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Abstract: The spontaneous movement of natural motile cilia in the form of metachronal waves is
responsible for fluid transport. These cilia, in particular, play important roles in locomotion, feeding,
liquid pumping, and cell delivery. On the other hand, artificial cilia can be useful in lab-on-a-chip
devices for manipulation processes. In this study, a novel model for the ciliated tapered channel in
Sutterby fluid flow under the impact of an induced magnetic field and heat transport is proposed.
The Darcy–Brinkman–Forchheimer law for porous media with a viscous dissipation function is
considered. With the help of lubrication theory, the simplified non-linear form of the leading equation
with cilia-oriented boundary conditions is achieved. The analytical results of differential equations are
based on the topological perturbation approach. The numerical simulation is performed to elaborate
on the physical interpretations of emerging parameters through computer software.

Keywords: magnetic field; heat transport; Sutterby fluid; Darcy–Brinkman–Forchheimer law; ciliated
tapered channel; lubrication theory

MSC: 76M10

1. Introduction

Nature has created distinct mechanisms for producing fluid flow, most of which are
related to animal propulsion, such as swimming or flying. Significant examples at large
scales are the waving tails of fish and the flapping wings of birds. Flapping wings can
be found in insects at smaller scales as well. A mechanism of fluid manipulation used in
nature at tiny scales, usually sub-millimeter sizes, is that of flagella or cilia.

Cilia look like small hairs or flexible rods and are present in almost all mammalian
groups. They are usually divided into two more significant kinds: “motile” cilia and
“immotile” cilia. The two main functions of motile and immotile cilia are fluid flow
generation and detection, respectively. The asymmetric movements of motile cilia in a
concentrated fashion (back and forth) are instrumental in generating fluid flow. In this
study, we focused on motile cilia, which perform many physiological functions inside
the human body. For instance, these motile cilia are present in the fallopian tube, where
they are very crucial for ovum transport; in the ventricles and spinal cord of the adult
brain, where they help in the movement of polarized fluid, which is essential for neuronal
migration and the circulation of cerebrospinal fluid; and also in the airway, where they are
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necessary for mucus clearance. In 1962, Sleigh [1] also elaborated on the structure of cilia
and the diverse patterns of metachronal waves caused by the well-coordinated movement
of cilia. In the literature, the sublayer and envelope models are the two effective approaches
used to analyze fluid transport due to the systematic beating of cilia. The sublayer model is
useful for the computation of the average or instantaneous velocity at any point outside
or inside the cilia layer. Still, it is effective only for widely spaced cilia. Blake [2,3] was
the first to take the initiative to consider the sublayer model for the infinite plan wall
and also extend his work to two parallel walls. In contrast, the envelope model assumes
an envelope of cilia tip profiles, in which the cilia are closely packed together and very
effective at determining the velocity field outside the cilia layer. This model is very useful
in a variety of biological systems. Shack and Lardner [4] used an envelope-model approach
to investigate fluid transport in the ductus efferentes of the male reproductive tract due to
the symplectic pattern of a metachronal wave. Akbar and Akhtar [5] recently computed
mathematical results for the cilia-driven flow of the Phan–Thien–Tanner (PTT) fluid model
inside a channel.

Heat transport is the most exciting phenomenon in cilia-mediated physiological systems.
Heat-transfer effects may also substantially influence the viscoelastic fluid cilia motion across
a porous material. Convective heat transfer may be induced by the temperature differential
across the porous medium, which can impact the fluid flow and cilia motility. Moreover, heat
transmission may modify the viscoelastic fluid’s rheological parameters, which can affect the
cilia motility. Baetjer [6] investigated the impact of vapor pressure and temperature on the
clearance rate of the cilia mucus. The rate of cilia beating, mucus viscosity, cilia density, tem-
perature, and airway humidity are the key players in mucociliary transport [7]. Imran et al. [8]
developed a new mathematical model for the heat transport of cilia-oriented nanofluids
through a ciliated channel. The leading partial differential equations of the proposed mathe-
matical model have been found after utilizing the concept of boundary-layer approximation.
They also found the exact solution and represented it graphically. Further, their results are
very effective in helping to understand the ductus efferentes of the human male reproductive
tract. A recent article on Casson fluid and the constant temperature at the ciliated walls of the
elliptic duct was presented by Fuzhang et al. [9]. They noticed that a Newtonian fluid moves
faster than a non-Newtonian fluid in this elliptic duct with ciliated walls. Moreover, several
recent studies about cilia-driven flow can be seen in [10–12].

The application of a magnetic field has been reported to cause ciliary motility. The
interaction between the magnetic field and the microtubules inside the cilia causes magneto-
mechanical coupling, which causes cilia motion. Both in vitro and in vivo tests have shown
this phenomenon [13,14]. Microfluidic mixing and pharmaceutical fields are two uses of
magnetic-field-induced cilia motility. In microfluidic mixing, magneto-mechanical coupling
has been employed to create ciliary motion, resulting in fluid mixing in a microfluidic
channel. This technology can potentially be used in quick and effective fluid mixing in
various biological and chemical applications. Magnetic-field-induced cilia motility has
been investigated as a strategy for targeted medication delivery in drug delivery. This
application has the prospective to be used in treating a wide range of disorders, including
cancer, where customized medication delivery to the afflicted region may considerably
increase therapy effectiveness. Numerous scientists have investigated the potential uses
of magnetic-field-induced cilia motility. Siddique et al. [15] gave the theoretical results of
cilia-oriented flow in a tube. They chose a Newtonian fluid under the influence of MHD
and later on extended their investigations, particularly for the non-Newtonian Casson
fluid. Akbar et al. [16] discussed the creeping flow of copper–water nanofluids in a ciliated
parallel plate channel. They included the effects of a high Reynolds number and explained
their physical significance with the help of graphical results. Javid et al. [17] consider the
ciliated micro-channel (asymmetric) and investigated the effects of thermal slip, porosity,
magnetic field, and electro-osmosis on the nanofluids. They attained the exact solutions
of mathematically modeled equations and produced three-dimensional graphs for the
diverse emerging parameters of the considered problem for further discussion. Many
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researchers have utilized MHD [18–21] in various flows and geometries. On the other hand,
biomimetic artificial cilia are critical players in lab-on-a-chip devices for fluid manipulation.
They have several microfluidic applications, including particle manipulation, microsensors,
bacterium collection, droplets, microfluidic pumping, and self-cleaning microfluidic mixing.
Hanasoge et al. [22] elaborated on the motion of artificial magnetic cilia in a microchannel
loop that is crucial for flow visualization. Toonder and Mayne [23] also utilized the
microfluidic channel and discussed in detail the power of magnetic cilia in bacterium
collection and fluid mixing.

Many transportation processes via porous media are important in mechanical industries,
physiological processes, and engineering [24,25]. In the literature, different models such as
Darcy, Darcy–Forchecimer, and Brinkman-extended Darcy are utilized by researchers for
the study of porous media [26]. Akbar et al. [27] used the Darcy law for the creeping flow
inside the slippery ciliated tube. Manzoor et al. [28] investigated the effective properties of the
viscoelastic model (Jeffrey fluid) via a ciliated channel. They also included the effects of MHD,
porous media, and convective heat transfer, and they employed the Adomian decomposition
method (ADM) for mathematical solutions. Furthermore, Javid et al. [29] also considered a
porous medium with Jeffrey fluids and found the numerical solution for the divergent ciliated
channel with the aid of the BVP4C technique. Recently, Aich et al. [30] discussed the porosity
effects of hybrid nanofluids through a cilia-oriented cylindrical tube. Moreover, advancement
in the thermal and mechanical properties of human tissue that govern the biological process
is due to the utilization of fundamental engineering principles in the study of many heat- and
mass-transport applications in biology and medicine. Great interest has emerged in bioheat-
transfer phenomena during the last twenty years, with a particular focus on therapeutic and
diagnostic applications. Depending on advanced computational techniques, the establishment
of mathematical models has increased the ability to study many types of the bioheat-transfer
process [31–35]. Usman et al. [36] considered the Williamson fluid through a ciliated channel
and utilized the concept of Darcy–Forchheimer for porous media with heat transfer.

The primary attention is to study the cilia-oriented, induced MHD flow of a Sutterby
fluid via an asymmetric tapered channel, which is yet to be available in the literature. This
current effort is devoted to filling this gap. In addition, the Darcy–Brinkman–Forchheimer
law has been utilized for a porous medium with a viscous dissipation function. Temperature
maintenance has a significant importance in physiological flows, especially in cilia-oriented
flows. Moreover, the investigation of heat transport is also part of this study. The homotopy
perturbation solutions of non-dimensional equations have been found with the support of
“Mathematica” software. The pictorial results of different emerging parameters are also
elaborated along with their physical interpretations.

2. Modeling of Sutterby Fluid in a Cilia-Oriented Asymmetric Tapered Channel

Assume that an incompressible Sutterby fluid is moving through a non-Darcy porous
medium in the presence of a magnetic field. The geometry of the problem has a specific
significance in physiological flow. Therefore, we consider an asymmetric tapered channel
whose walls are cilia-oriented and moving towards the right as a metachronal wave with a
constant speed c. Moreover, Cartesian coordinates (X̃, Ỹ) are assumed, the direction of flow
in a tapered channel is parallel to the X̃ axis, and the Ỹ axis is perpendicular to the flow
direction. The cilia-oriented asymmetric tapered channel’s lower and upper walls with
temperatures T̃0 and T̃1 are sustained, respectively, as presented in Figure 1.

The following is a well-defined Cauchy stress tensor for a Sutterby fluid:

τ̃ = − p̃Ĩ + S̃, (1)

in which S̃ is the extra stress tensor. For a Sutterby fluid its mathematical form is presented as [37]

S̃ = µ̃

 sinh−1
(

D
.

Ω
)

D
.

Ω

m

∆̃ ∼=
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µ
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(
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)2
]

˜
∆, (2)
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∆̃ =
(
∇Ṽ
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Figure 1. Geometry of the cilia-oriented tapered channel. 
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Figure 1. Geometry of the cilia-oriented tapered channel.

here p̃, Ĩ, µ̃, D, and m are the symbols that signify the pressure, identity matrix,
viscosity, and material constants, respectively. Equations (3) and (4) define the deformation
tensor and the second invariant strain tensor, respectively. In the case of two-dimensional
flow, Equation (2) in component form becomes:

S̃X̃X̃ = 2µ̃
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∂Ũ
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The rheological equations that govern the Sutterby flow in the existence of a body
force are stated below.

∇ · Ṽ = 0, (9)
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0 = ∇ · B̃, J̃ = σ̃
(

Ẽ + Ṽ× B̃
)

_
µ J̃ = ∇× B̃,− ∂B̃

∂t̃
= ∇× Ẽ

, (12)

where Ṽ = [Ũ(X̃, Ỹ, t̃), Ṽ(X̃, Ỹ, t̃), 0] is the velocity field, ρ is the density of the fluid, ϕ̃ is
the porosity parameter, t̃ is the time, C̃ is the Forchheimer coefficient, K̃ is the permeability,
ξ̃ is the specific heat, ϑ̃ is the heat flux vector, which is defined as ϑ̃

(
= −k̂dT/dt̃

)
, σ̃ is the

electric conductivity,
_
µ is the magnetic permeability, J̃ = J̃1 + J̃0 is the total current density,

which is the sum of the induced and applied current density, and similarly, B̃ = B̃0 + B̃1
and Ẽ = Ẽ0 + Ẽ1 are the total magnetic and electric fields, respectively. Now, by considering
the high Reynolds number approximation for the incorporation of an induced magnetic
field, which is due to the induced currents J̃1, then the advection of the magnetic field is
also dominant and thus Ẽ1 = B̃1 = J̃1 6= 0 and the induction equations can be written
as follows:

∇×
(

Ṽ× B̃
)
+ ζ̃ ∇2B̃ =

∂B̃
∂t̃

, (13)

here ζ̃ = 1
_
µ σ̃

is the magnetic diffusivity. By utilizing the value of J̃1 with the use of Ampere’s

law rather than Ohm’s law, we obtain

J̃ =
1
_
µ

(
∇× B̃1

)
+ σ̃

(
Ẽ0 + Ṽ× B̃0

)
, (14)

where the transverse constant applied magnetic field for two-dimensional flow yields

B̃0 =
[
0, B̃0, 0

]
, Ẽ0 =

[
0, 0, Ẽ

]
,

B̃1 =
[

B̃1

(
X̃, Ỹ, t̃

)
, B̃2

(
X̃, Ỹ, t̃

)
, 0
]
,

Ẽ1 =
[
0, 0, Ẽ3

(
X̃, Ỹ, t̃

)]
,

. (15)

Thus, the expression for the Lorentz force takes the form [38,39]:

J̃× B̃ =

−
(

B̃0 + B̃2

)
×
{

σ̃
(
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_
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∂Ỹ
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,
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(
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)
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_
µ

(
∂B̃2
∂X̃
− ∂B̃1

∂Ỹ

)}
. (16)

By ignoring the B̃1 (i.e., the induced magnetic field), Equation (16) can be recast as

J̃× B̃ = [σ̃
(

Ẽ + ŨB̃0

)
, 0]. (17)

The cilia-assisted flow has been analyzed by utilizing the sublayer model or the
envelope model. Here, we consider the envelope model for the tapered channel; thus, the
mathematical expression for the cilia tip envelope can be defined as [40]

Ỹ = H̃l = F̃1

(
X̃, t̃
)
= −

(
a + X̃ tan γ

)
+ aε̃ cos 2

[
− ϕ

4 + π
λ

(
X̃− ct̃

)]
Ỹ = H̃up = F̃2

(
X̃, t̃
)
= a + X̃ tan γ + aε̃ cos 2

[
ϕ
4 + π

λ

(
X̃− ct̃

)] , (18)

where H̃l and H̃up represent the lower and upper walls, respectively, of the cilia-oriented
asymmetric tapered channel, γ is an inclined angle for unperturbed walls, c is the speed, λ
is the wavelength of the metachronal wave, ε̃ is the non-dimensional measure concerning
the cilia length, and ϕ is the phase difference. As reported by Sleigh, the movement of the
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cilia tips in an elliptical path is such that the mathematical expression for the horizontal
position of the cilia tips can be represented by

X̃ = ω̃ε̃a sin
[(

X̃− ct̃
)2π

λ

]
+ X̃0 = F̃0

(
X̃0, X̃, t̃

)
, (19)

where ω̃ and X̃0 represent the measure of the eccentricity of the elliptic path and the
reference position of the cilia, respectively. The horizontal and vertical velocities of the cilia
positions at X̃0 are introduced as follows

Ũ =
∂F̃0

∂t̃

∣∣∣∣∣X̃0
=

∂F̃0

∂X̃
∂X̃
∂t̃

+
∂F̃0

∂t̃
=

∂F̃0

∂X̃
Ũ +

∂F̃0

∂t̃
, (20)

Ṽ = ∂F̃1
∂t̃

∣∣∣X̃0
= ∂F̃1

∂X̃
∂X̃
∂t̃

+ ∂F̃1
∂t̃

= ∂F̃1
∂X̃

Ũ + ∂F̃1
∂t̃

,

Ṽ = ∂F̃2
∂t̃

∣∣∣X̃0
= ∂F̃2

∂X̃
∂X̃
∂t̃

+ ∂F̃2
∂t̃

= ∂F̃2
∂X̃

Ũ + ∂F̃2
∂t̃

. (21)

Substituting Equation (19) into (20) and Equation (18) into (21) provides the alternative
form of the velocity components, as follows:

Ũ =
2acω̃ε̃π cos

[
2π
λ

(
X̃− ct̃

)]
2aω̃ε̃π cos

[
2π
λ

(
X̃− ct̃

)]
− λ

, (22)

Ṽ = ±
2acε̃π

(
sin
[

ϕ
2 ±

2π
λ

(
X̃− ct̃

)]
+ ω̃ cos

[
2π
λ

(
X̃− ct̃

)]
tan γ

)
2aω̃ε̃π cos

[
2π
λ

(
X̃− ct̃

)]
− λ

. (23)

Now, we are introducing some dimensionless terms as follows:

x = X̃
λ , y = Ỹ

a , t = ct̃
λ , pm = a2 p̃m

cλµ , u = Ũ
c , S = a

µ̃c S̃, v = Ṽ
δc , δ = a

λ , hx = B̃1
B̃0

,

hy = B̃2
B̃0

, E = Ẽ
B̃0c

, θ = T̃−T̃s
T̃0−T̃s

, hl =
H̃l
a , hup =

H̃up
a ,

. (24)

Here, p̃m is the modified pressure, which is defined as p̃m = p̃ +

{(
B̃1

)2
+
(

B̃2

)2
}

/2µ̃.

Now, with the help of Equation (24), the leading Equations (9)–(12) in dimensionless form
can be inscribed as:

ϕ̃−1Reδ
(

∂u
∂t + ϕ̃−1u ∂u

∂x + ϕ̃−1v ∂u
∂y

)
= − ∂pm

∂x + δ ∂
∂x (Sxx) +

∂
∂y
(
Sxy
)
−
(

Fr
√

u2 + δ2v2
)

u

− u
Da

{
1− η

((
∂u
∂y + δ2 ∂v

∂x

)2
+ 2
[(

∂u
∂x

)2
+
(

∂v
∂y

)2
]

δ2
)}

−M2(1 + hy
){

E + u + 1
Rm

(
δ

∂hy
∂x −

∂hx
∂y

)}
,

(25)
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,

(26)
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ϕ̃−1RePrδ
(

∂θ
∂t + ϕ̃−1u ∂θ

∂x + ϕ̃−1v ∂θ
∂y

)
= Br

[(
∂u
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)2
δ2 + 1

2
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∂x δ2 + ∂u
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∂y
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∂v
∂y
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(
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δ2
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+
(

δ2∂2θ
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u2 + δ2v2

(
u2 + δ2v2)
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Da

{
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(
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∂x

)2
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(

∂v
∂y

)2
]
+
(

∂u
∂y + δ2 ∂v

∂x

)2
)}(

u2 + δ2v2),
(27)

∂

∂y
(
u
(
hy + 1

)
− δvhx

)
+

1
Rm

(
∂2hx

∂y2 + δ2 ∂2hx

∂x2

)
= δ

∂hx

∂t
, (28)

∂

∂x
(
u
(
hy + 1

)
− δvhx

)
− 1

Rm

(
∂2hx

∂y2 + δ2 ∂2hx

∂x2

)
= −

∂hy

∂t
, (29)

where hx and hy denote the magnetic force functions, which can be written as: hx = ∂φ
∂y ,

hy = −δ
∂φ
∂x , respectively, and some new dimensionless parameters that are introduced in

Equations (25)–(27) are:

Re = ρac
µ̃ , Fr =

ρFca2
√

K̃µ̃
, Da = K̃

a2 , M2 = σ̃a2 B̃2
0

µ̃

η = mD2c2

6a2 , Pr = µ̃ξ̃

k̂
, Ec = c2

ξ̃(T̃0−T̃s)
, Br = PrEc

. (30)

Here, Re is the Reynolds number, Fr is the Forchheimer number, Da is the Darcy
number, M is the Hartman number, η is the Sutterby fluid parameter, Pr is the Prandtl
number, Ec is the Eckert number, and Br is the Brinkmann number.

Finally, we employed the lubrication approach in Equations (25)–(29), which leads to:

∂pm

∂x
=

∂

∂y
(
Sxy
)
− Fru2 − u

Da

{
1− η

(
∂u
∂y

)2
}
−M2

{
E + u− 1

Rm

(
∂hx

∂y

)}
, (31)

∂pm

∂y
= 0, (32)

u = − 1
Rm

(
∂hx

∂y

)
, (33)

∂2θ
∂y2 + Br

(
∂u
∂y

)2
{

1− η
(

∂u
∂y

)2
}
+ Br

Da

{
1− η

(
∂u
∂y

)2
}

u2 + BrFru3 = 0,
(34)

where
Sxx = 0,

Sxy = Syx = ∂u
∂y

{
1− η

(
∂u
∂y

)2
}

Syy = 0,

. (35)

Further, the boundary condition in dimensionless form can be written as:

u
∣∣∣y=hl

= u
∣∣∣y=hup = 2aω̃ε̃πδ cos[2π(x−t)]

2aω̃ε̃πδ cos[2π(x−t)]−1

v
∣∣∣ y=hl

= ∂hl
∂t , v

∣∣∣ y=hup =
∂hup

∂t

, (36)

θ
∣∣∣y=hl

= 1, θ
∣∣∣y=hup = Γ

}
, (37)
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where Γ denotes the temperature ratio.

3. Analytical Results
Now, we will determine the series solutions of Equation (31) by utilizing the well-

known homotopy perturbation method [41]. For Equation (31), the homotopy can be
constructed as:

^
H
(
v, β̂
)
=
(
1− β̂

)(
L̂r(v)− L̂r(v0)

)
+ β̂

 L̂r(v)− 3η ∂2u
∂y2

(
∂u
∂y

)2
− Fr

(
u2)

− u
Da

{
1− η

(
∂u
∂y

)2
}
−M2(E + 2u)− ∂pm

∂x

, (38)

here β̂ ∈ [0, 1] is the embedding parameter and L̂r is the linear operator, which is defined as:

L̂r =
∂2

∂y2 . (39)

Furthermore, their initial guess and the perturbation expansion are defined as follows:

v0 = (y− hl)
(
y− hup

)
+ N, where N =

2aω̃ε̃πδ cos[2π(x− t)]
2aω̃ε̃πδ cos[2π(x− t)]− 1

, (40)

v =
_
v 0 + β̂

_
v 1 + β̂2_v 2 + . . . (41)

Substituting Equation (41) in Equation (31) gives us the system of differential equations
with their boundary conditions as follows:

a. The zero-order system and its solution:

L̂r

(
_
v 0

)
− L̂r(v0) = 0, also

_
v 0 = N at y = hl , y = hup. (42)

_
v 0 = (y− h1)(y− h2) + N (43)

b. The first-order system and its solution:

L
(
_
v 1

)
+ 2− 3γ ∂2_v 0

∂y2

(
∂
_
v 0

∂y

)2
−

_
v 0
Da

{
1− η

(
∂
_
v 0

∂y

)2
}
− Fr

_
v

2
0 − 2M2_v 0 −M2E− ∂pm

∂x = 0,

also,
_
v 1 = 0 at y = hl , y = hup.

(44)

_
v 1 = 1

60Da (hl − y)
(
hup − y

)

×



−5
(
h2

l − 3hl hup + h2
l − 6N +

(
hl + hup

)
y− y2

)
+

h4
l − 5h3

l hup − 5hl h3
up + h4

up − 10h2
l N

−10h2
up N +

(
hl + hup

)(
h2

l + 14hl hup
)

+h2
up + 20Ny−

(
3
(
3hl + hup

)(
hl + 3hup

)
+ 20N

)
y2 + 16

(
hl + hup

)
y3 − 8y4

η+

Da


Fr



h4
l − 5h3

l hup + 10h2
l h2

up
−5hl h3

up + h4
up − 10h2

l N + 30hl hup − 10h2
up N + 30N2+(

hl + hup
)(

h2
l − 6hl hup + h2

up − 10N
)

y +
(

h2
l + 10hl hup + h2

up + 10N
)

y2−

4
(
hl + hup

)
y3 + 2y4 + 10

 3
(
−2 + dpm

dx

)
+ M2

(
3E− h2

l + 3hl hup − h2
up

+6N −
(
hl + hup

)
y2

)
+

6
(

h2
l + h2

up − 2
(
hl + hup

)
y + 2y2

)










.
(45)

c. The second-order system and its solution:

L
(
_
v 2

)
− 3η ∂

∂y

[(
∂
_
v 0

∂y

)2
∂
_
v 1

∂y

]
−
(

ṽ1
Da

{
1− η

(
∂
_
v 0

∂y

)2
}
− 1

Da 2η ∂
_
v 0

∂y
∂
_
v 1

∂y

)
− 2Fr

_
v 0

_
v 1 − 2M2_v 1 = 0,

with,
_
v 2 = 0 at y = hl , y = hup,

(46)
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_
v 2 =

_
v 2,0 +

_
v 2,1y +

_
v 2,2y2 +

_
v 2,3y3 +

_
v 2,4y4 +

_
v 2,5y5 +

_
v 2,6y6 +

_
v 2,7y7 +

_
v 2,8y8 +

_
v 2,9y9 +

_
v 2,10y10, (47)

and so on.
Finally, we achieved the desired solution of the differential Equations (42)–(47) up to

the second order by taking β̂→ 1, which leads to

u = v =
_
v 0 +

_
v 1 +

_
v 2 + . . . (48)

Now, Equation (48) is utilized in Equation (34) and we have

θ = ψ0 + ψ1y + ψ2y2 + . . . + ψ40y40, (49)

where (
_
v 2,0−

_
v 2,10) in Equation (47) and (ψ0−ψ40) in Equation (49) are the list of constants,

which can also be found by utilizing the “Mathematica” software.
In fixed frame, the mathematical expression for the instantaneous flow rate is

given below

Q =
∫ hup

hl

u(x, y, t) dy. (50)

In addition, the non-dimensional form of the current density in terms of the magnetic
force function can be inscribed as:

Jz +
∂2φ

∂y2 = Rm(E + u), (51)

with the following boundary conditions

φ
∣∣∣y=hl

= 0, φ
∣∣∣y=hup = 0. (52)

The expression of the pressure-rise term can be evaluated numerically as:

∆pm =

1∫
0

dpm

dx
dx. (53)

4. Pictorial Representation and Discussion

In this section, we discuss the effects of different physical parameters that are based
on the graphical results of the axial velocity (u), temperature (θ), magnetic force function
(φ), induced magnetic field (hx),magnitude of current density (Jz), and pressure rise (∆p).
Moreover, a further discussion on trapping phenomena is also part of this section.

4.1. Velocity Profiles

The influences of M, η, γ, ω̃, Da, Fr, and ε̃ on the axial velocity are depicted in Figure 2a–
g, respectively. Figure 2a illustrates that as we increase the influence of the Hartman number
(M) by taking some non-negative values, the velocity of the cilia-driven flow slowly declines in
the central area of the cilia-oriented asymmetric tapered channel and rises closer to the walls. It
is noticeable because (M) is the ratio of electromagnetic forces to viscous forces, which creates
a drag-like resistive force to slow down the velocity of the fluid. Consequently, the velocity
profile shows a decreasing behavior. Moreover, in Figure 2b–d, the same situation occurred
for diverse values of the Sutterby fluid parameter (η), inclined angle (γ), and eccentricity
parameter (ω̃). From Figure 2e, it is noticed that the velocity increases in the core region
and slows down near the walls of a ciliated tapered channel for several values of the Darcy
number (Da). Accordingly, we can say that large values of (Da) create less resistance, which
means more permeability, which is in favor of the fluid flow. Likewise, in Figure 2f the velocity
of the fluid is enhanced when the Forchheimer number (Fr) is elevated. In Figure 2g, when
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we elevate the cilia length (ε̃)the velocity profile shows some hindrance in the middle of the
cilia-oriented asymmetric tapered channel but close to the walls, its behavior is quite different.
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Figure 2. Fluctuations in velocity profile (u) for diverse physical parameters (a) Hartman number
(b) Sutterby fluid (c) inclined angle (d) eccentricity parameter (e) Darcy number (f) Forchheimer
number (g) cilia length.
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4.2. Magnetic Force Function

Variations in the magnitude of the magnetic force function for all emerging parameters
are demonstrated in Figure 3a–h. It can be noticed that in the central area of the cilia-
oriented asymmetric tapered channel, the magnetic force function progressively decreases
due to the non-negative values of the Hartman number (M), Sutterby fluid parameter (η),
and eccentricity parameter (ω̃), as shown in Figure 3a–c. On the other hand, quite different
behavior is observed for the magnetic force function when the magnetic Reynolds number
(Rm) is elevated, and it is defined as the ratio of magnetic advection to magnetic diffusion.
Therefore, higher (Rm) increase the magnetic permeability, which is why the graph of
magnetic force function goes up, as exposed in Figure 3d. Similarly, in Figure 3e–f we can
easily observe that in the core region of the ciliated channel the magnetic force function
increases with increasing Darcy number (Da) and Forchheimer number (Fr). Figure 3g–h
illustrate diverse values of the inclined angle (γ) and cilia length (ε̃). We found that large
values of inclined angle (γ) also increase the amount of magnetic force function, as shown
in Figure 3g, but the quite opposite behavior is noticed in the case of (ε̃).

4.3. Magnetic Field Characteristics

The magnetic field characteristics for altered values of the Hartman number (M) and
magnetic Reynolds number (Rm) are exposed in Figure 4a,b. It is observed that the induced
magnetic field decreases in the region (y < 0) but increases in the region (y > 0) when (M)
increases. However, in Figure 4b, the behavior of the induced magnetic field increases in
the region (y ≺ 0) and decreases in the region (y � 0) when (Rm) is elevated. Moreover,
these types of dual behavior of the induced magnetic field are noticed for the Sutterby
fluid (η), Darcy number (Da), Forchheimer number (Fr), eccentricity (ω̃), and inclined angle
(γ), as shown in Figure 4c–g. From Figure 4h, it can be seen that the power of an induced
magnetic field decreases over the whole domain when the cilia length (ε̃) increases.

4.4. Current Density

The variation in the current density profile against several emerging parameters are
depicted in Figure 5a–i. These graphs have a parabolic shape and show almost the same
trend as we already discussed for the velocity profile. Thus, we can see that the enormous
value of the Hartman number (M), the Sutterby parameter (η), and the inclined angle (γ)
are opposing the current density near the central area of the channel but are supportive
near the channel boundaries, as displayed in Figure 5a–c. We can notice that the rising
values of the eccentricity (ω̃) parameter have no significant impacts on the profile of current
density, as depicted in Figure 5d. From Figure 5e,f, it can be realized that enormous values
of the Darcy number (Da) and Forchheimer number (Fr) both support the magnitude of the
current density at the core part of the channel while behaving differently at the boundaries
of the channel. Due to the elevated values of the electric field (E) and the magnetic Reynolds
number (Rm) the profiles of the current density are raised dramatically, as demonstrated in
Figure 5g,h. Figure 5i illustrates the influence of the cilia length (ε̃) on the current density.
It can be noticed that as we increase the value of (ε̃)the magnitude of the current density
shows hindrance near the maximal portion of the channel but the lower and upper portion
of the channel behave completely differently from each other.
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Figure 4. Fluctuations in induced magnetic fields (hx) for diverse physical parameters. (a) Hartman
number (b) Reynolds number (c) Sutterby fluid parameter (d) Darcy number (e) Forchheimer number
(f) eccentricity parameter (g) inclined angle (h) cilia length.

4.5. Pressure Rise

In this subsection, we analyze the pumping characteristics of the entire flow region.
Figure 6 shows that the relationship between the pressure differential and volumetric flow
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rate is inversely proportional, which means that the pressure increases yield bigger values
for lower volumetric rates and vice versa. The pressure differential is likewise greater for
the absent time-averaged flow rate. All of the deviations, however, are linearly dependent.
Figure 6a–g is illustrated to check the influences of diverse physical parameters such as
the Hartman number (M), Sutterby fluid parameter (η), inclined angle (γ), Darcy number
(Da), cilia length (ε̃), Forchheimer number (Fr), and eccentricity (ω̃) on the pressure-rise
profile. From Figure 6a, the impact of the Hartman number (M) for different values shows
that the pumping rate increases in the region (−0.4 < Q ≤ −1) but declines in the region
(−0.4 < Q ≤ −1). On the other hand, the pumping rate rises in the region (−1 ≤ Q < 0)
but is opposite in the region (0 < Q ≤ 1) for diverse values of the Sutterby fluid parameter
(η), as shown in Figure 6b. Figure 6c also shows the identical behavior of pressure rise for
different values of the inclined angle (γ). In Figure 6d,e, we note the uniformly decreasing
behavior of the pressure rise for numerous values of the Darcy number (Da) and cilia length
(ε̃) throughout the pumping region. Moreover, Figure 6f,g denote the increasing behavior
of the pressure rise for higher values of the Forchheimer number (Fr) and eccentricity
parameter (ω̃), respectively.
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4.6. Temperature Profiles

Figure 7a–e, are plotted to evaluate the effects of the Brinkman number (Br), Darcy
number (Da), Sutterby fluid parameter (η), Forchheimer number, and temperature ratio on
the temperature profile. It can be noticed in Figure 7a that as we increase the Brinkman
number values, the temperature enriches throughout the entire region. As the Brinkman
number is the product of the Prandtl number and the Eckert number, its higher values
weaken the conduction process due to viscous dissipation, and the temperature profile
gradually looks like a parabolic shape. The variation in the temperature profile is notable
for diverse values of the Darcy number (Da) in Figure 7b. It has been found that less
heat is generated for large values of (Da). This behavior is physically justified because
when we progress from a porous medium toward a non-porous medium, there will be less
friction between the fluid and the porous medium. Consequently, the temperature profile
declined. Furthermore, in Figure 7c, a similar situation of temperature profile has been
found for dissimilar values of the Sutterby fluid parameter (η). From Figure 7d,e, it can be
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observed that the temperature profile is enriched with a higher Forchheimer number (Fr)
and temperature ratio (Γ), respectively.
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4.7. Trapping Phenomena

In this subsection, we discuss the very fascinating phenomenon of trapped boluses of
fluid with the help of streamlines, as depicted in Figures 8–14. The streamlines have been
plotted with the help of the stream function ψ and they are defined as:

Ũ =
∂ψ

∂Ỹ
, Ṽ = − ∂ψ

∂X̃
. (54)
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This is the most fascinating mechanism in peristaltic phenomena. It is the creation of
the fluid’s internally circulating bolus circumscribed by the streamlines. The confined bolus
is pushed by the peristaltic waves. The formation of wall eddies as the width of the channel
rises can be easily observed. When the peristaltic feature is weak, the eddies begin to
disengage from the walls, relying only on kinematic principles. The obtained flow pattern
is determined by the direction of wave propagation. As the parameters are changed, the
pressure field varies, causing variations and the formation of multiple eddies. For instance,
when the pressure field and the peristaltic motion converge in the same direction, the eddies
grow and approach the centerline, giving birth to the trapping mechanism. In Figure 8, it
can be observed that the boluses are initially expanded in size when the Hartman number
(M) is elevated. In Figures 9 and 10, conflicting behavior is observed for diverse values of
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the Sutterby fluid (η) and Forchheimer (Fr) numbers. In Figure 11, we observed that the
number of trapped boluses ascended in size and number for diverse values of the Darcy
number (Da). Figure 12 shows that the number of boluses diminished with the inclined
angle (γ), but in Figure 13 there are no significant changes found in trapped boluses when
the eccentricity (ω̃) is prominent. Lastly, we can observe the number of boluses increases
when the cilia length (ε̃) is elevated, as depicted in Figure 14.

5. Conclusions

In this theoretical study, we consider the asymmetric tapered-channel geometry with
ciliated walls. The study is based on the cilia-driven MHD flow of a Sutterby fluid with
non-Darcy resistance as well as heat-transfer phenomena. After some suitable dimension-
less parameters, the leading equations in dimensionless form have been found. Further,
lubrication theory is introduced for mathematical simplifications. A very interesting proce-
dure, the homotopy perturbation method (HPM), has been adopted for the solutions of
non-dimensional governing equations with appropriate boundary conditions. Throughout
the study, the computational software “Mathematica” has been utilized for the mathemati-
cal, numerical, and pictorial results. Some useful outcomes we achieved from this study
are given below:

• An increasing behavior of the velocity, current density, and magnetic force function
profiles is observed due to the elevated values of the Darcy and Forchheimer numbers,
while the Sutterby parameter and Hartman number show the converse trends.

• The increasing values of the eccentricity parameter have almost negligible influences
on the velocity, current density, and magnetic force function profiles.

• The velocity and current density profiles gradually slow down in the center for rising
values of the inclined angle, while the opposite pattern in the case of the magnetic
force function throughout the region has been observed.

• The increasing values of cilia length slow down the magnetic force function effects
and the velocity and current density show some hindrance in the central regions but
show different behavior near the walls.

• The magnitude of the magnetic force function grows more quickly when the magnetic
Reynolds number is elevated.

• The current density magnitude is found to increase with higher values of the electric
field and magnetic Reynolds number.

• Every graph of the induced magnetic field has dual behavior or two opposite trends
for all physical parameters except the cilia length parameter.

• With increasing values of the Brinkman number, temperature ratio, and Forchheimer
number, an increase in temperature is observed, while a decrease in the temperature
magnitude is observed for both the Darcy and Sutterby parameters.

• From streamlined patterns, it can be seen that boluses diminish randomly for the
Sutterby fluid parameter, inclined angle, and Hartman number but are enriched by
the influence of the cilia length and Darcy number.

• No significant changes occur in streamlines for the eccentricity parameter, and boluses
expand for elevated values of the Forchheimer number.

• In addition, we can also deduce the mathematical result for the Newtonian fluid by
taking m = 0.
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