗ =
x∗

m−1
√
Ax∗m

. (7)

Conversely, if y∗ ∈ SOL(−1n,A), then y∗ 6= 0 and (x∗, x∗, · · · , x∗) ∈ Ω with

x∗ =
y∗

1>n y∗
(8)

is a symmetric Nash equilibrium of the game G = ([m]; [n];A(1)).

Proof. Firstly, we show the necessity. Suppose that (x∗, x∗, · · · , x∗) ∈ Ω is a symmetric
Nash equilibrium of the m-person symmetric game G = ([m]; [n];A(1)). By the Karush–
Kuhn–Tucker conditions of problem (5), there exist a number λ∗ ∈ R and a non-negative
vector b∗ ∈ Rn such that

Ax∗m−1 − λ∗1n − b∗ = 0 (9)

and
1>n x∗ = 1, x∗ > 0, b∗ > 0, b∗>x∗ = 0. (10)

By (9), we have
Ax∗m − λ∗1>n x∗ − b∗>x∗ = 0,

which together with (10) yields
λ∗ = Ax∗m.

Thus,

y∗ =
1

m−1
√

λ∗
x∗ > 0. (11)
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According to (9), we obtain

Ay∗m−1 − 1n =
1

λ∗
(λ∗1n + b∗)− 1n =

1
λ∗

b∗ > 0. (12)

Combining (12) with (10), we obtain

y∗>(Ay∗m−1 − 1n) =
1

m−1
√

λ∗
x∗>b∗ = 0. (13)

Applying the results of (12) and (13) to (11), we obtain that y∗ defined by (7) is a
solution to the TCP(−1n,A). That is, y∗ ∈ SOL(−1n,A).

Now, we show the sufficiency. Suppose that y∗ ∈ SOL(−1n,A), then

y∗ > 0, Ay∗m−1 − 1n > 0, y∗>(Ay∗m−1 − 1n) = 0. (14)

By the first and second inequalities of (14), we have y∗ 6= 0. Next, we prove that
(x∗, x∗, · · · , x∗) ∈ Ω defined by (8) is a symmetric Nash equilibrium of the m-person
symmetric game G = ([m]; [n];A(1)). For this purpose, we need to prove that there exists a
number λ∗ ∈ R and a non-negative vector b∗ ∈ Rn such that (9) and (10) hold.

We obtain the following equation from the iequalities of (14).

Ay∗m − 1>n y∗ = 0.

Since y∗ 6= 0 and y∗ > 0 follow, this implies that 1>n y∗ > 0 follows, and then

A
(

y∗

1>n y∗

)m
− 1

(1>n y∗)m−1 = 0.

By (8), the above equality becomes

Ax∗m − 1
(1>n y∗)m−1 = 0. (15)

From y∗ > 0, 1>n y∗ > 0, and the definition of x∗, it follows that x∗ > 0 and 1>n x∗ = 1.
In addition, by the second inequality of (14), we have

Ax∗m−1 − 1n

(1>n y∗)m−1 > 0,

which implies that there exists a non-negative vector b∗ ∈ Rn such that

b∗ = Ax∗m−1 − 1n

(1>n y∗)m−1 .

The above result together with (15) yields

b∗>x∗ = x∗>
(
Ax∗m−1 − 1n

(1>n y∗)m−1

)
= Ax∗m − x∗>1n

(1>n y∗)m−1

= Ax∗m − 1
(1>n y∗)m−1

= 0.
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Thus, we obtain that (9) and (10) hold with

λ∗ =
1

(1>n y∗)m−1 .

Therefore, (x∗, x∗, · · · , x∗) ∈ Ω defined by (8) is a symmetric Nash equilibrium of the
m-person symmetric game G = ([m]; [n];A(1)).

4. Algorithm and Numerical Results

The hyperplane projection algorithm [37] is well-known for being a fast and effective
method for solving complementary problems. In this section, we apply the hyperplane
projection algorithm to solve the TCP(−1n,A) and provide some preliminary numerical
results for solving the m-person symmetric game.

Let G = ([m]; [n];A(1)) be an m-person symmetric game and A defined as (4). Denote
F(y) = Aym−1 − 1n; then, we can rewrite the TCP(−1n,A) (6) as follows,

y > 0, F(y) > 0, y>F(y) = 0. (16)

It is well known that (16) is equivalent to the variational inequality problem: Find a
non-negative vector y ∈ Rn

+ such that

(x− y)>F(y) > 0, ∀x ∈ Rn
+, (17)

which is equivalent to finding a root of the following equations

y = [y− τF(y)]+, ∀τ > 0.

We use the hyperplane projection algorithm, see Algorithm 1, to solve the problem
(16), which can be described geometrically as follows. Let τ ∈ R be a fixed scale, and
y(k) ∈ Rn is a given vector. Firstly, we compute the point [y(k) − τF(y(k))]+. Secondly,
based on the Armijo-type search routine, we search the line segment joining the y(k) and
[y(k) − τF(y(k))]+ and obtain a point u(k) such that the hyperplane

Hk := {y ∈ Rn : F(u(k))>(y− u(k)) = 0}

strictly separates y(k) from SOL(−1n,A). We project y(k) onto Hk and obtain a point w(k),
and project the point w(k) onto Rn

+; then, y(k+1) is obtained. It can be shown that y(k+1) is
closer to SOL(−1n,A) than y(k) [37].

From [37], we obtain the following theorems.

Theorem 4. Suppose that y(k) is not a solution to the TCP(−1n,A) (16). Then there exists a
finite integer ik > 0 such that (20) holds and

F(u(k))>(y(k) − u(k)) > 0. (18)

Remark 5. If F(y) is pseudomonotone on Rn
+, the inequality (18) shows that the hyperplane Hk

strictly separates y(k) from SOL(−1n,A). Based on u(k) ∈ Rn
+ and the inequality (17), it follows

that for any solution y∗ of the TCP(−1n,A), we have

(u(k) − y∗)>F(y∗) > 0. (19)

Based on the fact that F(y) is pseudomonotone on Rn
+, then combing (18) and (19) yields

(u(k) − y∗)>F(u(k)) > 0 > (u(k) − y(k))>F(u(k)).



Mathematics 2023, 11, 2268 12 of 17

Theorem 5. Suppose that F(y) is pseudomonotone on Rn
+, then there exists y∗ ∈ SOL(−1n,A)

such that
lim
k→∞

y(k) = y∗.

Algorithm 1 Hyperplane projection algorithm to calculate the symmetric Nash equilibrium

Input: The first player payoff tensor A(1), a starting vector y(0) ∈ Rn
+, some scales τ > 0, 0 < σ < 1. The

maximum number of iterations MI. The tolerable error ε.
Output: The symmetric Nash equilibrium (x∗, x∗, · · · , x∗).
1: Compute η = max

i1 ,i2 ,··· ,im∈[n]
a(1)i1 i2 ···im + 1, denote A = ηE −A(1).

2: for k=0,1,. . . ,MI do
3: Compute

z(k) = [y(k) − τF(y(k))]+

and find the smallest nonnegative integer ik such that with i = ik

F(2−iz(k) + (1− 2−i)y(k))>(y(k) − z(k)) >
σ

τ
‖ y(k) − z(k) ‖2 . (20)

4: Set
u(k) = 2−ik z(k) + (1− 2−ik )y(k)

and

w(k) = PHk (y(k)) = y(k) − F(u(k))>(y(k) − u(k))

‖ F(u(k)) ‖2
F(u(k)).

5: Set y(k+1) = [w(k)]+.
6:
7: if ‖ y(k+1) − y(k) ‖< ε or k =MI then

x∗ = y(k)

1>n y(k)
, break;

8: else
k = k + 1;

9: end if
10: end for

In the following, we give some preliminary numerical results of Algorithm 1 for
solving the symmetric Nash equilibrium of the m-person symmetric game. Throughout
our experiments, we set the maximum number of iterations MI = 2000 and set the tolerable
error ε = 10−6. All tests are conducted in MATLAB R2015a with the configuration: Intel(R)
Core(TM)i7-7500U CPU 2.70 GHz and 8.00 G RAM. For the following, Examples 1–3, the
parameters used in Algorithm 1 were chosen as

τ := 0.5, σ := 0.01, y(0) := 0.1 ∗ 1n.

Example 1. According to Remark 4, the tensor form of the m-player Volunteer’s Dilemma can be
represented as G = ([m], [2],A(1)), where

a(1)1i2···im = b− c, a(1)2i2···im =

{
b− a, if i2 = i3 = · · · = im = 2,

b, otherwise.

We use Algorithm 1 to solve the symmetric Nash equilibrium of the m-player Volunteer’s Dilemma
and the numerical results are reported in Table 1. In this table, the number of iteration steps are
denoted by No.Iter, the CPU time in seconds is denoted by CPU(s). As the algorithm stops the value
of ‖ y(k+1) − y(k) ‖ is computed and denoted by Res and the first player’s strategy in symmetric
the Nash equilibrium is denoted by SNE(x∗>).
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Table 1. The numerical results of the problem in Example 1.

m b a c No.Iter CPU(s) Res SNE(x∗>)

3 200 4 1 10 0.0582 4.18 × 10−7 (0.5000,0.5000)
4 2 41 0.2277 9.99 × 10−7 (0.2929,0.7071)
16 2 47 0.2644 7.62 × 10−7 (0.6465,0.3235)
32 1 50 0.3912 7.42 × 10−7 (0.8232,0.1768)
64 3 21 0.1919 9.82 × 10−7 (0.7835,0.2165)
192 3 72 0.6176 9.19 × 10−7 (0.8750,0.1250)

6 200 4 1 121 0.8751 9.18 × 10−7 (0.2422,0.7578)
4 2 101 0.7523 9.17 × 10−7 (0.1295,0.8705)
16 2 63 0.5111 8.43 × 10−7 (0.3403,0.6597)
32 1 9 0.1503 3.53 × 10−7 (0.5000,0.5000)
64 3 11 0.0818 3.54 × 10−7 (0.4578,0.5422)
192 3 14 0.1152 4.32 × 10−7 (0.5647,0.4353)

9 600 64 0.25 14 0.1891 5.95 × 10−7 (0.5000,0.5000)
64 0.5 59 0.5382 8.54 × 10−7 (0.4548,0.5452)
64 1 30 0.2826 5.90 × 10−7 (0.4054,0.5946)
512 0.25 88 0.7381 8.84 × 10−7 (0.6145,0.3855)
512 0.5 77 0.7354 6.79 × 10−7 (0.5796,0.4204)
512 1 54 0.6315 7.15 × 10−7 (0.5415,0.4585)

12 600 64 0.25 206 2.1890 9.43 × 10−7 (0.3960,0.6040)
64 0.5 143 1.8373 9.61 × 10−7 (0.3567,0.6433)
64 1 114 1.2770 9.67 × 10−7 (0.3149,0.6851)
512 0.25 11 0.5486 5.97 × 10−7 (0.5000,0.5000)
512 0.5 53 0.7763 9.67 × 10−7 (0.4675,0.5325)
512 1 27 0.5974 8.64 × 10−7 (0.4329,0.5671)

15 2500 2048 0.125 8 3.1455 3.90 × 10−7 (0.5000,0.5000)
2048 64 63 3.6172 4.56 × 10−7 (0.2193,0.7807)
2048 128 65 3.8518 9.35 × 10−7 (0.1797,0.8203)
1024 0.125 177 4.6659 9.93 × 10−7 (0.4747,0.5253)
1024 64 47 3.3835 8.62 × 10−7 (0.1797,0.8203)
1024 128 85 4.4102 7.11 × 10−7 (0.1380,0.8620)

Example 2. In the m-player Snowdrift Game [28], m individuals are driving on a crossroad which
is blocked by a snowdrift. Each individual has the option to cooperate by shoveling the snow or
not. The snow needs to be removed before they continue their journey home. Again, everyone
wants to go home, but not everyone is willing to shovel. The benefit of getting home is defined as
b and the cost of shoveling is defined as c. It can be assumed that the benefit exceeds the cost, i.e.,
b > c. If everyone shovels, then everyone gets b− c

m . However, if only k individuals shovel, they
get b− c

k whereas those who refuse to shovel get home for free and get b. Nobody gets anything if
everyone refuses to shovel. Let 1 and 2 denote the shovel snow and not shovelling snow strategies,
respectively. It is easy to obtain that the m-player Snowdrift Game is symmetric. Let φ(1) denote
the number of 1 in i2i3 · · · im. The tensor form of the m-player Snowdrift Game can be represented
as G = ([m], [2],A(1)), where

a(1)1i2···im = b− c
1 + φ(1)

, a(1)2i2···im =

{
0, if φ(1) = 0,
b, if φ(1) 6= 0.

We use Algorithm 1 to solve the symmetric Nash equilibrium of the m-player Snowdrift Game.
The numerical results are reported in Table 2, where No.Iter, CPU(s), Res and SNE(x∗>) are the
same as those used in Table 1.
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Table 2. The numerical results of the problem in Example 2.

m b c No.Iter CPU(s) Res SNE(x∗>)

3 8 1 71 0.3320 8.84 × 10−7 (0.7686,0.2314)
8 2 34 0.1822 8.49 × 10−7 (0.6496,0.3504)
10 5 26 0.1606 8.69 × 10−7 (0.4418,0.5582)
10 8 161 0.8231 8.92 × 10−7 (0.1886,0.8114)
20 1 20 0.1729 9.22 × 10−7 (0.8611,0.1389)
20 10 27 0.1719 7.46 × 10−7 (0.4417,0.5583)

6 8 1 136 0.8696 8.79 × 10−7 (0.4653,0.5347)
8 2 134 0.7635 9.08 × 10−7 (0.3595,0.6405)
10 5 132 0.8305 9.62 × 10−7 (0.2162,0.7838)
10 8 157 0.9867 8.08 × 10−7 (0.0817,0.9183)
20 1 92 0.5705 8.62 × 10−7 (0.5711,0.4289)
20 10 92 0.6909 7.21 × 10−7 (0.2162,0.7838)

9 8 1 95 0.7384 2.12 × 10−7 (0.3291,0.6709)
8 2 68 0.5151 8.84 × 10−7 (0.2466,0.7534)
10 5 59 0.4447 3.20 × 10−7 (0.1436,0.8574)
10 8 84 0.7784 8.17 × 10−7 (0.0520,0.9480)
20 1 164 1.2335 9.53 × 10−7 (0.4179,0.5821)
20 10 56 0.5454 4.96 × 10−7 (0.1426,0.8574)

12 8 1 370 3.4376 9.99 × 10−7 (0.2542,0.7458)
8 2 283 2.6579 9.51 × 10−7 (0.1876,0.8124)
10 5 191 1.8678 7.55 × 10−7 (0.1065,0.8935)
10 8 198 1.9516 7.56 × 10−7 (0.0383,0.9617)
20 1 319 3.0998 9.39 × 10−7 (0.3283,0.6717)
20 10 161 1.5762 9.82 × 10−7 (0.1066,0.8934)

15 8 1 357 6.1214 9.91 × 10−7 (0.2068,0.7932)
8 2 249 5.3642 9.38 × 10−7 (0.1512,0.8488)
10 5 199 4.5910 9.94 × 10−7 (0.0850,0.9150)
10 8 214 4.7155 8.20 × 10−7 (0.0304,0.9696)
20 1 338 6.1258 9.69 × 10−7 (0.2699,0.7301)
20 10 180 4.7217 9.65 × 10−7 (0.0850,0.9150)

Example 3. Consider the bimatrix symmetric game “Rock-Paper-Scissors” [9,52]. The tensor form
of “Rock-Paper-Scissors” can be represented as G = ([2], [3], A(1)), where

A(1) =

 0 −1 1
1 0 −1
−1 1 0

.

We use Algorithm 1 to solve the symmetric Nash equilibrium of “Rock-Paper-Scissors”. A
symmetric Nash equilibrium (x∗, x∗) with

x∗ =
(

1
3

,
1
3

,
1
3

)>
is obtained with 23 iteration steps in 0.2921 s.

In [53], Chatterjee pointed out that the Nash equilibrium of a given game is identical
to the optimal solution of an optimization model with zero optimal value and developed
the SQP algorithm to compute the Nash equilibrium of an n-person game. The main idea
of the SQP algorithm is to solve a series of quadratic programming problems using the
quasi-Newton method. Next, we compare our proposed method with SQP in [53].
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Example 4. Consider an m-person symmetric game with n pure strategies G = ([m], [n],A(1)),
where the elements of the payoff tensor A(1) are randomly generated using the command “tenrand”
and 1-mode symmetrized using the command “symmetrize”. For different values of m and n,
different symmetric games are generated. In our experiments, for any fixed m and n, the random
problems are generated ten times. We use Algorithm 1 and the SQP algorithm to compute the Nash
equilibrium of these symmetric games separately and compare their performance. The numerical
results are listed in Table 3, where AI (MinI and MaxI) denotes the average (minimal and maximal)
number of iterations for solving ten randomly generated problems of each size; and AT (MinT
and MaxT) denotes the average (minimal and maximal) CPU time in seconds for solving ten
randomly generated problems of each size. For Algorithm 1 and the SQP method, ARes denotes the
average value of ‖ y(k+1) − y(k) ‖ and the average absolute error in the objective function of the
minimization problem in [53] for ten randomly generated problems of each size when the algorithm
stops, respectively. The parameters used in Algorithm 1 were chosen as

τ := 0.75, σ := 1× 10−4, y(0) := 0.01 ∗ 1n.

From Table 3, we see that both Algorithm 1 and SQP can efficiently compute the
Nash equilibrium of some randomly generated symmetric games. Algorithm 1 requires
more CPU time than SQP when the number of pure strategies of the players in the game
is small. However, as the number of pure strategies used by players in the game grows,
our proposed Algorithm 1 consumes less CPU time than SQP. This is mainly because
Algorithm 1 takes advantage of the symmetry of the game, which only needs to store and
compute the first player’s payoff tensor. The SQP method, on the other hand, needs to
store and compute the payoff tensors of all players in the game, and as the number of pure
strategies increases, the number of variables used by SQP to compute the Nash equilibrium
increases exponentially compared to Algorithm 1.

Table 3. Comparison results of Algorithm 1 and SQP in Example 4.

m n
Algorithm 1 SQP

AI/MinI/MaxI AT/MinT/MaxT ARes AI/MinI/MaxI AT/MinT/MaxT ARes

3

2 1297.7/71/2000 1.9203/0.1314/2.9314 2.29 × 10−6 14/9/23 0.0119/0.0086/0.0164 0.0072
3 1374.9/118/2000 2.4910/0.2232/3.9145 3.19 × 10−6 21.8/12/35 0.0221/0.0141/0.0379 0.0049
4 380.6/69/2000 0.8019/0.1503/3.9355 8.08 × 10−7 41.1/16/168 0.0704/0.0229/0.2133 0.0012
5 667.4/153/2000 1.4309/0.3711/3.9627 2.10 × 10−6 81.7/37/156 0.1838/0.0829/0.3470 0.0036
6 399/172/651 0.9705/0.4316/1.5488 8.95 × 10−7 44.8/25/132 0.1944/0.1081/0.5831 0.0173
7 485/87/2000 1.1525/0.2303/4.3484 2.48 × 10−6 59.3/26/119 0.4642/0.2081/0.9224 0.0110
8 332.2/55/1202 0.8340/0.1746/2.9418 7.41 × 10−7 75.5/25/107 1.0498/0.3544/1.4911 0.0140
9 128.6/81/236 0.3637/0.2370/0.6350 7.69 × 10−7 80/48/96 0.9293/1.172/2.3305 0.0251

10 429.2/258/814 1.2628/0.7618/2.3894 7.86 × 10−7 78.7/39/88 3.093/1.5428/3.4604 0.0253

4

2 691.3/86/2000 1.4046/0.1817/4.0237 8.86 × 10−7 12.2/7/38 0.0171/0.0090/0.0555 0.0102
3 343.4/138/847 0.7876/0.3111/1.9197 6.26 × 10−7 16.2/10/30 0.0336/0.0222/0.0581 0.0109
4 762.8/168/2000 1.9433/0.4276/5.1434 2.69 × 10−6 31/16/70 0.2039/0.1077/0.4594 0.0056
5 355/19/1062 0.9314/0.0577/2.7126 8.53 × 10−7 70/24/119 1.4742/0.5099/2.5418 0.0038
6 410.2/142/1830 1.1065/0.4015/4.6913 7.97 × 10−7 82.5/34/103 4.7483/1.9861/5.9067 0.0201
7 660.8/29/2000 1.9983/0.0916/6.0603 2.55 × 10−5 75.9/34/90 10.5529/4.7972/12.5189 0.0166
8 12.8/10/15 0.0434/0.0358/0.0515 6.09 × 10−7 62.3/34/81 18.8267/10.3801/24.4131 0.0141
9 9.3/7/13 0.0337/0.026/0.0458 5.11 × 10−7 65.1/39/73 39.0789/23.6408/43.7414 0.0165

10 327.5/13/698 10.655/0.05/2.2376 2.81 × 10−7 62.6/32/66 71.0717/36.8483/74.9798 0.0215

5

2 1296.9/273/2000 2.7576/0.6484/4.1878 1.06 × 10−6 15.4/7/30 0.023/0.0136/0.0396 2.34 × 10−5

3 527.1/14/1544 1.3769/0.0407/4.053 7.93 × 10−7 31.9/11/137 0.2725/0.0978/1.1768 0.0035
4 737.7/220/2000 2.1013/0.6354/5.6562 8.94 × 10−7 38/17/115 1.981/0.9142/5.8807 0.0039
5 820.6/83/2000 2.5495/0.2650/6.2649 2.78 × 10−5 48.1/20/96 11.0989/4.7046/21.9328 0.0028
6 15.8/11/19 0.0555/0.0392/0.0658 7.60 × 10−7 60.5/29/83 47.4/23.0075/64.6011 0.0067
7 11/9/16 0.0437/0.0362/0.0683 4.62 × 10−7 66.8/41/73 150.6369/93.0992/164.4944 0.0090
8 1326.5/557/2000 5.0864/2.0911/7.6993 3.13 × 10−5 63.9/54/65 391.2597/329.9332/402.3262 0.0054
9 1715.5/975/2000 6.5727/3.6809/7.8403 5.84 × 10−5 55.2/44/58 712.6175/570.5763/762.7578 0.0037

10 1015.1/52/1876 4.3262/0.2259/8.2932 6.67 × 10−7 53/53/53 1400.4/1383.3/1435.9 0.0063
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5. Conclusions

In this paper, we show that the payoff tensor of the kth player in an m-person sym-
metric game is k-mode symmetric, and the payoff tensors of two different individuals are
the transpose of each other. We also reformulate the m-person symmetric games as tensor
complementary problems and demonstrate that finding a symmetric Nash equilibrium of
the m-person symmetric game is equivalent to finding a solution to the resulting tensor
complementary problem. Finally, we apply the hyperplane projection algorithm to solve the
resulting tensor complementary problem and provide some numerical results for solving
the symmetric Nash equilibrium.
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