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Abstract: KLFCM is a clustering algorithm proposed by introducing K-L divergence into FCM, which
has been widely used in the field of fuzzy clustering. Although many studies have focused on
improving its accuracy and efficiency, little attention has been paid to its convergence properties and
parameter selection. Like other fuzzy clustering algorithms, the output of the KLFCM algorithm
is also affected by fuzzy parameters. Furthermore, some researchers have noted that the KLFCM
algorithm is equivalent to the EM algorithm for Gaussian mixture models when the fuzzifier λ is
equal to 2. In practical applications, the KLFCM algorithm may also exhibit self-annealing properties
similar to the EM algorithm. To address these issues, this paper uses Jacobian matrix analysis to
investigate the KLFCM algorithm’s parameter selection and convergence properties. We first derive a
formula for calculating the Jacobian matrix of the KLFCM with respect to the membership function.
Then, we demonstrate the self-annealing behavior of this algorithm through theoretical analysis
based on the Jacobian matrix. We also provide a reference strategy for determining the appropriate
values of fuzzy parameters in the KLFCM algorithm. Finally, we use Jacobian matrix analysis to
investigate the relationships between the convergence rate and different parameter values of the
KLFCM algorithm. Our experimental results validate our theoretical findings, demonstrating that
when selecting appropriate lambda parameter values, the KLFCM clustering algorithm exhibits
self-annealing properties that reduce the impact of initial clustering centers on clustering results.
Moreover, using our proposed strategy for selecting the fuzzy parameter lambda of the KLFCM
algorithm effectively prevents coincident clustering results from being produced by the algorithm.

Keywords: KLFCM clustering algorithm; Jacobian matrix; convergence properties analysis;
self-annealing

MSC: 68T10

1. Introduction

Clustering and fuzzy-based clustering have become popular techniques in data mining
and machine learning due to their ability to identify patterns and group similar data points
without the need for training data [1,2]. Clustering algorithms are a type of unsupervised
approach where data are partitioned into subgroups based on their similarities or distances
from each other [3]. The partition matrix represents the degree of membership of each
data point in each cluster [4]. Since Zadeh [5] introduced the fuzzy set theory, the hard
clustering algorithm was extended to the FCM (Fuzzy C-means) clustering algorithm
in [6]. Clustering algorithms can be applied to a wide range of applications, such as image
segmentation, customer segmentation, and anomaly detection.

In the literature, there are numerous improvements to the FCM algorithm that aim
to address various clustering problems or enhance clustering performance [7–11]. The
KLFCM (FCM with K-L information term) algorithm is one of the more well-known
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methods. Honda and Ichihashi proposed a modified objective function for Fuzzy c-Means
(FCM) clustering that includes a regularizer based on K-L information [7]. In KLFCM, a
regularization term based on the K-L divergence metric is added to the objective function
to encourage cluster centers to be spaced further apart. The K-L divergence is used to
measure the difference between two probability distributions, however, it can be used to
measure the degree of separation between two cluster centers in this case. By including
the regularization term, the algorithm ensures that the distance between cluster centers
is maximized, which can help prevent the formation of overlapping clusters and ensure
the resulting clusters are well separated. This algorithm has such unique characteristics
that it has inspired the development of many clustering algorithms based on its principles,
which have been proposed in the research literature. Honda applied probabilistic principal
component analysis (PCA) mixture models to linear clustering and proposed a constrained
model KLFCV [12]. Gharieb and Gendy [13] modified the regularization term of the
original KLFCM algorithm using the Kullback–Leibler (KL) divergence, which measures
the proximity between a pixel membership and the local average of this membership in
the immediate neighborhood. Zhang et al. [14] combined the benefits of KLFCM and
Student’s t-distribution to propose a new algorithm for image segmentation. A novel image
segmentation algorithm based on KLFCM is proposed in [15] to increase the ability to
overcome noise and describe the segmentation uncertainty. Amira et al. [16] incorporated
conditional probability distributions and the probabilistic dissimilarity functional into the
conventional KLFCM algorithm and proposed a new model called CKLFCM.

While numerous clustering methods based on the KLFCM algorithm have been pro-
posed in the literature, few provide clear explanations for how and why this algorithm
works. Furthermore, there is a lack of theoretical research into its convergence properties
and optimal parameter selection. Similar to the FCM clustering algorithm, the degree of
fuzziness in KLFCM’s membership values is regulated by the fuzzifier parameter. Larger
values lead to fuzzier memberships [17], which can result in coincident clustering when
fuzziness approaches infinity. In our research, “coincident clustering result” refers to a
specific type of coincident clustering where all cluster centers coincide with the dataset’s
mass center and merge into a single center, resulting in a loss of clustering information
and decreased accuracy in data partitioning. Hence, selecting the proper fuzzifier value is
crucial for obtaining accurate clustering results. Nevertheless, the use of KL divergence
as a penalty term in the algorithm helps prevent the overlapping of the cluster centers
by spreading them throughout the data space. Consequently, theoretically, the algorithm
can eliminate overlap between the dataset’s mass center and all cluster centers. We have
addressed the parameter selection of the clustering algorithm by using Jacobian matrix
analysis in previous papers [18–21]. In these papers, we revealed the relationship between
the stable fixed points of the clustering algorithm and the datasets using Jacobian matrix
analysis. In [18], we provided an explanation of the self-annealing behavior observed in
the EM algorithm for Gaussian mixtures, along with the initialization lower bound of the
temperature parameter in the DA-EM algorithm. In addition, Ref. [21] demonstrated that
coincident clustering results are not stable fixed points of the GG clustering algorithm
and discussed the correlation between the clustering algorithm’s convergence rate and the
fuzziness index. In this paper, we further analyze the parameter selection and convergence
properties of the KLFCM clustering algorithm through Jacobian matrix analysis, building
on our previous work.

The primary contributions of this paper can be summarized as follows:

• Firstly, we constructed the Jacobian matrix of the KLFCM algorithm regarding the
membership function. Then, we provided theoretical proof for the self-annealing
property of the KLFCM algorithm.

• We discussed the reference methods for selecting fuzzy parameters in practical applica-
tions of the KLFCM algorithm. Specifically, we talked about how to choose appropriate
values for the parameters’ lambda to ensure poor clustering results are avoided.
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• Additionally, similar to the Hessian matrix, the Jacobian matrix can be utilized to
estimate the convergence rate of an algorithm. Since computing the Jacobian matrix
is simpler than computing the Hessian matrix, the third contribution of this paper is
to estimate the convergence rate of the KLFCM algorithm under different parameter
conditions using the Jacobian matrix.

• Finally, we conducted experiments to verify the accuracy and effectiveness of the
theoretical derivation.

The experimental results indicate that the fuzzy parameter lambda has a significant
impact on the clustering outcome of the algorithm, and inappropriate parameter selection
can result in poor clustering performance. The research also demonstrates that the coin-
cident clustering solution is not a stable fixed point of the KLFCM algorithm. Therefore,
under certain parameter conditions (i.e., where the chosen λ results in the spectral radius
of the Jacobian matrix at the coincident clustering center being greater than 1), even if
the initial clustering center selection is suboptimal, the algorithm may still produce good
clustering results. Meanwhile, we used the spectral radius of the Jacobian matrix to esti-
mate the convergence rate of the KLFCM algorithm under different parameter conditions
in the experiment and further explained the relationship between the parameters and
convergence rate.

In this research, we provide an introduction to the KLFCM clustering algorithm with a
brief overview in Section 2. We then analyze the Jacobian matrix and discuss the theoretical
behavior of the KLFCM algorithm in Section 3. To validate our theoretical findings, we
present various experimental results in Section 4. Additionally, we include a discussion on
the experimental outcomes in Section 5. Finally, we summarize our research in Section 6.

2. The KLFCM Clustering Algorithm

This section provides a concise overview of the KLFCM clustering algorithm.
Firstly, we focus on the original FCM clustering algorithm. Let X = {x1, · · · , xk} ∈ Rs

be a dataset from an s-dimensional Euclidean space. The aim of clustering is to find
structure in data and cluster n data points to c clusters. The assignment of all items to the
clusters is determined by their membership values, indicating the degree to which each
item belongs to each cluster. The membership matrix U = [uik]c×n represents these values,
where uik denotes the membership value of the ith data sample for the jth cluster. It should
be noted that all membership values must adhere to the following constraints:

uik ≥ 0, ∀i, j and
c

∑
i=1

uik = 1

We denote the set of fuzzy partition matrices as

M f c =

{
U = [uik]c×n|∀i, ∀k, uik ≥ 0, n >

n

∑
k=1

uik > 0,
c

∑
i=1

uik = 1

}
.

The objective function of the FCM algorithm [6] is formulated as follows:

Jm(U, V) =
n

∑
k=1

c

∑
i=1

um
ikd2

ik (1)

where U ∈ M f cn and dik = ‖xk − vi‖ = ((xk − vi)
T(xk − vi))

1/2 is the Euclidian distance
from the kth object xk to the ith cluster center vi. m is the weighting exponent which
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determines the degree of fuzziness and 1 < m < +∞. The necessary conditions for
optimality of (1) are derived as follows: ∀i = 1, · · · , c and ∀k = 1, · · · , n

vi =

n
∑

k=1
um

ik xk

n
∑

k=1
um

ik

(2)

uik =
‖xk − vi‖

−2
m−1

c
∑

j=1

∥∥xk − vj
∥∥ −2

m−1

(3)

Miyamoto et al. [22] proposed the introduction of an entropy term and a positive
parameterλ, resulting in the minimization of a new objective function Jλ(U, V) instead of
Jm(U, V). This approach is commonly known as entropy regularization.

Jλ(U, V) =
n

∑
k=1

c

∑
i=1

uikd2(xk, vi)+λ
n

∑
k=1

c

∑
i=1

uik log uik (4)

The objective function of the FCM clustering method with regularization by K-L
information (KLFCM) is obtained by substituting the entropy term in Equation (4) with
K-L information. The objective function is given by the following equation:

Jklfcm(U, V) =
c

∑
i=1

n

∑
k=1

uikdik + λ
c

∑
i=1

n

∑
k=1

uik log
uik
αi

+
c

∑
i=1

n

∑
k=1

uik|Fi| (5)

where αi represents the proportion of samples belonging to the ith cluster. In the KLFCM
algorithm, the Mahalanobis distance is utilized to quantify the dissimilarity between each
data point and the cluster centers during the clustering process. The Mahalanobis distance
takes into account the covariance structure of the data, which makes it a more precise
distance measure than Euclidean distance. By considering the distribution of the data
and the correlation between variables, it can provide better estimates of similarity or
dissimilarity between data points. The formula for the Mahalanobis distance is as follows:

dik = (det Fi)
−1 exp

[
−(xk − vi)

T F−1
i (xk − vi)

]
The objective funciton of KLFCM (5) is minimized under the condition that αi > 0 ,

∑c
i=1 αi = 1 ∑c

i=1 uik = 1, respectively. Then, the updating rules in the KLFCM clustering
algorithm are as follows:

vi =
∑n

k=1 uikxk

∑n
k=1 uik

(6)

uik =
αi(dik)

1
λ

∑c
i=1 αi(dik)

1
λ

(7)

αi =
1
n

n

∑
k=1

uik (8)

Fi =
∑n

k=1 uik(xk − vi)(xk − vi)
T

∑n
k=1 uik

(9)

where dik = (det Fi)
−1 exp

[
−(xk − vi)

T F−1
i (xk − vi)

]
. The KLFCM clustering algorithm

is equivalent to the Expectation-Maximization (EM) algorithm with Gaussian Mixture
Models (GMMs) only when the value of λ is equal to 2. This relationship between the two
algorithms is well established in the literature.
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The KLFCM Algorithm is summarized in Algorithm 1:

Algorithm 1: KLFCM algorithm.
Step 1: Assuming a fixed number of clusters and parameter value, with 2 ≤ c ≤ n
and λ selected, an initial matrix u(0) =

(
u(0)

1 , . . . , u(0)
i

)
, i = 1, · · · , c ∈ M f c is

chosen. The algorithm starts at t = 1.
Step 2: Calculate the cluster centers v(t) using u(t−1) through the utilization of
Equation (6). The notation v(t) denotes the cluster centers obtained in the tth
iteration, while u(t−1) represents the membership matrix from the previous t−1th
iteration of the clustering algorithm.
Step 3: Calculate the cluster covariance matrix F(t) and the matrix α(t) by applying
Equation (9) for F(t) and Equation (8) for α(t) in the iterative process of the
KLFCM algorithm.
Step 4: Using Equation (7), revise the membership matrix u(t) by incorporating the
current cluster centers v(t) in the iterative procedure of the KLFCM algorithm.
Step 5: if

∥∥∥u(t) − u(t−1)
∥∥∥ < ε then stop, otherwise return to Step 2.

For a better understanding of the impact of the fuzzy parameter λ on the output
results of the KLFCM algorithm, we conducted experiments using the Iris dataset as
the experimental object to observe the clustering results obtained by selecting different
fuzzy parameters. In the clustering results, we used ∗ (green asterisks),4 (red triangles),
and ? (blue pentagrams) to represent sample points that belong to different clusters. The
sample cluster centers were represented by black circles  . In the use of the KLFCM
clustering algorithm, it is generally necessary to initialize the cluster centers and member-
ship matrix of the algorithm. To accomplish this task, we utilize the K-means clustering
algorithm for initialization. Specifically, we use the K-means clustering algorithm to divide
the sample data into k clusters and use each cluster’s centroid as the initial cluster center in
the KLFCM algorithm. Additionally, based on the K-means clustering results, we calculate
the distance between each sample point and the various cluster centers, which allows us to
establish the initial membership matrix in the KLFCM algorithm.

The simulation shown in Figure 1 highlights the importance of choosing an appropriate
value for the parameter λ in the KLFCM clustering algorithm. The results demonstrate
that different values of λ can lead to significantly different clustering outcomes, and a poor
choice of λ can result in an invalid or uninformative clustering solution. When λ is set
to 2 or 4, reasonable clustering outcomes are obtained with low error counts of 5 and 44,
respectively. This indicates that the algorithm was able to produce meaningful clusters with
acceptable levels of misclassification. However, when λ is improperly initialized to 8 or 36,
as illustrated in Figure 1e,f, the clustering algorithm fails to produce informative results.
Specifically, the algorithm outputs a single cluster, which indicates that the clustering
solution is invalid and uninformative.

Following that, we manually designate the initial class center of the KLFCM algorithm
under identical conditions regarding the fuzzy parameter. The initial cluster centers are
closely situated to each other, but there is no complete overlap. Then we will apply the
KLFCM algorithm to cluster the Itis dataset and display the clustering results in Figure 2.
We use # (magenta circles) to represent the initial cluster centers.

The initial cluster centers are already tightly close to each other (however, it is not com-
pletely overlapping). Even with poor initial clustering center selection, the algorithm can
still prevent convergence towards overlapping clustering centers as long as the fuzzy pa-
rameter λ is appropriately chosen. That means the KLFCM clustering algorithm possesses
the capability of evading these kinds of erroneous clustering outcomes, which highlights
its potential self-annealing properties. When the fuzzy parameter λ is set to 2, the KLFCM
clustering algorithm delivers satisfactory clustering results despite the less-than-ideal initial
clustering center. However, when the fuzzy parameter λ is set to 5, the KLFCM clustering
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algorithm fails to prevent producing clustering results in which all samples are assigned
to a single class. The self-annealing property refers to the ability of an algorithm to adapt
and improve its performance without explicit external intervention. In the context of
the KLFCM clustering algorithm, it means that the algorithm has the ability to adjust its
parameters during the iterative process to achieve better clustering results. The algorithm
seems to “self-anneal” toward a more meaningful clustering outcome, even when the initial
parameter selection may be inappropriate.

In the upcoming section, we will perform a theoretical analysis of the KLFCM cluster-
ing algorithm using Jacobian matrix analysis.

(a) λ = 2 (b) λ = 3 (c) λ = 4

(d) λ = 5 (e) λ = 8 (f) λ = 36

Figure 1. KLFCM Clustering Results with Different λ for Iris Dataset.

(a) λ = 2 (b) λ = 3

Figure 2. Cont.
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(c) λ = 4 (d) λ = 5

Figure 2. KLFCM Clustering Results with Inappropriate Cluster Center Initialization for Iris Dataset.

3. Convergence and Parameter Analysis Based on Jacobian Matrix

It is a well-known fact that when partitioning a dataset into clusters, each cluster
should have distinct centers from the others. Otherwise, if all degrees of membership
between samples and any clustering center are equal, it would imply that we cannot
meaningfully divide the dataset into subsets based on the membership matrix. Similarly, in
the case of the KLFCM algorithm, we would expect it to circumvent this potential drawback;
otherwise, it cannot be considered successful as a clustering algorithm.

As we mentioned in Section 2, the KLFCM cluster centers and membership values of
the data points with them are updated through the following iterations.

v(t)i =
∑n

k=1 u(t−1)
ik xk

∑n
k=1 u(t−1)

ik

(10)

α
(t)
i =

1
n

n

∑
k=1

u(t−1)
ik (11)

F(t)
i =

∑n
k=1 u(t−1)

ik

(
xk − v(t)i

)(
xk − v(t)i

)T

∑n
k=1 u(t−1)

ik

(12)

u(t)
ik =

αi

(
d(t)ik

) 1
λ

∑c
i=1 αi

(
d(t)ik

) 1
λ

(13)

where d(t)ik =
(

det F(t)
i

)−1
exp

[
−
(

xk − v(t)i

)T(
F(t)

i

)−1(
xk − v(t)i

)]
. v(t)i and u(t)

ik are the

ith cluster center and membership value of kth sample for the ith cluster obtaind in the tth
iteration, and so on.

We considering the KLFCM clustering algorithm as a map U(t) = θ(U(t−1)) =

H
(

G(U(t−1))
)

, where the mapping function G : U = [uik]c×n ∈ M f c 7→ V = (v1, v2, . . . , vc)
T

∈ Rc×s and F : V = (v1, v2, . . . , vc)
T ∈ Rc×s 7→ U = [uik]c×n ∈ M f c satisty V(t) = G(U(t−1))

and U(t) = H(V(t)). Then U(t), t = 1, . . . , n, . . . is called the iteration sequence or convergent
sequence of the KLFCM algorithm. If the iteration sequence converges to a point U∗ ∈ Ω, this
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point should be a fixed point of the algorithm which satisfies U∗ = θ(U∗). Set the convergence
domain of the KLFCM clustering algorithm as

Ω =
{

U∗ ∈ M f c|Jkl f cm(U∗, G(U∗)) ≤ Jkl f cm(U, G(U∗)), ∀U ∈ M f c, U 6= U∗

and(U∗, G(U∗)) < Jkl f cm(U∗, G(U)), ∀G(U) ∈ Rc×s, G(U) 6= G(U∗)
}

Clearly, if the iteration process is starting from a point U(0) ∈ M f c, then the iteration
process will terminate at a point in the convergence domain, or there is a subsequence
converges to a point in Ω.

If the initial membership matrix is U = U∗ = [c−1]c×n ∈ M f c, then the KLFCM

clustering centers are equal to the mass center of the dataset vi = x̄ =
n
∑

k=1
xk/n, ∀i. In

next iteration, we still get x̄ and U = [c−1]c×n. That is,
(

x̄, U = [c−1]c×n
)

is actually the
fixed point of the KLFCM algorihtm. If the KLFCM algorithm converges to this point,
the algorithm will fail to produce meaningful clusters. Moreover, if

(
x̄, U = [c−1]c×n

)
is a

stable fixed point of KLFCM clustering algorithm, this clustering algorithm will not escape
from this point. Of course, this kind of situation should be avoided.

The KLFCM clustering result may be heavily influenced by the parameter value of λ,
such as shown in Figure 1. However, the KLFCM clustering algorithm can avoid outputting
the coincident clustering result in

(
x̄, U = [c−1]c×n

)
, which means it is not a stable fixed

point of the algorithm. Next, we address the convergence and parameter analysis of
the KLFCM clustering algorithm using the Jacobian matrix. Our theoretical analysis is
based on Olver’s Corollary [23]. According to Olver ([23], p. 143), for Jacobian matrix
g′(µ∗) = dg(µ)

dµ |µ=µ∗ ., if the spectral radius (i.e., the maximum of absolute eigenvalues of
the matrix) r(g′(µ∗)) is less than one, then the fixed point µ∗ is asymptotically stable. That
is, for KLFCM, if spectral radius of the Jacobian matrix ∂θ(U)

∂U at point U = [c−1]c×n is not
less than 1, then

(
x̄, U = [c−1]c×n

)
is not a stable fixed point of the clustering algorithm.

Next, we construct the formula for the element of the Jacobian matrix. The element
∂θik
∂ujr

,i = 1, · · · , c,k = 1, · · · , n, j = 1, · · · , c− 1,r = 1, · · · , n of Jacobian matrix is obtained
by taking the derivations of θik with respect to ujr.

Theorem 1. For i = 1, · · · , c , k = 1, · · · , n and j = 1, · · · , c− 1, r = 1, · · · , n, each element of
Jacobian matrix ∂θik

∂ujr
is

∂θik
∂ujr

= −
uikujk

λnαj

(
Hj
)

kr +
uikuck
λnαc

(Hc)kr +
δijuik

λnαi
(Hi)kr (14)

where
(

Hj
)

kr = λ + s−
(
xr − vj

)T F−1
j
(

xr − vj
)
+
[(

xk − vj
)T F−1

j
(
xr − vj

)]2

−
(

xk − vj
)T F−1

j
(

xk − vj
)
+ 2
(
xr − vj

)T F−1
j
(
xk − vj

)
and δij =

{
1 , i f i = j
0 , i f i 6= j

is the Kro-

necker delta function.

Proof. Each element of the Jacobian matrix is obtained as follows:

∂θik
∂ujr

=
(∑c

i=1 αi(dik)
1
λ ) ∂αi(dik)

1
λ

∂ujr(
∑c

i=1 αi(dik)
1
λ

)2 −
αi(dik)

1
λ

(
∂ ∑c

i=1 αi(dik)
1
λ

∂ujr

)
(

∑c
i=1 αi(dik)

1
λ

)2
(15)
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Recall that the membership matrix of the KLFCM clustering algorithm satisfies
c
∑

i=1
uik = 1,

thus, we have:

∂θik
∂ujr

=

∂αi(dik)
1
λ

∂ujr

∑c
i=1 αi(dik)

1
λ

−

αi(dik)
1
λ

 ∂

(
∑c−1

i=1 αi(dik)
1
λ

)
∂ujr

+
∂

(
αi(dck)

1
λ

)
∂ujr


(

∑c
i=1 αi(dik)

1
λ

)2

=
δij

∂αi
∂ujr

(dik)
1
λ

∑c
i=1 αi(dik)

1
λ

+
δijαi

∂(dik)
1
λ

∂ujr

∑c
i=1 αi(dik)

1
λ

−
αi(dik)

1
λ

(
djk

) 1
λ

n
(

∑c
i=1 αi(dik)

1
λ

)2

−
αiαj(dik)

1
λ

∂(djk)
1
λ

∂ujr(
∑c

i=1 αi(dik)
1
λ

)2 +
αi(dik)

1
λ (dck)

1
λ

n
(

∑c
i=1 αi(dik)

1
λ

)2 +
αiαc(dik)

1
λ

∂(dck)
1
λ

∂ucr(
∑c

i=1 αi(dik)
1
λ

)2

(16)

For each element in Equation (16), we can get following result by simple computation:

δij
∂αi
∂ujr

(dik)
1
λ

∑c
i=1 αi(dik)

1
λ

+
δijαi

∂(dik)
1
λ

∂ujr

∑c
i=1 αi(dik)

1
λ

=
δij(dik)

1
λ

n ∑c
i=1 αi(dik)

1
λ

−
δijαi

1
λ (dik)

1
λ

∑c
i=1 αi(dik)

1
λ

∂(det Fi)

det Fi∂ujr

−
1
λ δijαi(dik)

1
λ

∑c
i=1 αi(dik)

1
λ

(xk − vi)
T

∂
(

F−1
i

)
∂ujr

(xk − vi)

+
2δijαi

1
λ (dik)

1
λ

∑c
i=1 αi(dik)

1
λ ∑n

k=1 uik

(xr − vi)
T F−1

i (xk − vi)

αiαj(dik)
1
λ

∂(djk)
1
λ

∂ujr(
∑c

i=1 αi(dik)
1
λ

)2 =
2 1

λ αiαj(dik)
1
λ

(
djk

) 1
λ(

∑c
i=1 αi(dik)

1
λ

)2
∑n

k=1 ujk

(
xr − vj

)T F−1
j
(

xk − vj
)

−
1
λ αiαj(dik)

1
λ

(
djk

) 1
λ(

∑c
i=1 αi(dik)

1
λ

)2

(
xk − vj

)T ∂F−1
j

∂ujr

(
xk − vj

)
−

1
λ αiαj(dik)

1
λ

(
djk

) 1
λ(

∑c
i=1 αi(dik)

1
λ

)2

(
det Fj

)−1 ∂ det Fj

∂ujr

αiαc(dik)
1
λ

∂(dck)
1
λ

∂ucr(
∑c

i=1 αi(dik)
1
λ

)2 =
2 1

λ αiαc(dik)
1
λ (dck)

1
λ(

∑c
i=1 αi(dik)

1
λ

)2
∑n

k=1 uck

(xr − vc)
T F−1

c (xk − vc)

−
1
λ αiαc(dik)

1
λ (dck)

1
λ(

∑c
i=1 αi(dik)

1
λ

)2 (xk − vc)
T ∂F−1

c
∂ucr

(xk − vc)−
1
λ αiαc(dik)

1
λ (dck)

1
λ(

∑c
i=1 αi(dik)

1
λ

)2 (det Fc)
−1 ∂ det Fc

∂ucr
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We have that Fi =
∑n

k=1 uik(xk−vi)(xk−vi)
T

∑n
k=1 uik

, so

∂F−1
i

∂uir
= −F−1

i
∂Fi
∂uir

F−1
i = −F−1

i
(xr − vi)(xr − vi)

T

∑n
k=1 uik

F−1
i +

F−1
i

∑n
k=1 uik

∂ det Fi
∂uir

= det Fi

(
(xr − vi)

T F−1
i (xr − vi)

∑n
k=1 uik

− s
∑n

k=1 uik

)

Finally, we substitute the above equations into Equation (16). Then the element of the
KLFCM Jacobian matrix can be rewritten as

∂θik
∂ujr

=
δij(dik)

1
λ

n ∑c
i=1 αi(dik)

1
λ

−
δijαi

1
λ (dik)

1
λ

det Fi ∑c
i=1 αi(dik)

1
λ

(
det Fi

(
(xr − vi)

T F−1
i (xr − vi)

∑n
k=1 uik

− s
∑n

k=1 uik

))

−
1
λ δijαi(dik)

1
λ

∑c
i=1 αi(dik)

1
λ

(xk − vi)
T

(
−F−1

i
(xr − vi)(xr − vi)

T

∑n
k=1 uik

F−1
i +

F−1
i

∑n
k=1 uik

)
(xk − vi)

+
2δijαi

1
λ (dik)

1
λ

∑c
i=1 αi(dik)

1
λ ∑n

k=1 uik

(xr − vi)
T F−1

i (xk − vi)

−
αi(dik)

1
λ

(
djk

) 1
λ

n
(

∑c
i=1 αi(dik)

1
λ

)2 −
2 1

λ αiαj(dik)
1
λ

(
djk

) 1
λ(

∑c
i=1 αi(dik)

1
λ

)2
∑n

k=1 ujk

(
xr − vj

)T F−1
j
(

xk − vj
)

+

1
λ αiαj(dik)

1
λ

(
djk

) 1
λ(

∑c
i=1 αi(dik)

1
λ

)2

(
xk − vj

)T
(
−F−1

j

(
xr − vj

)(
xr − vj

)T

∑n
k=1 ujk

F−1
j +

F−1
j

∑n
k=1 ujk

)(
xk − vj

)

+

1
λ αiαj(dik)

1
λ

(
djk

) 1
λ

det Fj

(
∑c

i=1 αi(dik)
1
λ

)2

det Fj

(xr − vj
)T F−1

j
(
xr − vj

)
∑n

k=1 ujk
− s

∑n
k=1 ujk


+

αi(dik)
1
λ (dck)

1
λ

n
(

∑c
i=1 αi(dik)

1
λ

)2 +
2 1

λ αiαc(dik)
1
λ (dck)

1
λ(

∑c
i=1 αi(dik)

1
λ

)2
∑n

k=1 uck

(xr − vc)
T F−1

c (xk − vc)

−
1
λ αiαc(dik)

1
λ (dck)

1
λ(

∑c
i=1 αi(dik)

1
λ

)2 (xk − vc)
T

(
−F−1

c
(xr − vc)(xr − vc)

T

∑n
k=1 uck

F−1
c +

F−1
c

∑n
k=1 uck

)
(xk − vc)

−
1
λ αiαc(dik)

1
λ (dck)

1
λ

det Fc

(
∑c

i=1 αi(dik)
1
λ

)2

(
det Fc

(
(xr − vc)

T F−1
c (xr − vc)

∑n
k=1 uck

− s
∑n

k=1 uck

))
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We further simplify the formula and get

∂θik
∂ujr

=
δijuik

nαi
−

δijuik

λ

(
(xr − vi)

T F−1
i (xr − vi)

∑n
k=1 uik

− s
∑n

k=1 uik

)

−
δijuik

λ
(xk − vi)

T

(
−F−1

i
(xr − vi)(xr − vi)

T

∑n
k=1 uik

F−1
i +

F−1
i

∑n
k=1 uik

)
(xk − vi)

+
2δijuik

λ ∑n
k=1 uik

(xr − vi)
T F−1

i (xk − vi)−
uikujk

nαj
−

2uikujk

λ ∑n
k=1 ujk

(
xr − vj

)T F−1
j
(

xk − vj
)

+
uikujk

λ

(
xk − vj

)T
(
−F−1

j

(
xr − vj

)(
xr − vj

)T

∑n
k=1 ujk

F−1
j +

F−1
j

∑n
k=1 ujk

)(
xk − vj

)
+

uikujk

λ

(xr − vj
)T F−1

j
(
xr − vj

)
∑n

k=1 ujk
− s

∑n
k=1 ujk


+

uikujk

nαc
+

2uikuck
λ ∑n

k=1 uck
(xr − vc)

T F−1
c (xk − vc)

− uikuck
λ

(xk − vc)
T

(
−F−1

c
(xr − vc)(xr − vc)

T

∑n
k=1 uck

F−1
c +

F−1
c

∑n
k=1 uck

)
(xk − vc)

− uikuck
λ

(
(xr − vc)

T F−1
c (xr − vc)

∑n
k=1 uck

− s
∑n

k=1 uck

)

=
δijuik

λnαi

(
λ + s− (xr − vi)

T F−1
i (xr − vi) + 2(xr − vi)

T F−1
i (xk − vi)

−(xk − vi)
T
(
−F−1

i (xr − vi)(xr − vi)
T F−1

i + F−1
i

)
(xk − vi)

)

−
uikujk

λnαj

 λ + s−
(

xr − vj
)T F−1

j
(
xr − vj

)
+ 2
(
xr − vj

)T F−1
j
(
xk − vj

)
−
(

xk − vj
)T
(
−F−1

j
(
xr − vj

)(
xr − vj

)T F−1
j + F−1

j

)(
xk − vj

)


+
uikuck
λnαc

(
λ + s− (xr − vc)

T F−1
c (xr − vc) + 2(xr − vc)

T F−1
c (xk − vc)

−(xk − vc)
T
(
−F−1

c (xr − vc)(xr − vc)
T F−1

c + F−1
c

)
(xk − vc)

)

Set
(

Hj
)

kr = λ + s−
(
xr − vj

)T F−1
j
(
xr − vj

)
+
[(

xk − vj
)T F−1

j
(

xr − vj
)]2

−
(

xk − vj
)T F−1

j
(

xk − vj
)
+ 2
(
xr − vj

)T F−1
j
(
xk − vj

)
. Then each element in the Jacobian

matrix is:
∂θik
∂ujr

= −
uikujk

λnαj

(
Hj
)

kr +
uikuck
λnαc

(Hc)kr +
δijuik

λnαi
(Hi)kr

The proof is completed.

Now, we get a general form for the Jacobian matrix. To discuss the theoretical
behavior of the KLFCM clustering algorithm, we should consider the Jacobian matrix
∂θ(U)

∂U at the special point U = [c−1]c×n. We define a notation as follows: For any matrix
M = (m1, · · · , mq)p×q,vec(M) = (mT

1 , · · · , mT
q )

T .

Theorem 2. Each element of Jacobian matrix ∂θ(U)
∂U at the special point U = [c−1]c×n is

∂θik
∂ujr
|∀i,k,uik=c−1 =

δij

nλ

(
AT A

)
kr

(17)

where



Mathematics 2023, 11, 2285 12 of 22

A =


√

λ · · ·
√

λ√
2σ

− 1/2
X (x1 − x̄) · · ·

√
2σ

− 1/2
X (xn − x̄)

vec
(

σ
− 1/2
X (x1 − x̄)(x1 − x̄)Tσ

− 1/2
X − Is

)
· · · vec

(
σ
− 1/2
X (xn − x̄)(xn − x̄)Tσ

− 1/2
X − Is

)


and x = ∑n
k=1 xk

/
n,σx = n−1 ∑n

k=1 (xk − x)(xk − x)T , δijis the Kronecker delta function.

Proof. If U = [c−1]c×n, then uik = 1
c , vi =

∑n
k=1 xk

n = x and Fi =
∑n

k=1 (xk−x)(xk−x)T

n = σx.
Thus, the Jacobian matrix at this special point becomes

∂θik
∂ujr
|∀i,k,uik=c−1

=
δijλ

nλ
−

δij

λn
(xr − x̄)Tσ−1

X (xr − x̄) +
δijs
λn

+
δij

nλ

[
(xk − x̄)Tσ−1

X (xr − x̄)
]2

−
δij

nλ
(xk − x̄)Tσ−1

X (xk − x̄) +
2δij

λn
(xr − x̄)T F−1

i (xk − x̄)

=
δij

nλ

 −(xr − x̄)Tσ−1
X (xr − x̄) + λ + s + 2(xr − x̄)T F−1

i (xk − x̄)

+
[
(xk − x̄)Tσ−1

X (xr − x̄)
]2
− (xk − x̄)Tσ−1

X (xk − x̄)


=

δij

nλ

 λ + 2(xr − x̄)T F−1
i (xk − x̄)− (xr − x̄)Tσ−1

X (xr − x̄) + s

+
[
(xk − x̄)Tσ−1

X (xr − x̄)
]2
− (xk − x̄)Tσ−1

X (xk − x̄)



(18)

Consider that tr(aTb) = tr(bTa) where a and b are column vectos, also we have tr(ABC) =
tr(BCA) = tr(CAB) for matrices A, B, and C, the following equations can be obtianed by
simple computation:

(xr − x̄)Tσ−1
X (xr − x̄)=tr

(
σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X

)

(xk − x̄)Tσ−1
X (xk − x̄)=tr

(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X

)
[
(xk − x̄)Tσ−1

X (xr − x̄)
]2

= (xr − x̄)Tσ−1
X (xk − x̄)(xk − x̄)Tσ−1

X (xr − x̄)

=

(
(xr − x̄)Tσ

− 1
2

X

)(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X

)(
σ
− 1

2
X (xr − x̄)

)

= tr

(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X

)
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Equation (18) can be further simplified as

∂θik
∂ujr
|∀i,k,uik=c−1

=
δij

nλ



λ + 2(xr − x̄)T F−1
i (xk − x̄)− tr

(
σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X

)

+tr(Is) + tr

(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X

)

−tr

(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X

)


=

δij

nλ

 λ + 2(xr − x̄)T F−1
i (xk − x̄)

+tr

((
σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X − Is

)(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X − Is

)) 

=
δij

nλ


λ + 2(xr − x̄)T F−1

i (xk − x̄)

+tr

(σ
− 1

2
X (xr − x̄)(xr − x̄)Tσ

− 1
2

X − Is

)T(
σ
− 1

2
X (xk − x̄)(xk − x̄)Tσ

− 1
2

X − Is

)


The trace of the matrix AT B can be interpreted as tr(AT B) = ∑n
i=1 ∑n

j=1 aijbij, where aij and
bij denote the element of row i and column j in An×n and Bn×n

respectively. Moreover, we have that vec(A) = [a11, . . . , an1, a12, . . . , an2 . . . , a1n, . . . , ann]
T

and
vec(B) = [b11, . . . , bn1, b12, . . . , bn2 . . . , b1n, . . . , bnn]

T . It implies that tr(AT B) =

∑n
i=1 ∑n

j=1 aijbij, where aij and bij = vec(A)T × vec(B)T . Finally, we have

∂θik
∂ujr
|∀i,k,uik=c−1 =

δij

nλ

(
λ + 2(xr − x̄)Tσ−1

X (xk − x̄)

+vec
(

σ−
1/2

X (xk − x̄)(xk − x̄)Tσ−
1/2

X − Is

)T
× vec

[(
σ−

1/2
X (xr − x̄)(xr − x̄)Tσ−

1/2
X − Is

)])
Let

H

=

 λ + 2(xr − x̄)Tσ−1
X (xk − x̄)

+vec
(

σ−
1/2

X (xk − x̄)(xk − x̄)Tσ−
1/2

X − Is

)T
× vec

[(
σ−

1/2
X (xr − x̄)(xr − x̄)Tσ−

1/2
X − Is

)] 
We have that(

AT A
)

kr
=
[
λ + 2(xr − x̄)Tσ−1

X (xk − x̄)

+vec
(

σ−
1/2

X (xk − x̄)(xk − x̄)Tσ−
1/2

X − Is

)T
× vec

[(
σ−

1/2
X (xr − x̄)(xr − x̄)Tσ−

1/2
X − Is

)]]
= (H)kr

Then the element in the Jacobian matrix ∂θ(U)
∂U at the special point U = [c−1]c×n is

∂θik
∂ujr
|∀i,k,uik=c−1 =

δij

nλ
(H)kr =

δij

nλ

(
AT A

)
kr

The proof is completed.
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We have mentioned that the spectral radius of the Jacobian matrix can reflect the
theoretical behavior of the algorithm. For KLFCM algorithm, if the spectral radius of the
Jacobian matrix ∂θ(U)

∂U at point
(

x̄, U = [c−1]c×n
)

is not less than 1, then it is not a stable
fixed point of the algorithm. Next, we focus on the spectral radius of the Jacobian matrix
calculated by Equation (17).

Theorem 3. Let r∗ denote the spectral radius of Jacobian matrix ∂θ
∂U |∀i,k,uik=c−1 , then we have that

r∗ ≥ 1.

Proof. Because of the eigenvalues of matrix AT A are equal to the eigenvalues of matrix
AAT , the spectral radius of matrix AAT is the same as that of AT A. That is, the spectral
radius of Jacobian matrix ∂θ

∂U |∀i,k,uik=c−1 is equal to the spectral radius of symmetric matrix
1

nλ

(
A× AT) computed by Equation (19).

1
nλ

(
A× AT

)
=

1
nλ

 L11 L12 L13
L21 L22 L23
L31 L32 L33

 =
1

nλ

 λn 0 0
0 2n× Is L23
0 L32 L33

 (19)

where

L11 = λn, L12 =
√

2λ ∑n
k=1 (xk − x̄)Tσ

−1/2
X = 0

L13 =
√

λ∑n
k=1 vec

[
σ
−1/2
X (xk − x̄)(xk − x̄)Tσ

−1/2
X − Is

]T
= 0

L12 = LT
21, L13 = LT

31, L22 = 2 ∑n
k=1 σ

−1/2
X (xk − x̄)(xk − x̄)Tσ

−1/2
X = 2n× Is

L23 =
√

2∑n
k=1 σ

−1/2
X (xk − x̄)× vec

[
σ
−1/2
X (xk − x̄)(xk − x̄)Tσ

−1/2
X − Is

]T

L23 = LT
32

L33 =
n

∑
k=1

vec
[
σ
−1/2
X (xk − x̄)(xk − x̄)Tσ

−1/2
X − Is

]
× vec

[
σ
−1/2
X (xk − x̄)(xk − x̄)Tσ

−1/2
X − Is

] T

It is true that for the symmetric matrix 1
nλ

(
A× AT), the following statement holds.

kmax

(
1

nλ

(
A× AT

))
= max

x 6=0

xT
(

1
nλ

(
A× AT))x

xTx
.

where the symbol kmax represents the maximum eigenvalue of the matrix. Let
e(i) = {0, . . . , 1, . . . , 0} is a vector in which the ith element is one and other elements
are zero. Obviously, we have the following inequality holds:

max
x 6=0

xT
(

1
nλ

(
A× AT))x

xTx
≥

[
e(i)
]T( 1

nλ

(
A× AT))e(i)[

e(i)
]Te(i)

=

(
1

nλ

(
A× AT

))
ii

.

Based on the above analysis, we can conclude that r∗ ≥ 1.

The study reveals that the coincident clustering results
(
x̄, U = [c−1]c×n

)
are not

stable fixed points of the KLFCM algorithm. As an example, when analyzing the Iris
dataset, inappropriate selection of the fuzziness parameter may lead to all data points
being assigned to a single cluster in the clustering result, as shown in Figure 1. Despite this
clustering outcome being incorrect, the KLFCM algorithm avoids outputting the coincident
clustering result, where all cluster centers are equal to the sample mean.
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4. Experimental Results

In this section, we validate our theoretical results through experimental examples. We
use both artificial and real datasets to demonstrate that the KLFCM clustering algorithm
may exhibit self-annealing properties when selecting a suitable fuzzy parameter λ. We
calculate the spectral radius of the Jacobian matrix at the coincident clustering result for
the KLFCM algorithm under different lambda parameter conditions. A spectral radius
greater than 1 indicates that the coincident clustering result is not a stable fixed point of
the clustering algorithm. In addition, we found that the spectral radius of the Jacobian
matrix can be applied in analyzing the convergence rate of the KLFCM algorithm. In
all examples, the results of the K-means algorithm are used as the initialization for the
KLFCM clustering algorithm. Let r∗ denote the spectral radius of Jacobian matrix ∂θ

∂U at
point

(
x̄, U = [c−1]c×n

)
. Subsequently, we conducted this experiment through a MATLAB

model running on Windows 11 with the version of MATLAB being R2022a.

Example 1. First, we synthesized GMM data with three clusters. The mixing proportions, mean
values, and variances are listed in Table 1. The total number of data points is 300. The artificial
dataset named Data-art is shown in Figure 3a. Data points generated from different models are
denoted by different shapes, such as ∗ (green),4 (red) and ? (blue).

Table 1. Mixing Proportions, Means Values and Variances of Gaussian Mixture Models to Gener-
ate Data-art.

Mixing Proportions Mean Values Variances

α1 = 1/3 m1 = (1, 1, 2)
∑1 =


1 0 0

0 1 0

0 0 1


α2 = 1/3 m2 = (5, 3, 0.5)

∑1 =


0.5 0 0

0 0.1 0

0 0 1


α3 = 1/3 m3 = (2, 6, 5)

∑1 =


0.5 0 0

0 0.1 0

0 0 2



After initializing the KLFCM clustering algorithm with manually given cluster centers,
we choose different λ values to observe their influence on the clustering result. The
clustering results corresponding to different λ values are listed in Figure 3b–f.

To illustrate the clustering outcome, we use different colors and shapes to signify
data points that belong to different clusters. Furthermore, we represent the initial cluster
centers with # (magenta circles). It can be seen from Figure 3 that, although the three
clustering centers are very close during initialization, as long as we choose appropriate
fuzzy parameters, the KLFCM algorithm can still produce relatively good clustering results
through iteration. This is demonstrated in Figure 3b–d. We observed that as the value of
the fuzzy parameter λ increases, the KLFCM algorithm may produce clustering results
where all samples belong to the same cluster. For example, when lambda = 3.7. We further
calculated that when lambda = 3.7, the spectral radius of the Jacobian matrix at coincident
clustering result

(
x̄, U = [c−1]c×n

)
is equal to 1, r∗ = 1. In other words, since the KLFCM

algorithm inherently exhibits self-annealing properties, choosing appropriate parameters
that satisfy r∗ > 1 will ensure that the algorithm produces interpretable and acceptable
clustering results with any initial cluster centers, except for the case where all initial cluster
centers are set equal to the sample mean. This finding is particularly intriguing. Next, we
present more experimental results on real datasets.
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(a) Data-art (b) λ = 2 (c) λ = 3

(d) λ = 3.4 (e) λ = 3.5 (f) λ = 3.7

Figure 3. Clustering Results of the Data-art Dataset with Different λ.

Example 2. We conduct experiments on six datasets from UCI Machine Learning Repository. The
datasets we used in our experiments are described in Table 2.

Table 2. Experiments on Real Datasets from UCI Databases.

Datasets Sample No. n Feature No. s Cluster No. c r∗(λ = 2)

Iris 150 4 3 2.08364
Cloud 1024 10 3 50.07438
Wine 178 13 3 9.94855

Haberman’s Survival 306 3 2 1.49047
seeds 210 7 3 4.76313
Sonar 208 60 2 9.07394

Balance Scale 625 4 3 1.00000

We have theoretically proved the spectral radius of Jacobian matrix at the special
point

(
x̄, U = [c−1]c×n

)
is not less than 1, r∗ ≥ 1. That is,

(
x̄, U = [c−1]c×n

)
is not a stable

fixed point of the KLFCM clustering algorithm. Our previous analysis reveals that for the
KLFCM algorithm, the spectral radius of its Jacobian matrix at

(
x̄, U = [c−1]c×n

)
is solely

dependent on the fuzziness parameter λ and the data, while it remains unaffected by the
initial clustering center of the algorithm. If the lambda value we choose ensures r∗ > 1,
then the clustering algorithm is likely to output good clustering results despite poorly
choosing initial clustering centers, thanks to its self-annealing property.

By employing Equation (19), we have computed the spectral radius r∗ for different λ
values, and the corresponding results are showcased in Table 3.
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Table 3. Spectral Radius r∗ of the Jacobian Matrix Corresponding to Different λ.

λ 2 3 3.5 4 4.5 5 6 7 8 9 10

Iris 2.08364 1.38909 1.19065 1.04182 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Cloud 50.07438 33.38292 28.61393 25.03719 22.25528 20.02975 16.69146 14.30697 12.51860 11.12764 10.01488
Wine * 9.94855 6.63236 5.68488 4.97427 4.42158 3.97942 – – – – –
Haberman’s
Survival 7.45235 4.96823 4.25848 3.72617 3.31215 2.98094 2.48412 2.12924 1.86309 1.65608 1.49047
seeds 4.76313 3.17542 2.72179 2.38157 2.11695 1.90525 1.58771 1.36089 1.19078 1.05847 1.0000
Sonar 45.36970 30.24647 25.92554 22.68485 20.16431 18.14788 15.12323 12.96277 11.34243 10.08216 9.07394
Balance Scale 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

* It should be mentioned that the FLFCM clustering algorithm may fail to cluster data for the Wine dataset when
λ ≥ 6.

It can be seen from Table 3 that the spectral radius of Jacobian matrix at the special point(
x̄, U = [c−1]c×n

)
is not smaller than 1 for any fuzziness index value, which is consistent

with the result of our theoretical analysis. We select parameter values that satisfy r∗ = 1,
such as λ = 5 or λ = 50, and employ the K-means clustering algorithm and manual
initialization to set the initial cluster centers of the KLFCM algorithm. Next, we apply the
KLFCM clustering algorithm with different initialization methods to cluster the Iris dataset.

The clustering results are depicted in Figure 4. The  (magenta circles) and  (black
circles), respectively, represent the initial cluster centers and the cluster centers obtained
after clustering.

(a) λ = 5, initialize with K-means (b) λ = 5, Manual initialization

(c) λ = 50, initialize with K-means (d) λ = 50, Manual initialization

Figure 4. The Clustering Results of KLFCM Algorithm with Different Initialization Methods on the
Iris Dataset.
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We have observed that when the spectral radius is equal to 1, several clusters are
merged into a new cluster. However, different results can be obtained using different
initialization methods. For instance, when λ = 5 and we use the K-means algorithm to
initialize KLFCM, two clusters are obtained in the clustering results, which also preserve
some structural information of the original data. On the other hand, if we initialize the
KLFCM algorithm manually, all the samples in the clustering results will belong to the
same cluster. If the value of the lambda parameter is large enough, for example, λ = 50,
regardless of the initialization method used, the KLFCM algorithm may output clustering
results where all samples belong to the same cluster. Interestingly enough, the KLFCM
algorithm is not suitable for the Balance Scale clustering issue because r∗ = 1 under any
parameter condition.

Therefore, for the case where the spectral radius is equal to 1, as shown in Table 3,
does the clustering algorithm avoid outputting overlapping clustering results? Next, we
borrow the non-fuzzy index (NFI) to make a more advanced analysis. The NFI index is
proposed by Roubens [24].

NFI(c, U, λ) =
(
c
/
(n× (c− 1))

)
∑c

i=1 ∑n
k=1 u2

ik − 1
/
(c− 1)

These NFIs can be used to compare the performances of the clustering results. It is obvious
that if the membership values are close to 0 or 1, then the NFI index will be close to
1. Otherwise, if U =

[
c−1]

c×n, the NFI index will then be close to 0. In other words,
NFI(c, U, λ) = 0 indicates that the algorithm outputs the coincident clustering result[
x̄, U =

[
c−1]

c×n

]
. That is,

NFI(c, U, λ)=

{
0, i f U = [c−1]c×n and V = x

1, i f hard clustering results

We initialized the KLFCM clustering algorithm with the K-means clustering algorithm
and calculated the NFI value of the resulting clustering. The results are shown in Table 4.

Table 4. NFI Values Corresponding to Different λ for Different Real Datasets.

λ 2 3 3.5 4 4.5 5 6 7 8 9 10

Iris 0.9749 0.9811 0.6978 0.5871 0.5079 0.5049 0.4956 0.3656 0.2515 0.2512 0.2511
Cloud 0.8846 0.8170 0.7769 0.7440 0.7110 0.6771 0.7064 0.6571 0.5952 0.7368 0.5581
Wine * 0.9618 0.8998 0.9256 0.9587 0.9600 0.9806 – – – – –
Haberman’s Survival 0.8861 0.7323 0.6548 0.5827 0.5179 0.3752 0.2784 0.2372 0.2256 0.1973 0.4192
seeds 0.9956 0.9673 0.9832 0.9773 0.9691 0.9458 0.9192 0.9417 0.7818 0.9546 0.8540
Sonar 0.9999 0.9990 0.9998 0.9996 1.0000 0.9996 0.9969 0.9999 0.9949 0.9932 0.9946
Balance Scale 0.7794 0.0895 0.1249 0.0791 0.0709 0.1258 0.0197 0.0053 0.0057 0.0458 0.0026

* It should be mentioned that the FLFCM clustering algorithm may fail to cluster data for the Wine dataset when
λ ≥ 6.

Table 4 shows that under the parameter conditions listed, the NFI value of the KLFCM
clustering results is almost always greater than 0. We further find that as the values of λ
increase, the KLFCM clustering result has the NFI values with a decreasing trend. For the
Iris dataset, if λ = 8, then the spectral radius r∗ will be equal to 1 (see Table 3). We found
that all data points are assigned to one cluster in this situation (see Figure 1). However, the
NFI value is greater than 0, which means that the KLFCM clustering algorithm did not
output the coincident clustering results in

(
x̄, U = [c−1]c×n

)
. In fact, the KLFCM algorithm

may output two cluster centers.
The above results indicate that even if the fuzzy parameters we choose are not optimal

enough, the KLFCM algorithm has self-annealing property, which enables the algorithm to
avoid producing coincident clustering centers at convergence. Even in some cases where
the spectral radius r∗ is equal to 1, the KLFCM clustering results can still capture aspects
of the underlying data structure because K-means initialization allows initial clustering
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centers to be distributed across different regions of the data. However, when the value of
parameter λ used in the KLFCM clustering algorithm is too large, for example, λ = 50,
when clustering the Iris dataset, the algorithm may fail to distinguish between overlapping
clusters and produce inaccurate clustering results.

Example 3. In this example, we further discuss the impact of parameter λ on the convergence rate
of the KLFCM clustering algorithm. We have previously regarded the KK algorithm as a mapping
U(t) = θ(U(t−1)). If we assume that U(t) converges to U∗ and that the mapping is differentiable in
a neighborhood of U∗, then we can use a simple Taylor expansion to derive an expression.

U(t+1) −U∗ =
(

U(t) −U∗
)∂θ(U)

∂U
|U=U∗+O

(∥∥∥U(t) −U∗
∥∥∥2
)

(20)

where ‖·‖ is the usual Euclidean norm. Within a certain neighborhood of U∗, the behavior of
the KLFCM algorithm can be well approximated by a linear iteration using the Jacobian matrix
∂θ(U)

∂U |U=U∗ .

Our focus now is on investigating the convergence rate of linear iterations in the
KLFCM algorithm. Specifically, we define the global rate of convergence for this algo-
rithm as cr = limt→∞

∥∥∥U(t+1) −U∗
∥∥∥/∥∥∥U(t) −U∗

∥∥∥. Furthermore, a higher value of cr
corresponds to a slower rate of convergence. To estimate the convergence rate of KLFCM,
we calculate the spectral radius of ∂θ(U)

∂U |U=U∗ at the point of convergence, (V∗, U∗). This is

because the convergence rate of KLFCM is determined by the spectral radius of ∂θ(U)
∂U |U=U∗ ,

as indicated by Equation (20). By evaluating the spectral radius, we can approximate how
quickly the algorithm will converge to its solution.

We varied the parameter λ in the KLFCM clustering algorithm, and for each value,
we computed the spectral radius of the Jacobian matrix at the convergence point. This
was done to explore how different parameter values influence the convergence rate of the
algorithm. At the point of convergence, we can use Equation (14) to calculate the spectral
radius of the Jacobian matrix for KLFCM and denote it as rSR. The results are shown in
Table 5.

Table 5. Spectral radius rSR of the Jacobian matrix corresponding to different values of λ.

Data λSR Corresponding to Different λ

Iris λ 2 2.5 3 3.5 4 4.5
rSR 0.5655 0.8622 0.9221 0.9484 0.9857 1.0000

Cloud λ 2 3 4 4.5 5 6
rSR 0.8505 0.8713 0.8945 0.9164 0.9554 0.9701

Wine λ 2 2.5 3 3.5 4 4.5
rSR 0.6995 0.7983 0.7198 0.9559 0.7526 0.8223

Haberman’s Survival λ 2 3 4 5 6 7
rSR 0.3786 0.6212 0.7940 0.9469 0.9067 0.9339

seeds λ 2 3 4 5 6 7
rSR 0.4051 0.8357 0.8255 0.8093 0.8632 0.8777

Sonar λ 2 3 4 5 6 7
rSR 0.1066 0.5920 0.1118 0.2586 0.4763 0.8928

Balance Scale λ 2 3 4 5 6 7
rSR 0.8963 1.0000 1.0000 1.0000 1.0000 1.0000

We know that the larger the value of rSR, the slower the convergence rate. Table 5
demonstrates that as the values of λ increase, the KLFCM algorithm exhibits a decreasing
trend in convergence rates due to an increasing trend in the spectral radius. In the case of
the Iris dataset, setting λ = 2 results in rSR = 0.5655. However, if we increase the value
of λ to 3, we get a spectral radius of 0.9221. Clearly, the convergence rate is observed to
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decrease in response to higher parameter values. This trend aligns with most experimental
findings of the KLFCM algorithm. Specifically, setting a large value for the parameter λ in
the KLFCM clustering algorithm can result in a fuzzier output, potentially causing slower
convergence. Our demonstration shows that the Jacobian matrix can also be utilized to
estimate the convergence rate.

5. Discussion
5.1. Main Results

Our experimental results indicate the following facts:
(1) The fuzzy parameter λ is a critical factor in the KLFCM algorithm. If the value is

excessively large, it could lead to clustering failure.
(2) The KLFCM algorithm will exhibit self-annealing properties. Let r∗ denote the

spectral radius of Jacobian matrix ∂θ
∂U |∀i,k,uik=c−1 . If we choose a parameter that satisfies the

condition of r∗ > 1, even with suboptimal initial clustering center selection, the algorithm
can still produce satisfactory clustering results through its self-regulating nature.

(3) This study suggests that selecting parameter values leading to r∗ greater than 1 is
optimal due to the possibility of some clusters merging or overlapping when r∗ = 1.

(4) The convergence rate of the KLFCM clustering algorithm can be estimated using
the spectral radius of the Jacobian matrix at the convergence point.

5.2. Discussion of λ

As with other clustering algorithms, the KLFCM algorithm’s outcomes can be influ-
enced by parameter values. When the λ value is too large, clustering results may exhibit
partial cluster overlap. In cases where the parameter values are exceedingly large, the
algorithm may produce outputs where all samples belong to one cluster due to its inability
to differentiate significant overlapping clusters. This issue arises regardless of the initial
class center selection of the KLFCM algorithm. Hence, discussing the algorithm’s self-
annealing behavior becomes irrelevant when the parameter values are excessively large,
(see Figures 1 and 2).

5.3. Discussion of Self-Annealing Property

Based on the experimental results, it was observed that selecting parameters leading to
r∗ greater than 1 allows the KLFCM algorithm to produce satisfactory clustering outcomes,
even with suboptimal initial center selection or cases where the cluster centers are very
close to each other. For instance, in Example 1, when λ is less than 3.4, all values satisfy the
condition of r∗ > 1. As a result, in these scenarios, the data were perfectly partitioned into
different clusters. The experimental results suggest that the KLFCM clustering algorithm
can exhibit self-annealing properties when certain conditions are met in parameter selection,
(see Figures 2 and 3).

5.4. Discussion of Parameter Selection

It is evident that when the chosen parameter values meet the condition of r∗ > 1,
the clustering algorithm’s output results exhibit strong interpretability and acceptability.
When the selected parameter leads to r∗ = 1, the initial cluster center selection can impact
the algorithm’s clustering results. For example, in the case of the Iris dataset, we employed
two different cluster center initialization methods under the same parameter conditions
(e.g., λ = 5). Initializing the clustering centers using the K-means algorithm ensured that
they were uniformly distributed across various data regions, resulting in more reliable
clustering outcomes. Therefore, when investigating parameter selection issues, we used the
K-means algorithm output as initialization for the KLFCM algorithm. From the findings
presented in Table 4, we discovered that even in some cases where r∗ = 1, we could
still identify partial underlying data features through the clustering results, (see Figure 4,
Tables 3 and 4).
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It should be emphasized that for datasets from UCI databases in Table 2, the majority
of them meet the condition of r∗ > 1 when λ = 2. In previous literature, it has been
suggested that when λ = 2, the KLFCM algorithm is equivalent to the EM algorithm for
Gaussian mixtures. Our prior work has illustrated the self-annealing property of the EM
algorithm, which aligns with the research outcomes presented in this paper.

5.5. Discussion of Convergence Rate

The degree of fuzziness in KLFCM algorithm clusters can be managed by adjusting
the value of lambda. When λ increases, the fuzziness of the clusters also increases, leading
to less distinct and more blurred cluster results that are harder to interpret. Furthermore,
as lambda increases, the algorithm takes longer to converge due to the greater complexity
of the optimization problem. Our experimental findings align with this phenomenon, (see
Table 5).

6. Conclusions

Since its inception by Ichihashi and Honda, the KLFCM algorithm has become one
of the most widely used clustering models. In this article, we perform convergence and
parameter analysis of the KLFCM clustering algorithm using the Jacobian matrix. Our
findings suggest that the coincident clustering result is not a stable fixed point of KLFCM
clustering. Additionally, we discovered an interesting pattern in most datasets where λ = 2
results in r∗ > 1. While our research includes theoretical analysis, it also has practical
implications for the application of the KLFCM algorithm. Not only did we provide a
theoretical basis for the self-annealing behavior of the KLFCM algorithm, but we also
proposed an initialization selection strategy for algorithm parameters. The ideal parameter
value should avoid r∗ > 1.

The primary advantage of our proposed analysis method is that we can use Jaco-
bian matrix-based analysis to evaluate any clustering algorithm with an iterative update
formula. However, this method has its limitations. For example, we only considered
consistent clustering results, but when the parameters are not appropriately selected, there
may be some clusters merging in the output. Clearly, while the KLFCM algorithm has
self-annealing properties, it may not always produce good results, especially when the
parameters are not initialized properly. Therefore, future research must focus on developing
better parameter selection strategies to ensure that clustering results accurately reflect the
underlying structure of the data.
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