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Abstract: A new adaptive-like neural control strategy for motion reference trajectory tracking for
a nonlinear electromagnetic suspension dynamic system is introduced. Artificial neural networks,
differential flatness and sliding modes are strategically integrated in the presented adaptive neural
network control design approach. The robustness and efficiency of the magnetic suspension control
system on desired smooth position reference profile tracking can be improved in this fashion. A single
levitation control parameter is tuned on-line from a neural adaptive perspective by using information
of the reference trajectory tracking error signal only. The sliding mode discontinuous control action is
approximated by a neural network-based adaptive continuous control function. Control design is
firstly developed from theoretical modelling of the nonlinear physical system. Next, dependency
on theoretical modelling of the nonlinear dynamic system is substantially reduced by integrating B-
spline neural networks and sliding modes in the electromagnetic levitation control technique. On-line
accurate estimation of uncertainty, unmeasured external disturbances and uncertain nonlinearities
are conveniently evaded. The effective performance of the robust trajectory tracking levitation control
approach is depicted for multiple simulation operating scenarios. The capability of active disturbance
suppression is furthermore evidenced. The presented B-spline neural network trajectory tracking
control design approach based on sliding modes and differential flatness can be extended to other
controllable complex uncertain nonlinear dynamic systems where internal and external disturbances
represent a relevant issue. Computer simulations and analytical results demonstrate the effective
performance of the new adaptive neural control method.

Keywords: electromagnetic levitation; differential flatness; reference trajectory tracking; artificial
neural networks; sliding modes

MSC: 68T07; 41A58; 34H05; 70Q05

1. Introduction

Friction is an inherent property of mechanical systems. Reduction of undesirable
friction should be considered for purposes of design and high-efficiency operation of me-
chanical systems. Diverse mechanisms have been proposed to improve mechanical system
performance by properly integrating electromagnetic devices aiming to reduce waste and
vibrations in rotating machinery components. In this context, electromagnetic bearing sys-
tem is a technology that supports rotors without physical contact, which eases the vibration
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control in rotating machinery [1]. Despite the advantages of electromagnetic levitation
systems, such as low friction, low noise, no mechanical wear, no use of lubricants, stable
rotor operation at high speeds and no power loss, their nonlinear dynamics and inherently
unstable characteristics make the robust and efficient control design quite complicated [2].

Several methodologies for active control of different electromagnetic systems used
for efficiently levitating rotors have been presented in the literature. In [3], an electro-
magnetic levitation prototype system is presented. A Proportional-Integral-Derivative
(PID) controller is implemented to suspend a rotor at a specified position against the
gravity force [3]. The authors of [4] propose a robust fast terminal sliding mode control
method. The chattering problem from the discontinuous input is addressed by adopting
the higher-order scheme while the adaptive scheme allows to compute the switching gain
to relax the upper bound assumption of disturbance. A fractional order PID controller
for rotor suspension by active magnetic bearing is presented in [5]. In that study, the
authors use optimization evolutionary algorithms for tuning the control parameters while
performing radial and axial motion control. An intelligent positioning control approach
based on a neural fuzzy controller for solving the unbalance vibration problem in an active
magnetic bearing system is introduced in [6]. Radial basis function neural networks are
employed for adjusting the control parameters within the fuzzy logic controller. On the
other hand, the authors of [7] propose a novel robust strategy for levitation recovery control
of an active magnetic bearing suspension system. The proposed strategy is developed on
model-based µ-synthesis to identify a delevitated condition provoked by an external fault
or exogenous disturbance. Thus, efficient control of electromagnetic suspension systems for
a wide range of operational conditions and applications represents a challenging research
problem. Robust control design for magnetic levitation train systems constitutes another
open well-known relevant research issue. Radial basis function neural networks have been
successfully integrated in the adaptive robust control design stage for magnetic levitation
vehicle systems under various disturbances as well [8,9]. Here, neural networks have been
employed to identify external disturbances and time-varying mass. In addition, in [10],
neural networks were implemented for effective estimation of parameter matrix and system
state in magnetic levitation vehicles. Unexpected external disturbances and parametric
uncertainty could significantly deteriorate the control performance and make even the sys-
tem unstable [8]. Furthermore, vibrations could cause failures in the levitation system [9].
Irregular external disturbances and internal parametric uncertainty can lead to undesirable
nonlinear dynamical behaviors, even the instability of the suspension system [10].

Moreover, adaptive control algorithms based on Artificial Intelligence (AI) are in
continuous growth due to their relevance to the efficient regulation of complex nonlinear
dynamic system operation under high precision requirements. Applications of electromag-
netic actuators can be included in this class of dynamic systems. Furthermore, AI has been
successfully employed in diverse science and engineering applications for improving the
dynamic systems performance or predicting their behavior by processing measured and
stored data in real time [11]. This represents an invaluable feature when system model
information is limited, and parametric uncertainty could be exhibited. Moreover, due to
the flexibility of use, low computational demand and fast adaptability, AI-based control
strategies are effectively applied to solve complex control problems in agriculture, the ser-
vice industry, aviation and other fields beyond control engineering [12,13]. In this current
research area, they seem important alternatives of the control theory [12], which evolves
continuously as new models describing the system dynamic performance. AI provides
improvements for adaptation, organization, learning, decision taking, and coordination
capabilities for an extensive variety of automatic control systems. Artificial Neural Net-
works (ANNs) are included in the data-driven learning control where their performance is
based on experimentally collected data from input and outputs signals of the engineering
system [14,15]. Nowadays, dynamic systems with the possibility to include sensors are
frequently found. Thus, input/output information can be used to develop intelligent
schemes adapting themselves to unknown perturbations and complex operation scenarios
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as in active suspension systems [16]. Therefore, these features must be explored in a deeper
way to overcome the main drawbacks of control methods based on detailed nonlinear
dynamic models. The present paper deals with an adaptive control design perspective
taking advantage of these features. In this way, the capability of efficacious compensation
of external disturbances and uncertainty is incorporated.

Indeed, uncertainty constitutes a substantial source of trouble in realistic control appli-
cations of nonlinear dynamic systems, which could provoke instability or poor tracking
performance [17,18]. Harmful disturbances and parametric uncertainty could have an
adverse effect on the closed-loop nonlinear system stability. For these perturbed opera-
tional scenarios, the tracking performance of motion profiles planed on uncertain nonlinear
dynamic systems could be significantly deteriorated. In this situation, sliding mode theory
and artificial neural networks represent effective control design approaches [17]. Sliding
mode control offers several remarkable features with respect to other classical control
design methods such as robustness against parametric variations, unmodelled external
disturbances and uncertain nonlinearities [17,19]. Furthermore, differential neural net-
works for nonlinear adaptive state observation have been successfully combined with
sliding mode control to regulate a class of uncertain dynamic systems [17]. Differential
neural networks stand for a particular class of artificial neural networks that can be used
to approximate external disturbances and uncertainties in a nonlinear dynamic system
structure [18]. Differential neural networks (DNNs) have been also applied to design a
nonparametric identifier for adaptive robust control [18]. The application of a single-layer
DNN to develop a nonparametric model of eye response was introduced in [20]. Recurrent
neural networks can be implemented to successfully estimate uncertain dynamics [21].
Moreover, the presence of nonlinearities in practical dynamic systems represents a difficult
issue for control synthesis and stability analysis [22]. The problem of nonlinearities for
control design and analysis in wind turbine systems through the Takagi–Sugeno fuzzy
method has been properly addressed in [22]. The Takagi–Sugeno fuzzy model represents
another powerful means to approximate complex nonlinearities [23]. An effective syn-
chronization control design method of Takagi–Sugeno fuzzy neural networks has been
described in [23]. Takagi–Sugeno fuzzy neural networks can be utilized as an important and
effective modelling approach to describe complex nonlinear dynamic systems as well [23].

This article introduces a new neural robust control design approach for reference
trajectory tracking for the rotor vertical position of an electromagnetic suspension system
subjected to internal and external disturbances. In contrast to other electromagnetic lev-
itation control design techniques based on theoretical nonlinear modelling, differential
flatness, sliding mode control theory and B-spline artificial neural networks are synergi-
cally integrated for synthesis of the presented nonlinear control strategy for wide-range
perturbed operating conditions. In this fashion, accurate estimation of nonlinear model
uncertainties, external time-varying disturbances and system parameters are conveniently
avoided. For the purposes of comparative analysis, as another important research work
direction on high-efficiency control design for nonlinear dynamic systems, a trajectory
tracking control technique based on theoretical modelling is described. The structural
property of differential flatness is exploited as a powerful tool for efficient desirable mo-
tion reference tracking control design and stability analysis of the disturbed nonlinear
dynamic system. The sliding mode discontinuous control action is approximated by a
neural network-based adaptive continuous control function. Thus, the undesired chattering
problem is conveniently evaded. B-spline artificial neural networks are used to tune on-line
a single control design parameter to improve the robust performance of the electromagnetic
suspension system. Since the structural property of differential flatness is capitalized, the
developed control design perspective can be directly extended to many differentially flat
engineering systems [24]. In this regard, an important class of vibrating systems exhibits
the property of differential flatness [25]. Several electric motors are differentially flat [26].
Controllable linear dynamic systems indeed present some flat output.
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The main advantages and features of the presented adaptive electromagnetic levita-
tion control scheme based on differential flatness, sliding modes and B-spline artificial
neural networks are summarized as follows. Dependency on theoretical modelling of the
uncertain nonlinear dynamic system is substantially reduced. The capability of suppression
of internal and external disturbances is incorporated. Accurate tracking tasks of position
reference profiles planned for the nonlinear electromagnetic suspension dynamic system
under the influence of bounded disturbances can be fulfilled. Closed-loop electromagnetic
levitation system stability can be guaranteed for bounded perturbed operational envi-
ronments. Compared with other existing robust control techniques based on the active
disturbance rejection design perspective, real-time estimation of exogenous perturbations,
parametric uncertainty and uncertain nonlinearities are not requested. Thus, additional
design of effective disturbance observers for uncertain nonlinear dynamic systems is not
necessary. Furthermore, approximations of nonlinearities, parametric uncertainty, uncer-
tain dynamics and unknown variable external disturbances to accomplish efficient and
robust tracking control of desired motion reference profiles are not required. It is shown
how the structural property of differential flatness, sliding modes and B-spline artificial
neural networks can be properly combined to derive solutions to the accurate tracking
control problem of prescribed motion reference trajectories. In this sense, insights to take
advantage of differential flatness with other architectures of artificial neural networks and
sliding mode control theory to improve the robustness of controllers regarding numerous
types of irregular external and internal disturbances are depicted. The influence of various
uncertain dynamic disturbances on realistic nonlinear physical systems certainly represents
a pertinent complex issue in control engineering.

This manuscript is organized as follows. The controlled nonlinear electromagnetic
suspension system theoretical model explored in this study is presented in Section 2. For
the purposes of comparative analysis, in Section 3, an efficient trajectory tracking control
technique based on the property of differential differential of the nonlinear mathematical
model is described. Certain accurate information from the theoretically dynamic modelling
and variable exogenous disturbances should be available to guarantee closed-loop dis-
turbed system stability. Next, the design of a trajectory tracking controller taking advantage
of the sliding mode theory and differential flatness is also described in Section 3. The
results of a sliding mode control approach based on B-spline neural networks for robust
and efficient tracking of reference trajectories on the electromagnetic suspension system are
introduced in Section 4. Robustness and efficacy of the adaptive neural-network sliding-
mode differential-flatness control strategy is satisfactorily examined for several perturbed
environments. Computer simulation results confirm the effectiveness of the introduced lev-
itation control strategy. The influence of several classes of variable disturbances is actively
suppressed. Efficient tracking of planned smooth reference profiles is demonstrated. The
obtained results reveal that differential flatness represents an excellent powerful tool for
derivation of high-efficiency desirable motion reference trajectory tracking controllers by
integrating B-spline artificial neural networks and sliding mode theory for a wide class of
controllable nonlinear dynamic systems under numerous types of internal and external
disturbances. The conclusions of the present contribution and future relevant research
work development are finally provided in Section 5.

2. Electromagnetically Controlled Rotating Mechanical System

Without loss of generality to other schemes with multiple controlled electromagnetic
actuators in which the property of differential flatness is presented, the electromagnetic
suspension system considered in the present study is depicted in Figure 1. This nonlin-
ear dynamic system is not stable in open loop. Effective and efficient control strategies
should be then developed to guarantee disturbed nonlinear dynamic system stability. An
electromagnetic force Fe is generated by a properly controlled electromagnet in order to
efficiently regulate the rotor vertical position y of a rotating mechanical system of mass
m. In the control circuit, u denotes the voltage control input and i stands for the electric
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current signal. R represents the resistance, and L(y) denotes the inductance function of the
coil depending on the rotor vertical position as follows [27]:

L(y) = L1 + L0

(
1 +

y
a

)−1
(1)

where L1, L0 and a are positive constants.

Fe

+ -

i(t)

L

N Coil Turns
Electromagnet

mg

m

y

u

R

Figure 1. Application of an electromagnetic suspension control system.

The electromagnetically controlled, nonlinear rotating mechanical system dynamics
are approximately described in state space as [28]

d
dt

z1 = z2

d
dt

z2 =− 1
2

aL0

m(a + z1)
2 z2

3 + g

d
dt

z3 =− R
L

z3 +
aL0

L(a + z1)
2 z2z3 +

1
L

u (2)

with state variables z1 = y, z2 =
dy
dt

and z3 = i.
From Equations (2), equilibrium operating conditions for the controlled nonlinear

dynamic system are described by

z1 = y

z2 = 0

z3 =

√
2

mg
aL0
|a + y|

u = R
√

2
mg
aL0
|a + y| (3)

where the overbar notation · denotes system variable at equilibria.
A control strategy based on the structural property of differential flatness and sliding

modes to regulate the rotating mechanical system (2) at a specified vertical equilibrium
position y is described in the next section. Moreover, robust transference of the rotor system
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from an operating condition to another desired equilibria through efficient and robust
tracking of some smooth position reference trajectory y∗(t) is also considered.

3. Sliding-Mode Differential-Flatness Control

The electromagnetic suspension system constitutes a differentially flat dynamic system.
The flat output is given by the rotor vertical position y = z1. The differential parametriza-
tion of the state and control variables in terms of the flat output y and its time derivatives
is given by [24,28]

z1 = y

z2 =
dy
dt

z3 =

[
2m
aL0

(
g− d2y

dt2

)
(a + y)2

] 1
2

u =
2mL
aL0

(a + y)2
[

2m
aL0

(
g− d2y

dt2

)
(a + y)2

]− 1
2

[
R
L
− aL0

L(a + y)2
dy
dt

+
1

(a + y)
dy
dt

](
g− d2y

dt2

)

− mL
aL0

(a + y)2
[

2m
aL0

(
g− d2y

dt2

)
(a + y)2

]− 1
2 d3y

dt3 (4)

The nonlinear flat output dynamics can be then described by

d3y
dt3 = 2

[
R
L
− aL0

L(a + y)2
dy
dt

+
1

(a + y)
dy
dt

](
g− d2y

dt2

)
+ bu + p(t) (5)

with

b = −
[

2m
aL0

(
g− d2y

dt2

)
(a + y)2

] 1
2 aL0

mL(a + y)2 (6)

From the differential parametrization (4), the input gain parameter b can be also
computed as

b = − aL0

mL(a + y)2 z3 (7)

In Equation (5), uniformly bounded, possible time-varying perturbations p(t) have
been intentionally taken into account as well. In this sense, perturbations could be due to
exogenous vibrations, parametric uncertainty, reasonable unmodelled dynamics and small
electromagnetic force model errors.

It is assumed that perturbations are bounded for control design purposes as

‖p(t)‖∞ = sup
t∈[0,∞)

|p(t)| = λ < ∞ (8)

where λ ∈ R+ stands for an unknown positive constant. Global solution existence of the
controlled nonlinear dynamic system (5) can be thus guaranteed (cf. [29]).
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For the purposes of efficient control design based on detailed nonlinear theoretical
modelling, the dynamics of the tracking error of the reference profile y∗(t) can be described
from Equation (5) by the state space representation

d
dt

e1 = e2

d
dt

e2 = e3

d
dt

e3 = − d3

dt3 y∗ + 2

[
R
L
− aL0

L(a + e1 + y∗)2

(
e2 +

d
dt

y∗
)
+

1
(a + e1 + y∗)

(
e2 +

d
dt

y∗
)]

(
g− e3 −

d2

dt2 y∗
)
+ b̃u + p(t) (9)

with tracking error state variables e1 = y− y∗(t), e2 =
de1

dt
and e3 =

de2

dt
. The gain input b̃

in terms of the tracking error state variables is given by

b̃ = −
[

2m
aL0

(
g− e3 −

d2

dt2 y∗
)
(a + e1 + y∗)2

] 1
2 aL0

mL(a + e1 + y∗)2 (10)

The actual state variables of the electromagnetic suspension system (2) can be ex-
pressed as a solution of Equations (9) as follows:

z1 = e1 + y∗

z2 = e2 +
d
dt

y∗

z3 =

[
2m
aL0

(
g− e3 −

d2

dt2 y∗
)
(a + e1 + y∗)2

] 1
2

(11)

The following differential flatness controller to exponentially asymptotically regulate
the tracking error state towards zero can be then synthesized:

u =
1
b̃

{
d3

dt3 y∗ − p3e1 − 3p2e2 − 3pe3

−2

[
R
L
− aL0

L(a + e1 + y∗)2

(
e2 +

d
dt

y∗
)
+

1
(a + e1 + y∗)

(
e2 +

d
dt

y∗
)]

(
g− e3 −

d2

dt2 y∗
)
− p(t)

}
(12)

with design parameter p > 0. In this way, the tracking error is governed by the exponen-
tially asymptotically stable closed-loop dynamics.

d3

dt3 e1 + 3p
d2

dt2 e1 + 3p2 d
dt

e1 + p3e1 = 0 (13)

Hence, this differential flatness control design approach represents an excellent choice
for applications where an accurate and detailed nonlinear mathematical model is known.
Information on dynamic disturbances should be available as well.

In contrast, in the present study, the structural property of differential flatness is
combined with sliding modes and B-spline artificial neural networks to derive a very good
alternative for robust tracking control for an electromagnetic suspension system.
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In this sense, the following smooth sliding surface function for the closed-loop behav-
ior of the nonlinear electromagnetic suspension dynamic system is then specified for the
design of a robust control scheme:

σ =
d2e
dt2 + β2

de
dt

+ β1e + β0

∫ t

t0

e(τ)dτ (14)

The reference trajectory tracking error is here represented by e = y− y∗(t). The desired
reference position trajectory is denoted by y∗(t). Additional tracking error integral com-
pensation can be embedded into the sliding surface σ to improve the active disturbance
suppression control capability [30,31].

For selection of the control design parameters: β0, β1, β2 ∈ R, the following asymptoti-
cally stable closed-loop tracking error dynamic model can be established:

d3e
dt3 + β2

d2e
dt2 + β1

de
dt

+ β0e = 0 (15)

with roots of its characteristic polynomial located in the open left half complex plane.
The first time derivative of σ is thus given by

d
dt

σ =
d3e
dt3 + β2

d2e
dt2 + β1

de
dt

+ β0e (16)

From Equations (14) and (16), the controlled nonlinear dynamics of σ is therefore
described by

d
dt

σ =− d3y∗

dt3 + β2
d2e
dt2 + β1

de
dt

+ β0e + bu

+ 2

[
R
L
− aL0

L(a + y)2
dy
dt

+
1

(a + y)
dy
dt

](
g− d2y

dt2

)
+ p(t) (17)

The sliding mode controller for desired rotor vertical position reference trajectory
tracking can be then synthesized:

u =
1
b

[
d3y∗

dt3 − β2
d2e
dt2 − β1

de
dt
− β0e− ασ−Wsign(σ)− ϕ

]
(18)

where

ϕ = 2

[
R
L
− aL0

L(a + y)2
dy
dt

+
1

(a + y)
dy
dt

](
g− d2y

dt2

)
with α ≥ 0, W > λ.

Thus, the perturbed discontinuous closed-loop dynamics of the sliding surface func-
tion satisfies

d
dt

σ = −ασ−Wsign(σ) + p(t) (19)

Now, consider the Lyapunov function candidate

V(σ) =
1
2

σ2 (20)
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The first time derivative of V(σ) along the trajectories of the perturbed controlled
nonlinear system (5) is then given by

d
dt

V(σ) = −ασ2 −W|σ|+ σp(t)

≤ −ασ2 − (W − |p(t)|)|σ|

≤ −
√

2 WV
1
2 (σ)

< 0, for W > λ, σ 6= 0 (21)

The sliding surface σ = 0 can be hence reachable in finite time [19]. In fact, by solving
the differential equation

d
dt

V(σ) +
√

2 WV
1
2 (σ) = 0 (22)

this finite time amount TMAX can be computed as

TMAX =
1

W
|σ0|, σ0 = σ(0) (23)

Hence, σ(t, σ0) = 0, ∀t ≥ TMAX . Notice that the value of the design parameter α = 0 is also
admitted as was described above.

Therefore, for this condition, the tracking of the reference trajectory y∗(t) is then
performed as follows

lim
t→+∞

e = 0 ⇒ lim
t→+∞

y = y∗(t)

The trajectory tracking error is governed by the desired closed-loop stable system dy-
namics described by Equation (15). An asymptotically exponentially stable tracking error
dynamics can be established in this fashion. Nevertheless, the design parameter W > λ
should be suitably selected to compensate uncertain bounded disturbances (8) as proved
in Equation (21). Thus, in the present study, this single control parameter is computed
from an adaptive perspective by implementing B-spline artificial neural networks. This
parameter is firstly tuned off-line by considering highly perturbed operational scenarios
according to design specifications for the secure operation of the electromagnetic actuator.
Training data could be also generated from the differential parametrization of the system
variables in terms of the flat output and its time derivatives for substantially disturbed
operational environments. Thanks to the differential flatness, the perturbed system vari-
ables can be expressed as a solution of a differentially flat transformed dynamic system in
which uncertainty, time-varying disturbances and uncertain nonlinearities may be incor-
porated for training of neural networks. This control parameter is next updated on-line
by properly processing the information of the tracking error depending on the particular
situation of the nonlinear electromagnetic suspension system. In this way, the efficiency
and effectiveness of performing tracking tasks of desirable motion reference profiles can
be improved for disturbed multiple operating conditions. For more detailed information
about the advantages and efficiency of B-spline artificial neural networks, the interested
reader is referred to the book [32]. The convergence properties of some gradient-based
algorithms commonly utilized for training of some classes of artificial neural networks as
used in this work can be examined in [33,34]. In this sense, the expected performance of
the ANN depends on the correct delimitation of the training algorithm considering typical
behavior of the system under analysis, starting with typical steady state conditions.

4. Neural Sliding-Mode Differential-Flatness Control

In this section, B-spline neural networks are integrated into the robust motion trajec-
tory tracking control approach based on differential flatness and sliding modes. In this
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fashion, the tracking control performance can be significantly improved by implementing
B-spline neural networks to adaptively tune a single control design parameter. Further-
more, the effectiveness of the presented neural sliding mode control strategy is confirmed
by computer simulation results. The Runge–Kutta–Fehlberg method with a fixed time step
of 0.1 ms for assessment of the control performance was implemented. The electromagnetic
suspension system parameters used for numerical evaluations are indicated in Table 1.

Table 1. Parameters of the electromagnetic suspension system [35].

Parameter Value Unit

m 0.54 Kg
R 11.88 Ω
L1 0.8052 H
L0 0.18487 H
km 0.0015 Nm2/A2

a 0.008114 m

For evaluation purposes of control robustness, the term ϕ in Equation (18) was first
considered as an unknown perturbation depending on the flat output. The control input
gain b was also replaced by b∗. Additional small uncertainties in the nonlinear dynamic
theoretical model were thus taken into account. The control law (18) was then simplified
as follows

u =
1
b∗

[
d3y∗

dt3 − β2
d2e
dt2 − β1

de
dt
− β0e− ασ−Wsign(σ)

]
(24)

with

b∗ = −
[

2m
aL0

(
g− d2y∗

dt2

)
(a + y)2

] 1
2 aL0

mL(a + y)2 (25)

To reduce high-gain effects in control implementation, the signum function was
approximated by the continuous function

sign(σ) ≈ σ

|σ|+ ε
(26)

where ε ∈ R+ is an arbitrary small positive constant.
As a first case study, the controller design parameters were set as: α = 0, W = 300 and

ε = 0.02. The control gains β0, β1 and β2 were chosen so that the differential Equation (15)
has the stable closed-loop characteristic polynomial

pdc(s) = (s + pc)(s2 + 2ζcωncs + ω2
nc)

2 (27)

with ωnc = 20 rad/s, pc = 20 rad/s and ζc = 0.7071. Control gains were then computed as

β0 =pcω2
nc

β1 =ω2
nc + 2pcζcωnc

β2 =pc + 2ζcωnc

Figures 2 and 3 depict the robust performance of the tracking control scheme based
on sliding modes and differential flatness. The flat output is first regulated at the desired
initial position yi = 0.01 m. As displayed in Figure 2, an efficient transference of the
output variable y from the initial equilibrium position yi = 0.01 m towards the final
equilibrium position y f = 0.005 m, following the reference trajectory y∗(t) into the time
interval [2, 4] s, is then performed. The capability of the high-gain controller to effectively
reject significant state-dependent disturbances is also corroborated in the tracking error
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response. The closed-loop responses of the control voltage and the electric current are
displayed in Figure 3.
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Figure 2. Closed-loop reference trajectory tracking response for the rotor vertical position for the
first perturbed operational assessment case. (a) Position reference trajectory tracking. (b) Trajectory
tracking error.

Furthermore, instead of the position dependent-variable inductance L(y) given by
Equation (1), the performance of the tracking control scheme is verified when it uses a
constant approximate value for the inductance as: L ≈ L1. Figures 4 and 5 describe the sat-
isfactory results obtained for this second situation. As displayed in Figure 4, an acceptable
reference position trajectory tracking can be similarly achieved. In Figure 4, the acceptable
tracking error response is verified as well. In Figure 5, the electric current and voltage
responses are depicted. Nevertheless, in this second case study, the control parameter W
should be incremented from 300 to 350 to suppress parametric uncertainty disturbances.
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Figure 3. Closed-loop responses of the control voltage and the electric current signal based on sliding
modes and differential flatness for the first perturbed operational assessment case. (a) Electric current
signal. (b) Control input voltage.
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Figure 4. Closed-loop reference trajectory tracking for the rotor vertical position using L = L1 for the
second perturbed operational assessment case. (a) Position reference trajectory tracking. (b) Trajectory
tracking error.
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Figure 5. Closed-loop responses of the control voltage and the electric current signal based on sliding
modes and differential flatness for the first perturbed operational assessment case. (a) Electric current
signal. (b) Control input voltage.
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In this paper, from an adaptive-like control design approach, B-spline Artificial Neural
Networks (BsNN) are integrated in the trajectory tracking controller based on sliding modes
and differential flatness for the electromagnetic levitation system [36,37]. The inclusion of
this adaptive strategy supports the robustness of the control law by the correct definition of
a key parameter. The artificial neural network is precisely used for updating on-line the
control parameter W based on tracking error information as portrayed in Figure 6. The
structure of this class of neural networks consists of a hidden layer only. Here, activation
functions permit to attain a nonlinear relationship of the output with respect to the input.
Both input and output could be scalars or vectors. In this application, both input and
output signals are scalars. This type of intelligent agent is effective for dealing with the
system nonlinearities and uncertainties, since by using different learning rate indexes and
inputs, the BsNN are capable to adjust iteratively in real time their synaptic weights by
means of the constant learning process of the physical system [38]. The output is generated
from a weighted linear combination of its basis function outputs, as observed in Figure 6.

OutputWeight

 vector

Basis 

functions
Input

Hidden layer

Sumation 

junction

Figure 6. B-spline Artificial Neural Network architecture to adjust on-line the control parameter W(t).

In the developed control scheme, we are aiming with the use of BsNN to enhance the
efficient dynamic performance when the system is subjected to possible unmodelled effects,
uncertainties and disturbances. Thus, BsNN characteristics should exhibit robustness
and low amount of math operations. Therefore, several univariate and multivariate basis
functions of different orders were analyzed. Nevertheless, the observed results were similar
in this application in which a single control design parameter is continuously tuned on-
line. Thereby, the final selection was done for univariate basis function of third order as a
compromise of the number of calculations and high performance under unknown scenarios
considered in the design stage. If the order is higher and multivariate basis function is
selected, the amount of math operations is increased but the dynamic performance is not
enhanced considerably. In this work, the following output was adopted:

W =
2

∑
j=1

ajwj = aTw (28)

with

w = [w1 w2], a = [a1 a2] (29)

where a and w are the weights and basis function outputs vectors formed by the j-th
elements for j = 1, 2 which is defined by the number of synaptic weights. In this study, we
define the B-spline output as the control parameter W(t). The tracking error is used as the
main element for the learning process. The BsNN scheme is focusing to observe drastic
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changes in the operating condition; thus, it can update the control algorithm performance
but with the compromise of low computational demand. Therefore, this behavior is attained
by using the following instantaneous learning rule; the neuron is continuously trained:

wj(t) = wj(t− 1) +
Γe(t)
‖ a(t) ‖2

2
aj(t) (30)

where e(t) and Γ denote the instantaneous output tracking error and the learning rate
index, respectively. It is important to know that in all cases the search space is bounded
considering the typical steady state condition of the system to be controlled. In this
sense, the parameters and variables are a boundary in accordance with physical system
restrictions. Furthermore, the learning rule could be restricted for operating only when the
magnitude of the error input is higher than some predefined satisfactory value in terms
of steady state error. Thus, the initial values are in accordance with the magnitudes of
system variables in steady state condition. In this context, a third experiment was carried
out. The comparison of adaptive and regular responses is presented. A low gain value
was firstly set as: W = 12, which is the initial value for the adaptive case as well. Since
rotary machinery could exhibit serious vibration issues [39], external undesired, unknown
oscillating disturbances disrupting the position dynamics were considered as follows

ξ(t) = mec

[
ω2

r sin(ωrt)
]

(31)

with

ωr =

{
10 0 ≤ t < 10
60 t ≥ 10

(32)

and,

ec =

{
11.75× 10−5 0 ≤ t < 10
20.75× 10−5 t ≥ 10

(33)

The computation simulation results for this disturbed operational scenario are por-
trayed in Figures 7 and 8. Vibrating disturbances were solely considered. The closed-loop
nonlinear dynamic system stability is verified. The position reference trajectory tracking
response using a fixed W control parameter value is shown in Figure 7. In Figure 8, the
superior performance of the closed-loop system is evident by implementing the intro-
duced adaptive tuning technique for W(t). Vibrations disrupting the flat output dynamics
are substantially attenuated. Furthermore, as indicated in the figures, the Integral of
Time-Weighted Absolute Error Index (ITAE) was used as a quantitative parameter for
performance comparison purposes. This performance indicator is given by

ITAE =
∫ ∞

0
t|e| dt (34)

where e = y− y∗(t) and dt is the integration time step used in simulation. Notice that
the system performance can be improved considerably by using B-spline artificial neural
networks as proposed in the present work. Even when the information of the bounded
disturbances is not available, the control algorithm is able to adjust its performance on-line
based on the error information only. The exhibited results portray an appropriate perfor-
mance of the electromagnetic system by using the proposed motion control scheme. The
accurate smooth reference profile tracking planned for the position dynamics is achieved
despite being subject to external disturbances.
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Figure 7. Closed-loop reference trajectory tracking for the disturbed vertical position dynamics
using a fixed W control parameter. ITAE = 91× 10−4. (a) Position reference trajectory tracking.
(b) Unsatisfactory trajectory tracking error. (c) Constant control parameter.
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Figure 8. Closed-loop reference trajectory tracking for disturbed rotor vertical position using an
adaptive W control parameter. ITAE = 1.12× 10−4. (a) Position reference trajectory tracking. (b) Sat-
isfactory trajectory tracking error. (c) Variable control parameter.
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Two additional computer simulation experiments in order to verify the BsNN adap-
tation capability of the new introduced tracking control scheme to compensate internal
and external disturbances were finally carried out. Reasonable uncertainty in the control
input gain was considered. Variations around ±20% in the actual control input gain value
given by Equation (25) were implemented. The inductance was also approximated as
L = L1. In this way, approximate information on a single input gain parameter from
the nonlinear electromagnetic suspension system model was only used in control imple-
mentations. The obtained acceptable results are summarized in Figures 9–12. Despite the
fact the full system model information is not provided to the neural control scheme, the
efficient trajectory tracking as well as acceptable attenuation levels of completely unknown
oscillating disturbances disrupting the position dynamics are attained. A certain reduction
of dependency on system information is then corroborated while acceptable closed-loop
system performance is achieved.
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Figure 9. Cont.
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Figure 9. Satisfactory closed-loop system response considering an adaptive W and 0.8b with a
constant inductance L = L1. (a) Position reference trajectory tracking. (b) Trajectory tracking error.
(c) Adaptive control parameter.
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Figure 10. Satisfactory closed-loop system response considering an adaptive W and 0.8b with a
constant inductance L = L1. (a) Control voltage signal. (b) Electric current signal.
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Figure 11. Satisfactory closed-loop system response considering an adaptive W and 1.2b with a
constant inductance L = L1. (a) Position reference trajectory tracking. (b) Trajectory tracking error.
(c) Adaptive control parameter.
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Figure 12. Satisfactory closed-loop system response considering an adaptive W and 1.2b with a
constant inductance L = L1. (a) Control voltage signal. (b) Electric current signal.

On the other hand, in Figures 13 and 14 can be appreciated a deficient performance of
the closed-loop system when using fixed value of the control parameter as W = 220. In
fact, when considering a variation of the control gain as 0.8b and a fixed value of W = 220,
the system response is unstable. Moreover, as indicated in the figures, for the purposes of
highlighting the improved system performance using the neural neural network tracking
control, the initial value of the W parameter matches the fixed cases, where for both case
studies, it can be seen the system is able to recovering from an initial faulty operational
condition when the W control parameter is on-line computing by the B-spline neural
network-based adaptive framework.
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Figure 13. Unsatisfactory closed-loop system performance considering a fixed W = 220 value and
1.2b with a constant inductance L = L1. (a) Unacceptable position reference trajectory tracking.
(b) Unacceptable trajectory tracking error. (c) Constant control parameter.
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Figure 14. Unsatisfactory closed-loop system response considering a fixed W = 220 value and 1.2b
with a constant inductance L = L1. (a) Control voltage signal. (b) Electric current signal.

5. Conclusions

In the present paper, a novel neural robust reference profile tracking control approach
for the rotor vertical position of an electromagnetic suspension system was introduced. The
differential flatness property as well as the robust sliding mode control theory have been
suitably exploited to obtain a robust motion tracking control strategy. B-spline artificial
neural networks were implemented for real-time computation of a single control design
parameter which significantly improves the control performance. The adaptive controller
takes the electromagnetic suspension system to behave in a certain desired operational
condition at specific time by adjusting its parameters from the measured error signal.
ITAE index was used for providing quantitative performance information. The obtained
results have demonstrated the satisfactory control system performance against unmodelled
dynamics, parametric uncertainty and external disturbances. Furthermore, it has been
corroborated that designs of real-time estimation techniques of time-varying disturbances
based on accurate detailed nonlinear mathematical models could be conveniently avoided.
Nevertheless, theoretical dynamic modelling is necessary for robust control design analysis
to carry out motion planning specified for the effective operation of the engineering system.
From the results obtained from the presented different simulation case studies, it can be also
concluded that the new adaptive neural-network sliding-mode differential-flatness control
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scheme stands for a very good alternative to regulate magnetic levitation systems under
perturbed operating environments. Moreover, the adaptive neural network control design
approach can be extended to other engineering systems where the structural property of
differential flatness is presented. In fact, there are many classes of realistic flat dynamic
systems. Differential flatness can be thus considered as an useful power tool to be integrated
with artificial intelligence techniques for adaptive control design for complex disturbed
dynamic systems for variable operational conditions. Integration of the differential flatness-
based control design methodology with other classes of artificial neural networks will be
explored in future research works. In this context, other variants of sliding mode control
techniques to suppress undesired chattering and improve the efficiency and robustness
of reference trajectory tracking control in complex uncertain nonlinear dynamic systems
subjected to external time-varying disturbances will be investigated. Combination with on-
line and closed-loop parameter identification methods to increase the dynamic performance
represents another alternative to be considered as well.
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ANN Artificial Neural Network
DNN Differential Neural Network
BsNN B-spline Artificial Neural Networks
ITAE Integral of Time-Weighted Absolute Error Index
m Mass of Mechanical System
i Electric Current Signal
u Voltage Control Input
Fe Electromagnetic Force
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L Variable Inductance
L1, L0, a Inductance Model Parameters
y Flat Output Variable
y∗ Reference Trajectory
zi, i = 1, 2, 3 State Variables
b Control Input Gain Parameter
· Denotes System Variable at Equilibria
e Trajectory Tracking Error
p External Disturbances
σ Sliding Surface Function
β j, j = 1, 2, 3 Control Gains
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