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Abstract: Simpson’s rule is a numerical method used for approximating the definite integral of a
function. In this paper, by utilizing mappings whose second derivatives are bounded, we acquire the
upper and lower bounds for the Simpson-type inequalities by means of Riemann–Liouville fractional
integral operators. We also study special cases of our main results. Furthermore, we give some
examples with graphs to illustrate the main results. This study on fractional Simpson’s inequalities is
the first paper in the literature as a method.
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1. Introduction

The classical Simpson’s inequality for four times continuously differentiable functions
is the following.

Theorem 1 ([1]). Let f : [a, b]→ R be a four times continuously differentiable function on (a, b),
and let us consider

∥∥∥ f (4)
∥∥∥

∞
= sup

x∈(a,b)

∣∣∣ f (4)(x)
∣∣∣ < ∞. Then, the following inequality holds:

∣∣∣∣13
[

f (a) + f (b)
2

+ 2 f
(

a + b
2

)]
− 1

b− a

∫ b

a
f (x)dx

∣∣∣∣ ≤ 1
2880

∥∥∥ f (4)
∥∥∥

∞
(b− a)4.

Since the theory of convex functions is an effective and useful way to solve a large
number of problems from different branches of mathematics, many mathematicians have in-
vestigated the Simpson-type inequalities for convex functions. More precisely, in [1], some
Simpson-type inequalities via s-convex mappings are established by utilizing differentiable
mappings. Furthermore, new versions of the Simpson-type inequalities for differentiable
convex mappings were established in [2,3]. The reader is referred to [4–10] and the ref-
erences therein for more information and unexplained aspects regarding Simpson-type
inequalities for various convex classes.

Many mathematicians have investigated the twice differentiable convex functions
to obtain significant inequalities. For example, Sarikaya et al. proved some inequali-
ties of Simpson’s type by using twice differentiable mappings in [11]. In addition, some
Simpson-type inequalities are given for differentiable convex mappings in [12]. More-
over, the authors provide new estimates on the generalization of Hadamard, Ostrowski,
and Simpson inequalities in the case of functions whose second derivatives in absolute
values at certain powers are convex and quasi-convex functions in [13]. Furthermore,
Simpson-type inequalities are established for P−convex functions in [14]. The reader may
refer to [15–18] for further pieces of information and unexplained aspects regarding these
types of inequalities, including twice differentiable functions.
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Mathematical preliminaries in fractional calculus theory, which will be used through-
out this paper, are given as follows.

Definition 1 ([19]). Let us consider f ∈ L1[ρ, µ]. The Riemann–Liouville integrals Jα
ρ+ f and

Jα
µ− f of order α > 0 are defined by

Jα
ρ+ f (ξ) =

1
Γ(α)

∫ ξ

ρ
(ξ − t)α−1 f (t)dt, ξ > ρ

and
Jα
µ− f (ξ) =

1
Γ(α)

∫ µ

ξ
(t− ξ)α−1 f (t)dt, ξ < µ,

respectively. Here, Γ(α) is the Gamma function and is described as follows:

Γ(α) =
∫ ∞

0
e−uuα−1du.

Let us also note that J0
ρ+ f (ξ) = J0

µ− f (ξ) = f (ξ).

Remark 1. If we choose α = 1 in Definition 1, then the fractional integral reduces to the
classical integral.

In [20], the Simpson inequalities for differentiable functions are extended to Riemann–
Liouville fractional integrals. In addition to these, several papers are focused on frac-
tional Simpson inequalities [21–27]. For further similar results and properties of Riemann–
Liouville fractional integrals, see [19,28–31].

In [32], the authors proved some new inequalities of Simpson’s type based on s−convexity
by fractional integrals. If we choose s = 1 as in ([32], Theorem 2.3), we obtain the following.

Theorem 2 ([32]). Let f : I ⊂ [0, ∞) → R be a function such that f is differentiable on I0. Let
a, b ∈ I with a < b. Suppose that f ′ ∈ L1[a, b] and | f ′| is convex on [a, b]. Then, the following
inequality for Riemann–Liouville fractional integrals holds:

1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
− 2α−1Γ(α + 1)

(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]

≤ b− a
2

ϕ(α)
(∣∣ f ′(a)

∣∣+ ∣∣ f ′(b)∣∣).
Here,

ϕ(α) =

(
2
3

) 1
α +1( α

1 + α

)
+

1
2(1 + α)

− 1
3

.

Theorem 3 ([33]). Suppose that the assumptions of Theorem 2 hold. Then, the following
inequalities hold:∣∣∣∣16

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
− 2α−1Γ(α + 1)

(b− a)α

[
Jα

a+b
2 +

f (b) + Jα
a+b

2 −
f (a)

]∣∣∣∣
≤ b− a

12

[
C2(α)

(∣∣ f ′(b)∣∣+ ∣∣ f ′(a)
∣∣)+ 2C1(α)

∣∣∣∣ f ′( a + b
2

)∣∣∣∣]

≤ b− a
12

(C1(α) + C2(α))
(∣∣ f ′(a)

∣∣+ ∣∣ f ′(b)∣∣),
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where

C1(α) = 2
(

1
3

) 2
α
[

1
2
− 1

α + 2

]
+

3
α + 2

− 1
2

,

C2(α) = 2
(

1
3

) 1
α
[

1− 1
α + 1

]
− 2
(

1
3

) 2
α
[

1
2
− 1

α + 2

]
+

3
(α + 1)(α + 2)

− 1
2

.

Iqbal et al. [20] established new Simpson-type inequalities for Riemann–Liouville frac-
tional integrals using the convexity for the class of functions whose derivatives in absolute
value at certain powers are convex functions, as proposed in the following theorem.

Theorem 4 ([20]). Suppose that the assumptions of Theorem 2 are valid. Then, the inequality[
1
6

f (a) +
2
3

f
(

a + b
2

)
+

1
6

f (b)
]
− Γ(α + 1)

2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

≤ b− a
2α

(K1 + K2)
(∣∣ f ′(a)

∣∣+ ∣∣ f ′(b)∣∣)
is valid. Here, dα = 2(2α−1)

3 + 1 and

K1 = 1
6 −

1
3

(
1−

(
1
3

) 1
α

)
− 1

(α+1)

(
1
3

)1+ 1
α
+ 1

2(α+1) ,

K2 = 2
[

1
3 + 1

2(2α−1)

]
(d− 1) + 1+2α+1−2dα+1

2(2α−1)(α+1) −
(

1
3 + 1

2(2α−1)

)
.

The purpose of this paper is to prove some Simpson-type inequalities for Riemann–
Liouville fractional integrals. The general structure of the paper consists of three sections,
including the Introduction. The remaining parts of the paper are as follows. In Section 2,
we will establish some upper and lower bounds for Simpson’s rule for Riemann–Liouville
fractional integral operators by using functions whose second derivatives are bounded.
Moreover, we also show a Simpson-type inequality for Riemann integrals by using a
special case of our main results. Furthermore, we will give some examples to illustrate the
main results. In the last section, some conclusions and further directions of research will
be presented.

2. Main Results of Simpson-Type Inequalities for Bounded Functions

In this section, we establish the following inequalities, which give the upper and
lower bounds for the Simpson-type inequalities for Riemann–Liouville fractional integral
operators. Here, fractional Simpson-type inequalities are applied to the functions that have
the conditions m ≤ f ′′(t) ≤ M for all t ∈ [a, b] instead of convexity. Throughout this paper,
we will refer to Theorems 2–4 as the Simpson-type inequalities of the first sense, second
sense, and third sense, respectively.
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2.1. Simpson-Type Inequalities of the First Sense

Theorem 5. Let f : [a, b]→ R be a positive, twice differentiable function, and f ∈ L1[a, b]. If f ′′

is bounded, i.e., m ≤ f ′′(t) ≤ M for all t ∈ [a, b] with m, M ∈ R and α > 0, then the following
inequalities hold:

(b− a)2

12(α + 2)
[mα−M] (1)

≤ 2α−1Γ(α + 1)
(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2

12(α + 2)
[Mα−m].

Proof. By using the change of variables, we have

2α−1Γ(α + 1)
(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]
(2)

=
2α−1α

(b− a)α


a+b

2∫
a

(
a + b

2
− x
)α−1

f (x)dx +

b∫
a+b

2

(
x− a + b

2

)α−1
f (x)dx



=
2α−1α

(b− a)α


a+b

2∫
a

(
a + b

2
− x
)α−1

f (x)dx +

a+b
2∫

a

(
a + b

2
− x
)α−1

f (a + b− x)dx



=
2α−1α

(b− a)α

a+b
2∫

a

(
a + b

2
− x
)α−1

[ f (x) + f (a + b− x)]dx.

By the equality (2), we obtain

2α−1Γ(α + 1)
(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
(3)

=
2α−1α

(b− a)α

a+b
2∫

a

(
a + b

2
− x
)α−1

[ f (x) + f (a + b− x)]dx− 1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
2α−1α

3(b− a)α

a+b
2∫

a

(
a + b

2
− x
)α−1[

3 f (x) + 3 f (a + b− x)−
(

f (a) + 4 f
(

a + b
2

)
+ f (b)

)]
dx.
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We can write easily that

f (x)− f (a) =
x∫

a

f ′(t)dt, (4)

f (a + b− x)− f (b) = −
b∫

a+b−x

f ′(t)dt = −
x∫

a

f ′(a + b− t)dt, (5)

f (x)− f
(

a + b
2

)
= −

a+b
2∫

x

f ′(t)dt, (6)

and

f (a + b− x)− f
(

a + b
2

)
=

a+b−x∫
a+b

2

f ′(t)dt =

a+b
2∫

x

f ′(a + b− t)dt. (7)

By using the equalities (4) and (5), we have

f (x) + f (a + b− x)− f (a)− f (b) =
x∫

a

[
f ′(t)− f ′(a + b− t)

]
dt. (8)

From (6) and (7), we obtain

f (x)− 2 f
(

a + b
2

)
+ f (a + b− x) =

a+b
2∫

x

[
f ′(a + b− t)− f ′(t)

]
dt. (9)

We also have

f ′(a + b− t)− f ′(t) =
a+b−t∫

t

f ′′(u)du. (10)

By using the equality (10) and m < f ′′(u) < M, u ∈ [a, b], we obtain

m
a+b−t∫

t

du ≤
a+b−t∫

t

f ′′(u)du ≤ M
a+b−t∫

t

du

i.e.,
m(a + b− 2t) ≤ f ′(a + b− t)− f ′(t) ≤ M(a + b− 2t). (11)

Integrating the inequality (11) with respect to t on [a, x], we obtain

M(b− x)(a− x) ≤
x∫

a

[
f ′(t)− f ′(a + b− t)

]
dt ≤ m(b− x)(a− x).

With the help of the equality (8), it follows that

M(b− x)(a− x) ≤ f (x) + f (a + b− x)− f (a)− f (b) ≤ m(b− x)(a− x). (12)
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Integrating the inequality (11) with respect to t on
[

x, a+b
2

]
, we obtain

m
(

a + b
2
− x
)2
≤

a+b
2∫

x

[
f ′(t)− f ′(a + b− t)

]
dt ≤ M

(
a + b

2
− x
)2

.

By using the equality (9), it follows that

2m
(

a + b
2
− x
)2
≤ 2

[
f (x)− 2 f

(
a + b

2

)
+ f (a + b− x)

]
≤ 2M

(
a + b

2
− x
)2

. (13)

From (12) and (13), we obtain

M(b− x)(a− x) + 2m
(

a + b
2
− x
)2

(14)

≤ 3 f (x) + 3 f (a + b− x)− f (a)− 4 f
(

a + b
2

)
− f (b)

≤ m(b− x)(a− x) + 2M
(

a + b
2
− x
)2

.

Multiplying the inequalities (14) by 2α−1α
3(b−a)α

(
a+b

2 − x
)2

and integrating the resultant

inequality with respect to x on
[

a, a+b
2

]
, we have

2α−1α

3(b− a)α

a+b
2∫

a

(
a + b

2
− x
)2
(

M(b− x)(a− x) + 2m
(

a + b
2
− x
)2
)

dx

≤ 2α−1α

3(b− a)α

a+b
2∫

a

(
a + b

2
− x
)2[

3 f (x) + 3 f (a + b− x)− f (a)− 4 f
(

a + b
2

)
− f (b)

]
dx

≤ 2α−1α

3(b− a)α

a+b
2∫

a

(
a + b

2
− x
)2
(

m(b− x)(a− x) + 2M
(

a + b
2
− x
)2
)

dx.

By using the equalities (3) and the equality

a+b
2∫

a

(
a + b

2
− x
)2
(

M(b− x)(a− x) + 2m
(

a + b
2
− x
)2
)

dx =
2

α + 2

[
m− M

α

](
b− a

2

)α+2
,

then we obtain

(b− a)2

12(α + 2)
[mα−M]

≤ 2α−1Γ(α + 1)
(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2

12(α + 2)
[Mα−m].
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This completes the proof of Theorem 5.

Corollary 1. Let us consider α = 1 in Theorem 5. Then, we obtain

(b− a)2

36
[m−M] ≤ 1

b− a

b∫
a

f (t)dt− 1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
≤ (b− a)2

36
[M−m].

Equivalently, we have∣∣∣∣∣∣ 1
b− a

b∫
a

f (t)dt− 1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]∣∣∣∣∣∣ ≤ (b− a)2

36
[M−m].

Example 1. If we define a function f : [a, b] = [0, 1] → R by f (x) = x3 + x2, then we obtain
m = 2 and M = 8. Let us consider the left and right sides of the inequalities (1) as follows:

(b− a)2

12(α + 2)
[mα−M] =

α− 4
6(α + 2)

: = Ω1

and
(b− a)2

12(α + 2)
[Mα−m] =

4α− 1
6(α + 2)

: = Ω2.

The middle parts of the inequalities (1) are as follows:

1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
=

1
6

[
f (0) + 4 f

(
1
2

)
+ f (1)

]
=

7
12

, (15)

Jα
a+ f

(
a + b

2

)
= Jα

0+ f
(

1
2

)
=

1
Γ(α)

1
2∫

0

(
1
2
− x
)(

x3 + x2
)

dx (16)

=
1

Γ(α)

[
− 1

2α+3(α + 3)
+

5
2(α + 2)

− 7
4(α + 1)

+
3

2α+3α

]

=
3α3 + 3α2 + 4α + 18

2α+3Γ(α)α(α + 1)(α + 2)(α + 3)
,

and

Jα
b− f

(
a + b

2

)
= Jα

1− f
(

1
2

)
=

1
Γ(α)

1∫
1
2

(
1
2
− x
)(

x3 + x2
)

dx (17)

=
16α3 + 76α2 + 92α + 18

2α+3Γ(α)α(α + 1)(α + 2)(α + 3)
.
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With the help of the equalities (15)–(17), we have

2α−1Γ(α + 1)
(b− a)α

[
Jα
a+ f

(
a + b

2

)
+ Jα

b− f
(

a + b
2

)]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
19α3 + 79α2 + 96α + 36
16(α + 1)(α + 2)(α + 3)

− 7
12

:= Ω3.

As one can see in Figure 1, the result of our appropriate choices in Example 1 is provided in the
double inequality (1).

0 5 10 15 20 25 30

values of alpha

-1

-0.5

0

0.5

1

1.5

v
a
lu

e
s
 o

f 
fu

n
c
ti
o
n
s
 Ω

k

Ω
1

Ω
2

Ω
3

Figure 1. Graph for the result of Example 1 computed and plotted in MATLAB program.

2.2. Simpson’s Type Inequalities of the Second Sense

Theorem 6. Under the assumptions of Theorem 5, we have the following double inequality:

(b− a)2

24(α + 1)(α + 2)
[4m− α(α + 3)M] (18)

≤ 2α−1Γ(α + 1)
(b− a)α

[
Jα

( a+b
2 )+

f (b) + Jα

( a+b
2 )−

f (a)
]
− 1

6
f
[
(a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2

24(α + 1)(α + 2)
[4M− α(α + 3)m].
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Proof. By using the change of variables, we have

2α−1Γ(α + 1)
(b− a)α

[
Jα

( a+b
2 )+

f (b) + Jα

( a+b
2 )−

f (a)
]

(19)

=
2α−1α

(b− a)α

 b∫
a+b

2

(b− x)α−1 f (x)dx +

a+b
2∫

a

(x− a)α−1 f (x)dx



=
2α−1α

(b− a)α


a+b

2∫
a

(x− a)α−1 f (a + b− x)dx +

a+b
2∫

a

(x− a)α−1 f (x)dx



=
2α−1α

(b− a)α

a+b
2∫

a

[ f (x) + f (a + b− x)](x− a)α−1dx.

By the equalities (19), we obtain

2α−1Γ(α + 1)
(b− a)α

[
Jα

( a+b
2 )+

f (b) + Jα

( a+b
2 )−

f (a)
]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
2α−1α

(b− a)α

a+b
2∫

a

[ f (x) + f (a + b− x)](x− a)α−1dx− 1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
2α−1α

3(b− a)α

a+b
2∫

a

[
3 f (x) + 3 f (a + b− x)− f (a)− 4 f

(
a + b

2

)
− f (b)

]
(x− a)α−1dx.

Multiplying the inequality (14) by 2α−1α(x−a)α−1

3(b−a)α and integrating the resultant inequality

with respect to x on
[

a, a+b
2

]
, we obtain

2α−1α

3(b− a)α

a+b
2∫

a

(
2
(

a + b
2
− x
)2

m−M(b− x)(x− a)

)
(x− a)α−1dx

≤ 2α−1α

(b− a)α

a+b
2∫

a

[
3 f (x)− f (a)− f (b)− 4 f

(
a + b

2

)
+ 3 f (a + b− x)

]
(x− a)α−1dx

≤ 2α−1α

3(b− a)α

a+b
2∫

a

(
2
(

a + b
2
− x
)2

M−m(b− x)(x− a)

)
(x− a)α−1dx.
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If we consider the equalities

a+b
2∫

a

(
a + b

2
− x
)2

(x− a)α−1dx =
(b− a)α+2

2α+1α(α + 1)(α + 2)

and

a+b
2∫

a

(b− x)(x− a)αdx =
2(b− a)α+2(α + 3)
2α+2(α + 1)(α + 2)

,

then we obtain

(b− a)2

24(α + 1)(α + 2)
[4m− α(α + 3)M]

≤ 2α−1Γ(α + 1)
(b− a)α

[
Jα

( a+b
2 )

+ f (b) + Jα

( a+b
2 )
− f (a)

]
− 1

6
f
[
(a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2

24(α + 1)(α + 2)
[4M− α(α + 3)m].

This concludes the proof of the inequalities (18).

Remark 2. If we choose α = 1 in Theorem 6, then Theorem 6 reduces to Corollary 1.

Example 2. If we describe a function f : [a, b] = [0, 1]→ R by f (x) = x3

6 , then we have m = 0
and M = 1. The left and right sides of the inequalities (18) are as follows:

(b− a)2

24(α + 1)(α + 2)
[4m− α(α + 3)M] =

−α(α + 3)
24(α + 1)(α + 2)

:= Ψ1

and
(b− a)2

24(α + 1)(α + 2)
[4M− α(α + 3)m] =

1
6(α + 1)(α + 2)

:= Ψ2.

The middle parts of inequalities (18) are as follows:

1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
=

1
6

[
0 +

1
12

+
1
6

]
=

1
24

, (20)

Jα

( a+b
2 )+

f (b) = Jα
( 1

2 )+
f (1) =

1
6Γ(α)

1∫
1
2

(1− x)α−1x3dx (21)

=
1

6Γ(α)

[
− 1

2α+3(α + 3)
+

3
2α+2(α + 2)

− 3
2α+1(α + 1)

+
1

2αα

]

=
α3 + 9α2 + 32α + 48

3 · 2αΓ(α)α(α + 1)(α + 2)(α + 3)
,
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and

Jα

( a+b
2 )−

f (a) = Jα
( 1

2 )−
f (0) =

1
6Γ(α)

1
2∫

0

xα+2dx (22)

=
1

3 · 2α+4Γ(α)(α + 3)
.

By using equalities (20)–(22), it follows that

2α−1Γ(α + 1)
(b− a)α

[
Jα

( a+b
2 )+

f (b) + Jα

( a+b
2 )−

f (a)
]
− 1

6
f
[
(a) + 4 f

(
a + b

2

)
+ f (b)

]

=
−α3 − 6α2 − 5α + 12

48(α + 1)(α + 2)(α + 3)
:= Ψ3.

As one can see in Figure 2, the result of Example 2 is satisfied in the inequality (18).
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Figure 2. A graph computed and drawn in MATLAB program for the result of Example 2.

2.3. Simpson’s Type Inequalities of the Third Sense

Theorem 7. Under the assumptions of Theorem 5, we have the inequalities

(b− a)2α

6(α + 1)(α + 2)

[
m

α2 − α + 2
2α

−M
]

(23)

≤ Γ(α + 1)
2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2α

6(α + 1)(α + 2)

[
M

α2 − α + 2
2α

−m
]

.
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Proof. With the help of the change of variables, we have

Γ(α + 1)
2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]

(24)

=
α

2(b− a)α

 b∫
a

(b− x)α−1 f (x)dx +

b∫
a

(x− a)α−1 f (x)dx



=
α

2(b− a)α

b∫
a

[
(b− x)α−1 + (x− a)α−1

]
f (x)dx

=
α

2(b− a)α

b∫
a

[
(x− a)α−1 + (b− x)α−1

]
f (a + b− x)dx

=
α

(b− a)α

b∫
a

[
(x− a)α−1 + (b− x)α−1

]
[ f (x) + f (a + b− x)]dx

=
α

2(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

]
[ f (x) + f (a + b− x)]dx.

By the equality (24), we obtain

Γ(α + 1)
2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
(25)

=
α

2(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

]
[ f (x) + f (a + b− x)]dx− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
α

6(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

][
3 f (x) + 3 f (a + b− x)−

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]]
dx.

Multiplying the inequalities (14) by α
6(b−a)α

[
(x− a)α−1 + (b− x)α−1

]
and integrating

the resultant inequality with respect to x on
[

a, a+b
2

]
, it follows that
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α

6(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

](
M(b− x)(a− x) + 2m

(
a + b

2
− x
)2
)

dx

≤ α

6(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

](
3 f (x) + 3 f (a + b− x)− f (a)− 4 f

(
a + b

2

)
− f (b)

)
dx

≤ α

6(b− a)α

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

](
m(b− x)(a− x) + 2M

(
a + b

2
− x
)2
)

dx.

From (25) and the equality

a+b
2∫

a

[
(x− a)α−1 + (b− x)α−1

](
M(b− x)(a− x) + 2m

(
a + b

2
− x
)2
)

dx

=
(b− a)α+2

(α + 1)(α + 2)

[
α2 − α + 2

2α
m−M

]
,

we obtain

(b− a)2α

6(α + 1)(α + 2)

[
α2 − α + 2

2α
m−M

]

≤ Γ(α + 1)
2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

≤ (b− a)2α

6(α + 1)(α + 2)

[
α2 − α + 2

2α
M−m

]
.

This completes the proof of Theorem 7.

Remark 3. Let us consider α = 1 in Theorem 7. Then, Theorem 7 becomes Corollary 1.

Example 3. If we choose a function f : [a, b] = [0, 2] → R by f (x) = x3 + 1, then we obtain
m = 0 and M = 12. Let us consider the left and right sides of the double inequality (23). Then,
the following equalities hold:

(b− a)2α

6(α + 1)(α + 2)

[
m

α2 − α + 2
2α

−M
]
=

−8α

(α + 1)(α + 2)
:= Φ1

and
(b− a)2α

6(α + 1)(α + 2)

[
M

α2 − α + 2
2α

−m
]
=

4
(
α2 − α + 2

)
(α + 1)(α + 2)

:= Φ2.

The middle parts of inequalities (23) are as follows:

1
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
=

1
6
[ f (0) + 4 f (1) + f (2)] = 3, (26)
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Jα
a+ f (b) = Jα

0+ f (2) =
1

Γ(α)

2∫
0

(2− x)α−1
(

x3 + 1
)

dx (27)

=
2α+3

Γ(α)

[
3

α + 2
− 1

α + 3
+

9
8α
− 2

α + 1

]

=
2α
(
α3 + 6α2 + 11α + 54

)
Γ(α)α(α + 1)(α + 2)(α + 3)

.

Similarly, we can also obtain

Jα
b− f (a) = Jα

2− f (0) =
1

Γ(α)

2∫
0

xα−1
(

x3 + 1
)

dx =
2α(9α + 3)

(α + 1)(α + 2)(α + 3)
. (28)

By utilizing equalities (26)–(28), the following equality arises:

Γ(α + 1)
2(b− a)α

[
Jα
a+ f (b) + Jα

b− f (a)
]
− 1

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

=
2α3 − 14α + 12

(α + 1)(α + 2)(α + 3)
:= Φ3.

As one can see in Figure 3, the result of our appropriate choices in Example 3 is provided in the
double inequality (23).
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Figure 3. Graph for the result of Example 3, calculated and plotted in MATLAB program.

3. Conclusions

In the present paper, we prove some Simpson-type inequalities for Riemann–Liouville
fractional integral operators by utilizing the functions whose second derivatives are
bounded. Some examples that give a graphical illustration of our main results are presented.
With reference to our paper, other authors can try to find better bounds using functions
with conditions m ≤ f ′′(t) ≤ M for all t ∈ [a, b] instead of convexity in future studies.
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Moreover, by applying these results, researchers can obtain some new approaches in the
theory of optimization.
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