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Abstract: This paper addresses the fixed-time stability analysis of a mobile unicycle-like system
(UTMS) with chained shape dynamics (CFD) and subjected to unknown matched uncertainties. To
achieve fixed-time stabilization of a nonholonomic (NS) system in CFD, an adaptive nonsingular fast
terminal sliding mode control scheme (ANFTSMC) is proposed. To determine the upper bounds
of the disturbances, only velocity and position measurements are required. In addition, the con-
trol rule uses the Lyapunov theory, which guarantees the stability of the closed-loop system. To
emphasize/evaluate the efficacy of the proposed method, simulations are performed in different
disturbance situations.
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1. Introduction

The fourth industrial revolution ushered in a surge of change that encompassed
logistics. Transportation has been one of the most pressing issues since the dawn of
human civilization. Several applications for various activities may be identified, all aimed
at efficiently improving processes and, as a result, production and volume [1]. Some
collaborative robots in logistics applications can even be taught to perform tasks. This
cuts down on wasteful programming time and improves the bespoke packaging process’s
speed. Robots are increasingly infiltrating the logistics and transportation industries [1].

Mobile robots are becoming increasingly used in real-world applications, such as
material handling, logistics, warehouses and last-mile delivery. Although they are flexible,
this class of dynamic systems may face several issues when used in real indoor (Figure 1)
or outdoor (Figure 2) applications. Mobile robots’ issues may include modeling, control,
identification, as well as cybersecurity, particularly when used in outdoor applications.
With the increased reliance on robotics, cybersecurity is vital to prevent threats that can
have devastating effects, such as the loss of human lives in some applications, including
medicine or firefighting, etc. Most threats in robotics applications stem from robotics
communications [2]. This is due to the large volume of messages often exchanged over
the internet, an insecure network by default, between the nodes themselves or with the
cloud. Hence, it is crucial to have efficient security measures to protect from likely attacks,
such as unauthorized access, malware, denial of service (DoS), eavesdropping, man-in-
the-middle attacks (MITM), spoofing, and service hijacking [3]. However, more efforts are
needed to improve [2]: (1) the quality of service (QoS) and quality of control (QoC) in the
often-distributed robotics, (2) the overall reliability of wireless links and latency, (3) the
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data security, especially while in transit, (4) the autonomous cognitive decisions based on
data exchanged in networks, and (5) the lightweight anomalies detection and prevention
in real time to isolate and/or suspend affected components. Therefore, security must be
considered during the design of robotic systems (security-by-design) as part of the safety
requirements, not just as an added layer.

Figure 1. Indoor logistics application of mobile robots.

Figure 2. Last-mile mobile delivery robot (outdoors).

From the control perspective, mobile robots are sensitive to disturbances that may
affect their behavior. For this reason, the design of a robust controller becomes a must. In
this paper, we will concentrate on control issues.

Due to its practical significance in areas, such as mobile robotics (MR), wheeled
vehicles (WV), submersible vehicles (SV), and satellites, NS control has garnered a lot of
attention in recent decades [4,5]. However, because the number of input signals is smaller
than the number of degrees of freedom, managing such systems difficult. Because of the non
integrable limitations, controlling this type of system poses substantial difficulty. Smooth
state feedback control methods cannot stabilize this type of system at an equilibrium point.
The constructive control approaches are discontinuous control techniques based on two
pats. These robots are controlled by these strategies, unlike continuous approaches. In
this context, we present some constructive control approaches, such as adaptive fuzzy
velocity field control [6], discontinuous feedback [7,8], hybrid feedback [9], and smooth
time-varying feedback [10,11]. These approaches have been proposed to address this
problem. Many advances in the stabilization of NSs have been made as a result of these
effective approaches. For example, in [12], the authors proposed two strategies for the
same system studied in our paper; the first approach used is state scaling and the second is
the back stepping technique with adaptive laws in its design. Muñoz-Vázquez et al. [6]
developed a control strategy for systems based on a changing supply rater and switching
control. Unlike in [12,13], where asymptotic convergence was provided in these techniques,
our proposed strategy is based on fixed-time control providing a fixed-time convergence of
the first state system, and using a non-linear sliding manifold, the second state subsystem
converges to zero in a finite-time. In addition, the second proposed controller uses adaptive
law to cope with the upper bound of disturbances.

It is worth noting that the vast majority of existing references are concerned with the
system trajectory’s asymptotic behavior, which means that the stable equilibrium point is
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reached as time approaches infinity [14]. Nonetheless, many applications expect control
system trajectories to converge to an interesting equilibrium in short finite-time (FT) [14].
Furthermore, FT stable systems typically exhibit a number of desirable characteristics,
including disturbance rejection, faster convergence, and improved robustness. In recent
years, there has been a lot of interest in the research on FT stabilization of NSs [14].

As a result, research into nonholonomic system finite-time stabilization has gained a lot
of interest in recent years. The authors of [15] proposed a simple adaptive control technique
with actuator dynamics for trajectory-tracking of uncertain NSs. All kinematics, dynamics,
and actuator dynamics parameters are assumed to be unknown. For a category of NSs
with CFD, the fixed-time and the predefined-time stabilization problem are investigated,
respectively, in [15–18]. The work developed in [19] explores fixed-time stabilization
utilizing output feedback for CFD. A contour tracking scheme with a dynamic controller
for uncertain nonholonomic systems based on an adaptive velocity field formulation was
proposed in [20]. A new adaptive technique is proposed in [21] that ensures that the control
torque bounds are computed in advance as a result of only the design parameters and
desired trajectories.

According to Polyakov in [22], fixed-time stability is a novel approach that has recently
been presented to create algorithms that ensure that the settling-time is upper bounded
regardless of the start conditions. This concept is promising, since it allows one to build a
controller capable of achieving specified control performances in a specific period of time
and regardless of the start conditions. In this case, unlike the finite-time controllers, there is
no need to fine-tune the design control parameters to maintain the settling time. Fixed-time
stability is a new technique that has recently been proposed to develop algorithms that
guarantee that the settling time is upper bounded independent of the start conditions [22].
This notion is promising, since it allows one to construct a controller that can achieve certain
control performances in a specific amount of time and regardless of the start conditions.
Unlike finite-time controllers, there is no need to fine-tune the design control settings to
preserve the settling time in this scenario.

Motivated by the above observations, the current work proposes a new adaptive
nonsingular fast TSMC approach for the fixed control of a nonholonomic robot system.
This approach eliminates the singularity problem in TSMC and reduces the chattering
phenomenon in SMC. The following are the paper’s key contributions:

• For the first time, the fixed-time stability problem of a nonholonomic system is addressed
inside the considered system’s unified framework, with and without output limitations;

• New control approach for the second-order systems of a mobile robot is designed to
achieve the fixed-time stability in the presence of external disturbances;

• The upper-bound of perturbations is addressed using an on-line estimation based on
adaptive control laws;

• Simulation results using various scenarios in terms of disturbances are carried out in
order to validate the theoretical findings of the suggested control strategy.

The following is the remainder of this paper: Section 2 explains some basics on the
fixed-/finite-time stability and the main equations of the NS with RCD. The results are
presented in Section 3. The first step is to offer a control signal for the stabilizing of the
Z0(t)-subsystem with matched perturbations. The second step is to design an adaptive
NFTSMC scheme for the second-order systems with matched perturbations. Following this,
a switching strategy is presented based on the new results for the UTMS. Three scenarios
are considered in the simulations, which are presented in Section 4. This paper concludes
with Section 5.

2. Preliminaries and Conceptualization of the Problem
2.1. Preliminary Considerations for the Finite-/Fixed-Time Stability

Taking the system provided below:

Ż(t) = Ψ(Z ; Φ) (1)
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where Z(t) ∈ Rn denotes the state variable of the system. The notation Φ is the constant
parameter of system (1). The function Ψ(Z ; Φ) : Rn −→ Rn is nonlinear, and the origin is
considered to be a system (1) equilibrium point. Its initial conditions are Z0 = Z(0) ∈ Rn.

Definition 1 ([22,23]). If there is such a thing as a function ΦT : Rn −→ R+, (1) its origin is a
globally finite-time stable. So that the solution Ψ(t,Z0) of system (1) reaches the point of equilibrium
in a certain amount of time. So, the setting time function can be defined for t ∈ [0, Ψ(Z0)], for
t ≥ ΦT(Z0), and Ψ(Z0, t) = 0.

Definition 2 ([22,23]). It is a global fixed-time equilibrium if system (1) is worldwide finite-time
stable and the settling-time expression ΦT(Z0 is limited by a positive value ΦTMax > 0.

Lemmas 1 and 2 are employed to explain the finite-time stability in the face of rapid
time convergence.

Lemma 1 ([24]). Consider the term ϕ(t) as the Lyapunov function (LF) presented as follows:

ϕ(t) ≤ −µb ϕ(t)− µc ϕς(t), ∀ > t0, ϕ(t0) > 0 (2)

where, µb > 0, µc > 0, ϕ0 is the initial value of ϕ(t), 0 < ς < 1. Let us consider ϕ(t), ∀t > t1,
after a simple calculation, the ts is

ts = t0 +
1

µb(1− ς)
ln

µb ϕ1−ς(t0) + µc

µc
(3)

Lemma 2 ([25]). Consider the Lyapunov function ϕ(t) with the initial value ϕ0 as

ϕ(t) ≤ −µb ϕ(t), ∀ > t0, ϕ(t0) > 0 (4)

where µb > 0, 0 < ς < 1. Let us consider ϕ(t), ∀t > t1.
Then, the corresponding settling time ts can be given as

tr ≤ t0 +
µb ϕ1−ς(t0)

νa(1− ς)
(5)

2.2. Formulation of the Problem

Consider an MR that rides a unicycle, as shown in Figure 3. It contains two driving
wheels that are individually operated by two actuators, as well as one passive wheel that
prevents the plane from flipping over, when it is moving. The mass center’s position
(x(t), y(t)) is located at the junction of a straight line traveling through the robot’s center
and the axes of the two driving wheels. The configuration of this MR is given as:

X (t) = [x(t) y(t) θ(t)]T ,

y(t)

x(t)

�(t
) 

Y(t)

X(t)
O

Figure 3. The planar graph of a mobile robot.
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The term θ(t) represents the heading angle of this MR. The non slipping conditions
and the pure rolling are given by the following equation.

Sθ(t) ẋ(t)− Cθ(t))ẏ(t) = 0. (6)

The notations Cz/Sz are, respectively, cos z/ sin z. The kinematics of the wheeled MR
under the nonholonomic constraints can be defined as:

ẋ(t) = Cθ(t)ν(t)

ẏ(t) = Sθ(t)ν(t) (7)

θ̇(t) = ω(t)

The notations ω(t)/ν(t) represent, respectively, the angular/linear velocities.
Let us introduce the following change.

Z0(t) = x(t)

Z2(t) = y(t)

Z3(t) = tan(θ(t)) (8)

U0(t) = ν(t)Cθ(t)

U1(t) = ω(t) sec2(θ(t))

Using the transformation, system (7) can be described as:
Ż0(t) = U0(t) +D0(t)
Ż1(t) = U0(t)Z2(t)
Ż2(t) = U1(t) +D1(t)

(9)

where D0(t) and D1(t) are unknown perturbations.

3. Main Results

A constructive technique is presented in this section for the design of the FT stabilizer
of (9) in the presence of perturbations, for any amount of time T > 0 given. We begin
by selecting an acceptable non-zero constant input A0 for U0(t). As a result, the Z(t)-
subsystem may be regarded as a non-linear control, for which the fixed-time stabilizing
controller was developed. Once U0(t) reaches zero before a specified time and remains at
zero, we design a new controller U0(t) to fixed-time stabilize the Z0(t)-subsystem.

3.1. Stabilization of the Z0(t)-Subsystem with Matched Perturbation

In this section, the fixed-time stabilization of a single CFD is presented. A single CFD’s
fixed-time stability is ensured by the switching controller provided in the following theorem.

Proposition 1. Consider Z0(t)-subsystem with the switched control scheme given by:

U0(t) =
{
A0 i f t ≤ T1
−c0|Z0(t)|α1 sign(Z0(t))− c1|Z0(t)|α2 sign(Z0(t))− c2sign(Z0(t))

(10)

where ci is a positive constant. Then, the Z0(t)-subsystem is fixed-time stable.

Proof. The LF candidate is considered as:

V0(t) =
1
2
Z2

0 (t) (11)
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Differencing V0(t) as:

V̇0(t) = −c0|Z0(t)|α1+1 − c1|Z0(t)|α2+2 − c2|Z0(t))| (12)

≤ −c0(2V0(t))
α1+1

2 − c1(2V0(t))
α2+1

2 − c2(2V0(t))
1
2 (13)

Based on Lemma 2, the Z0(t)-subsystem is fixed-time stable.

In this subsection, a simple controller is designed to stabilize the first-order system
with matched perturbations. In the following subsection, a new control approach will be
designed for second-order systems under matched perturbations.

3.2. Stabilization of the Second System with Disturbances

• Stabilization of the second system based on NFTSMC method.

The design procedure for the control input U1(t) for the second MR system will be
presented in this section. Let us consider the second-order system subjected to uncertainties
and disturbances as:

Ż1(t) = Z2(t)

Ż2(t) = ∆P(Z) +D1(t) + U1(1)
(14)

with
|D1(t)| = |(∆P(Z) +D1(t))| ≤ δ1 (15)

where δ1 is the uncertainty/disturbance upper bound. The expression for δ1 is as [26–29]:

δ1 = d0 + d1|Z1(t)|+ d2|Z2(t)| (16)

where d0, d1, and d2 are positive constants.
Let us introduce the sliding variable as [26,27,30]:

σ(t) =Z1(t) + b|Z1(t)|β2 sign(Z1(t)) + a|Ż1(t)|β1 sign(Ż1(t)) (17)

where b and a are positive constants, 1 < β1 < 2 and β2 > β1. The time-derivative of the
sliding variable is

σ̇(t) =Z2(t) + β2b|Z1(t)|β2−1Z2(t) + β1a|Z2(t)|β1−1(U1(t)) (18)

The analogous law may be obtained by setting σ̇(t) = 0

Ueq1(t) =(− 1
β1a
|Z2(t)|2−β1(1 + β2b|Z1(t)|β2−1)sign(Z2(t))) (19)

To reject the disturbances and establish resilience against their impacts on the mobile
robot’s second system, the switching control law (SCL) U1(t) = −h1σ(t)− K1sing(σ(t)) is
added to (19), where h1 and K1 are the switching gains. According to [31], the appropriate
value of K1 is K1 = δ1 + h2, where h2 is a positive parameter.

The SCL is modified as:

U1(t) = −h1σ(t)− (d0 + d1|Z1(t)|+ d2|Z2(t)|+ h2)sing(σ(t)).

As a result, the SCL for second MR order system is

Usw1(t) =(−h1σ(t)− K1sign(σ(t)))

=(−h1σ(t)− (δ1 + h2)sign(σ(t)))

=(−h1σ(t)− (d0 + d1|Z1(t)|+ d2|Z2(t)|+ h2)sign(σ(t)))

(20)
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As a result, the control law for the second-order system of the MR is as follows:

U1(t) =Usw1(t) + Ueq1(t)

=(−h1σ(t)− (d0 + d1|Z1(t)|+ d2|Z2(t)|+ h2)sign(σ(t))

− 1
β1a
|Z2(t)|2−β1(1 + β2b|Z1(t)|β2−1)sign(Z2(t)))

(21)

Theorem 1. Consider the second-order system of the MR presented in (14) and the sliding variable
designed in (17) with the control scheme developed in (21), then the state Z1(t) and Z2(t) converge
to σ(t) in a FT tr, then the global FT of the original system is stable.

Proof. To prove Theorem 1, the LF candidate is chosen as:

V1(t) = 0.5σ2(t) (22)

Differencing V1(t) as:

V̇1(t) = σ̇(t)σ(t) = σ(t)(Z2(t) + β2b|Z1(t)|β2−1Z2(t) + β1a|Z2(t)|β1−1Ż2(t)) (23)

By substituting (21) into (23), the dynamic of V1(t) becomes:

V̇1(t) =β1a|Z2(t)|β1−1(D1(t)σ(t)− h1σ2(t)− (δ1 + h2)|σ(t)|)
≤β1a|Z2(t)|β1−1(|(D1(t)|.|σ(t)| − h1σ(t)2 − (δ1 + h2)|σ(t)|)
=β1a|Z2(t)|β1−1(|(D1(t)| − δ1)|σ(t)| − h1σ(t)2 − h2|σ(t)|)

(24)

Using Equation (15), we have

V̇1(t) ≤β1a|Z2(t)|β1−1(−h1σ2(t)− h2|σ(t)|) ≤ 0 (25)

Equation (24) ensures that the stability criterion is met. The system’s state variables
converge to σ(t) = 0 asymptotically. To demonstrate the existence of this convergence,
Equation (25) can be expressed as:

V̇1(t) ≤
dV1(t)

dt
≤ −2β1ah1|Z2(t)|β1−1V1(t)−

√
2β1ah2|Z2(t)|β1−1V1/2

1 (t) (26)

By defining h̄0 = −2β1ah1|Z2(t)|β1−1 and h̄1 = −
√

2β1ah2|Z2(t)|β1−1, it results in:

dV1(t)
dt

≤ −h̄0V1(t)− h̄1V1/2
1 (t) (27)

Following some calculations, we have

dt ≤ −dV1(t)
h̄0V1(t) + h̄1V1/2

1 (t)
=
−dV1/2

1 (t)
h̄0V1(t) + h̄1

(28)

Now, integrating (28) from t0 into tr, we can obtain

tr ≤ t0 +
2
h̄0

ln

(
h̄0V1/2

1 (t0) + h̄1

h̄1

)
(29)

This completes the proof above.

• Stabilization of the second system based on the adaptive NFTSMC (ANFTSMC) method.
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The adaptive NFTSMC method was developed to determine the unknown δ1 affecting
the second-order system of the mobile robot. As a result, the position’s control signals are
adjusted as follows:

U1(t) =Usw1(t) + Ueq1(t)

=(−h1σ(t)− (d̂0 + d̂1|Z1(t)|+ d̂2|Z2(t)|+ h2)sign(σ(t))

− 1
β1a
|Z2(t)|2−β1(1 + β2b|Z1(t)|β2−1)sign(Z2(t)))

(30)

where d̂0, d̂1, and d̂2 are the estimates of d0, d1, and d2, respectively.
The parameters d̂0, d̂1, and d̂2 are amended by the adaptive laws.

˙̂d0 = µ0|σ(t)|.|Z2(t)|β1−1 (31)

˙̂d1 = µ1|σ(t)|.|Z1(t)|.|Z2(t)|β1−1 (32)

˙̂d2 = µ2|σ(t)|.|Z2(t)|β1 (33)

where µ0, µ1, and µ2 are positive constants.

Theorem 2. Consider the system (14) and the sliding variable designed in (17) with the control
scheme developed in (21) and the adaptive laws (31)–(33), hence, the states Z1(t) and Z2(t)
converge to σ(t) in a FT tr, then the global finite-time of the original of system is stable.

Proof. In order to determine the expressions of the parameters (d̂0, d̂1, d̂2) and to demon-
strate the RM’s second-order stability, the LF candidate is

V1(t) =
1
2

σ2(t) + β1a
2

∑
i=0

1
2µi

(d̂i − di)
2 (34)

The time-derivative of Equation (34) is

V̇1(t) = σ̇(t)σ(t) + β1a
2

∑
i=0

1
µi
(d̂i − di)

˙̂di (35)

According to Equation (18), we can obtain

V̇1(t) = σ(t)(Z2(t) + β2b|Z1(t)|β2−1Z2(t)

+ β1a|Z2(t)|β1−1Ż2(t) + β1a
2

∑
i=0

1
µi
(d̂i − di)

˙̂di
(36)

Using Equation (30), the dynamic of V1(t) is

V1(t) =β1a|Z2(t)|β1−1(D1(t)σ(t)− h1σ2(t)− (d̂0 + d̂1|Z1(t)|

+ d̂2|Z2(t)|+ h2)|σ(t)|) + β1a
2

∑
i=0

1
µi
(d̂i − di)

˙̂di
(37)

Using Equations (31)–(33), we can obtain

V1(t) =β1a|Z2(t)|β1−1(D1(t)σ(t)− h2|σ(t)| − h1σ2(t)− (d̂0 + d̂1|Z1(t)|+ d̂2|Z2(t)|)|σ(t)|) (38)

Based on (15), we obtain
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V̇1(t) ≤β1a|Z2(t)|β1−1(|(D1(t)|.|σ(t)| − h2|σ(t)| − h1σ(t)2 − (d0 + d1|Z1(t)|d2|Z2(t)|)|σ(t)|)
≤β1a|Z2(t)|β1−1(−h2|σ(t)| − h1σ(t)2)

≤0

(39)

The Lyapunov equation V̇1(t) ≤ 0 ensures that the state variables of the second-order
of the mobile robot converge in a FT to zero.

Moreover, according to the nonsingular terminal sliding surface proposed in [30], the
sliding surface establishes the fast finite-time convergence of states (x1, x2) to zero.

3.3. Stabilization of Nonholonomic Chained-Form Systems with Unknown Perturbations

Based on the prior conclusions for first- and second-order subsystems, the switching
approach is used in the following theorem to ensure fixed-time stability of the closed-loop
system for uncertain NSs with CFD in the presence of disturbances.

Theorem 3. For the system (9), use the following switching controller

U0(t) =

{
A0 i f t ≤ T1

−c0|Z0(t)|α1 sign(Z0(t))− c1|Z0(t)|α2 sign(Z0(t))− c2sign(Z0(t))
(40)

U1(t) =


(−h1σ(t)− (d̂0 + d̂1|Z1(t)|+ d̂2|Z2(t)|+ h2)sign(σ(t))

− 1
β1a |Z2(t)|2−β1(1 + β2b|Z1(t)|β2−1)sign(Z2(t))) i f t ≤ T1

−K2sign(Z2(t))

(41)

where K2 is a positive constant.
The closed-loop system (9) becomes fixed-time stable as a result.

Proof. In order to prove the above Theorem 3, two parts will be defined.

(1) For t ≤ T1, U0(t) = A0(t) is used as a constant control input. Then, in the presence of ,
one may deduce that Z1(t) and Z2(t) converge to zero in the fixed-time T1 based on
the result of Theorem 2.

(2) For t ≥ T1, the control signal U1(t) is developed to drive Z2(t) = 0. Consider the LF
candidate V2(t) = |Z2(t)| and its time-derivative as V̇2(t) ≤ −|Z2(t)|(K2 − δ1). We
chose K2 > δ1, then the Z2(t) = 0 for all t ≥ T1.

4. Analysis of the Simulation Results

In this section, the simulation studies are presented to explain the control method
proposed in this paper. Consider the MR presented in Section 2 with unmatched uncer-
tainties. Its kinematic (7) may be transformed into the system (9). When a robot functions
in a constrained environment, as a result, it acts as a system stabilizer (9). The fixed-time
stabilization problem of the UTMR is the main control objective. We choose the control
parameters for the simulations as A0 = 1, α1 = 1.2, α2 = 0.3, c0 = 0.78, c1 = 0.78, c2 = 3,
h1 = 2, h2 = 0.5, a = 0.1, b = 1, β1 = 5

3 , β2 = 2, µ0 = 0.0118, µ1 = 0.01, and µ2 = 0.01.
Despite the presence of perturbations, Equation (9) is a fixed-time stable system with a
preset time T1 = 4s, thanks to the switching strategies (40) and (41).

(i)

{
D0(t) = 0.3S(25t) + 0.1C(10t)

D1(t) = 0.5S(t) + 0.3C(15t)
(42)
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(ii)

{
D0(t) = 0.2S(t)

D1(t) = 0.3S(t)
(43)

and

(iii)

{
D0(t) = −0.2 tanh(20t− 10) + 0.1C(10t)

D1(t) = −0.2 tanh(25t− 10) + 0.3C(15t)
(44)

The results of the proposed control scheme are presented in Figures 4–13. As shown in
Figure 4, the proposed controller’s convergence time is around 5.4 s, which is nearly
constant and considerably below the predetermined duration of 10 s, as the starting
value grows.
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Figure 4. Case 1: State trajectories of the MR type unicycle in the presence of perturbations (42).
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Figure 5. Case 1: Control inputs of the MR type unicycle.
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Figure 6. Case 1: Parameter estimations under perturbations (42).
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Figure 8. Case 2: State trajectories of the MR type unicycle in the presence of perturbations (43).



Mathematics 2023, 11, 2287 12 of 17

0 1 2 3 4 5 6 7 8 9 10

Time (sec.)

-15

-10

-5

0

5

C
o

n
tr

o
l 

in
p

u
ts

(t)

(t)

Figure 9. Case 2: Control inputs of the MR type unicycle.
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Figure 10. Case 2: Parameter estimations under perturbations (43).
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Figure 11. Case 3: State trajectories of the MR type unicycle in the presence of perturbations (44).
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Figure 12. Case 3: Control inputs of the MR type unicycle.
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Figure 13. Case 3: Parameter estimations under perturbations (44).

Figure 4 shows the corresponding linear and angular velocities, and Figure 5 displays
the control inputs in the first case. The figures clearly show that the proposed control
algorithm stabilizes the outputs of the MR under the perturbations in the fixed-time
T = 4 s. The control inputs presented are smooth and have smaller magnitudes during the
transients. The parameter adaptations are plotted in Figure 6, which converge to constant
values. This demonstrate that all states are stable in the presence of disturbances.

The performance of the proposed controller in a 3D space is shown in Figure 7.
The state variables in the second situation are presented in Figure 8. From these

results, we can see that the position and the rolling angle converge to their initial conditions
under the external disturbances. From the results presented in Figure 9, we can see that
the control inputs are smooth and the ANFTSMC controller is able to reject unknown
disturbances. In actuality, this condition is more realistic, and the adaptive control rules
are largely responsible for the stabilization of the MR. All of the parameters converge to
constant values, as seen in Figure 10.

The results presented in Figure 11 represent, respectively, the state variables, the
control inputs, and parameter adaptations in the last case. All state outputs are converged
in the fixed-time to their initial conditions under perturbations. The inputs presented in
Figure 12 are smooth and have realizable amplitudes, this demonstrates that the MR is
more stable in this situation. The estimation parameters plotted in Figure 13 are converged
to constant values in short finite-time.
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We present the results of Defoort et al. [32] to show the superiority of our proposed
approach. This technique is based on a fixed-time strategy. The same conditions are
considered for our controller and the controller proposed in [32].

The controller proposed [32] in is

τ0 =

{
1 i f t ≤ T1

−κµ1|ε0|2sign(ε0)− (ςµ1 + κµ2)sign(ε0)
(45)

τ1 =

{
− µ1+2ςµ2+3µ2ε2

2 sign(s)− sig(µ3s + µ4sig(s)3)0.5 i f t ≤ T1

−υisign(ε2) else
(46)

For which the sliding mode manifold is given by: s= ε2+sig(sig(ε2)
2+ϕ1ε1+ϕ2sig(ε1)

3)0.5.
and κµ1 = 0.78, ςµ1 = 0.78, κµ2 = 0.1, µ1 = 4.2, µ2 = 4.2, µ3 = 2.1, µ4 = 2.1, ςµ2 = 0.3,
ϕ1 = 4.2, ϕ2 = 4.2 and υi = 0.3.

Figures 14–16 show Defoort et al.’s pertinent outcomes [32]. Their convergence time
estimate is obviously greatly inflated. Additionally, it results in a bigger control magnitude
during transients. The control signals have not been smooth either. It is obvious that
the proposed controllers in this paper perform better than the switching control method
suggested in [32].
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Figure 14. Case 1: State trajectory graphs correspond to the controller in [32].
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Figure 15. Case 1: Control inputs obtained by the controller in [32].
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Figure 16. Case 1: Evolution of the sliding manifold using the controller in [32].

In the second scenario, the state variables of the proposed controller are displayed
in Figures 17–19 [32]. These results show that the position and the rolling angle returns
to its initial conditions in the presence of external perturbations. The outcomes shown
in Figure 18 show that the control inputs are smooth and that the controller is capable of
rejecting unidentified disturbances. This scenario is more accurate in reality, and the control
methods are mostly to blame for the MR’s stability and sliding manifold’s convergence
to zero.
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Figure 17. Case 2: State trajectory graphs that correspond to the controller in [32].
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Figure 18. Case 2: Control inputs obtained by the controller in [32].
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Figure 19. Case 2: Evolution of the sliding manifold using the controller in [32].

5. Conclusions

In this paper, the stabilization problem of an NS in CFD is addressed based on fixed-time
stability. A new fixed-time control approach using adaptive nonsingular fast terminal SMC is
proposed for a unicycle-type mobile system with chained form dynamics under disturbances.
Therefore, the adaptive-tuning control rules are used to come up with an approximation for
the unknown limits of model disturbance impacting the mobile robot. Based on ANFTSMC,
the robust fixed-time stabilization of the mobile robot system has been solved. A switching
strategy is designed for both first- and second-order systems to guarantee the fixed-time
stability. Three scenarios have shown the effectiveness of the control method proposed in
this paper. According to the results, future works focus on the following points:

• Application of this proposed control strategy in multi-agent systems;
• Experimental validation of the proposed method.
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2. Dutta, V.; Zielińska, T. Cybersecurity of Robotic Systems: Leading Challenges and Robotic System Design Methodology. Electronics

2021, 10, 2850. [CrossRef]
3. Yaacoub, J.-P.A.; Noura, H.N.; Salman, O.; Chehab, A. Robotics cyber security: Vulnerabilities, attacks, countermeasures, and

recommendations. Int. J. Inf. Secur. 2022, 21, 115–158. [CrossRef] [PubMed]
4. Defoort, M.; Murakami, T. Second order sliding mode control with disturbance observer for bicycle stabilization. In Proceed-

ings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008;
pp. 2822–2827.

5. Li, H.; Xie, P.; Yan, W. Receding horizon formation tracking control of constrained underactuated autonomous underwater
vehicles. IEEE Trans. Ind. Electron. 2017, 64, 5004–5013. [CrossRef]

http://doi.org/10.1016/j.tourman.2019.103971
http://dx.doi.org/10.3390/electronics10222850
http://dx.doi.org/10.1007/s10207-021-00545-8
http://www.ncbi.nlm.nih.gov/pubmed/33776611
http://dx.doi.org/10.1109/TIE.2016.2589921


Mathematics 2023, 11, 2287 17 of 17

6. Muñoz-Vázquez, J.; Parra-Vega, V.; Sánchez-Orta, A.; Sánchez-Torres, J.D. Adaptive Fuzzy Velocity Field Control for Navigation
of Nonholonomic Mobile Robots. J. Intell. Robot. Syst. 2021, 101, 38. [CrossRef]

7. Astolfi, A. Discontinuous control of nonholonomic systems. Syst. Control Lett. 1996, 27, 37–45. [CrossRef]
8. Xu, W.L.; Huo, W. Variable structure exponential stabilization of chained systems based on the extended non-holonomic integrator.

Syst. Control Lett. 2000, 41, 225–235. [CrossRef]
9. Kolmanovsky, I.; McClamroch, N.H. Hybrid feedback laws for a class of cascade nonlinear control systems. IEEE Trans. Autom.

Control 1996, 41, 1271–1282. [CrossRef]
10. Tian, Y.P.; Li, S. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica 2002, 38,

1139–1146. [CrossRef]
11. Yuan, H.L.; Qu, Z.H. Smooth time-varying pure feedback control for chained nonholonomic systems with exponential convergent

rate. IET Control Theory Appl. 2010, 4, 1235–1244. [CrossRef]
12. Ge, S.S.; Wang, Z.P.; Lee, T.H. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback. Automatica

2003, 39, 1451–1460. [CrossRef]
13. Yu, J.; Zhao, Y. Global robust stabilization for nonholonomic systems with dynamic uncertainties. J. Frankl. Inst. 2019, 357,

1357–1377. [CrossRef]
14. Gao, F.; Wu, Y.; Liu, Y. Finite-time stabilization for a class of switched stochastic nonlinear systems with dead-zone input

nonlinearities. Int. J. Robust Nonlinear Control 2018, 28, 3239–3257. [CrossRef]
15. Gao, F.; Wu, Y.; Huang, J.; Liu, Y. Output feedback stabilization within prescribed finite time of asymmetric time-varying

constrained nonholonomic systems. Int. J. Robust Nonlinear Control 2021, 31, 427–446. [CrossRef]
16. Yao, H.; Gao, F.; Huang, J.; Wu, Y. Barrier Lyapunov functions-based fixed-time stabilization of nonholonomic systems with

unmatched uncertainties and time-varying output constraints. Nonl. Dyn. 2020, 99, 2835–2849. [CrossRef]
17. Gao, F.; Huang, J.; Shi, X.; Zhu, X. Nonlinear mapping-based fixed-time stabilization of uncertain nonholonomic systems with

time-varying state constraints. J. Franklin Inst. 2020, 357, 6653–6670. [CrossRef]
18. Sánchez-Torres, J.D.; Defoort, M.; Muñoz-Vázquez, A.J. Predefined-time stabilisation of a class of nonholonomic systems. Int. J.

Control 2020, 93, 2941–2948. [CrossRef]
19. Park, B.S.; Yoo, S.J.; Park, J.B.; Choi, Y.H. Adaptive output-feedback control for trajectory tracking of electrically driven non-

holonomic mobile robots. IET Control Theory Appl. 2011, 5, 830–838. [CrossRef]
20. Muñoz-Vázquez, A.J.; Sánchez-Torres, J.D.; Parra-Vega, V.; Sánchez-Orta, A.; Martínez-Reyes, F. Robust contour tracking of

nonholonomic mobile robots via adaptive velocity field motion planning scheme. Int. J. Adapt. Control Signal Process. 2019, 33,
890–899. [CrossRef]

21. Huang, J.; Wen, C.; Wang, W.; Jiang, Z.P. Adaptive stabilization and tracking control of a nonholonomic mobile robot with input
saturation and disturbance. Syst. Control Lett. 2013, 62, 234–241. [CrossRef]

22. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2012, 57,
2106–2110. [CrossRef]

23. Bhat, S.; Bernstein, D. Geometric homogeneity with applications to finite time stability. Math. Control Signals Syst. 2005, 17,
101–127. [CrossRef]

24. Yu, S.; Yu, X.; Stonier, R. Continuous finite-time control for robotic manipulators with terminal sliding modes. In Proceedings of
the Sixth International Conference of Information Fusion, Cairns, Australia, 8–11 July 2003; pp. 1433–1440.

25. Moulay, E.; Perruquetti, W. Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 2006, 323,
1430–1443. [CrossRef]

26. Labbadi, M.; Cherkaoui, M. Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor
UAV subjected to disturbances. ISA Trans. 2019, 99, 290–304. [CrossRef] [PubMed]

27. Boukattaya, M.; Mezghani, N.; Damak, T. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of
uncertain dynamical systems. ISA Trans. 2018, 77, 1–19. [CrossRef] [PubMed]

28. Lin, P.; Ma, J.; Zheng, Z. Robust adaptive sliding mode control for uncertain nonlinear MIMO system with guaranteed steady
state tracking error bounds. J. Frankl. Inst. 2016, 353, 303–321.

29. Zhihong, M.; Yu, X. Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics.
JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 1997, 40, 493–502. [CrossRef]

30. Yang, L.; Yang, J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control
2016, 21, 1865–1879. [CrossRef]

31. Asl, S.B.F.; Moosapour, S.S. Adaptive backstepping fast terminal sliding mode controller design for ducted fan engine of
thrust-vectored aircraft. Aerosp. Sci. Technol. 2017, 71, 521–529.

32. Defoort, M.; Demesure, G.; Zuo, Z.; Polyakov, A.; Djemai, M. Fixed-time stabilisation and consensus of non-holonomic systems.
IET Control Theory Appl. 2016, 10, 2497–2505. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10846-020-01306-w
http://dx.doi.org/10.1016/0167-6911(95)00041-0
http://dx.doi.org/10.1016/S0167-6911(00)00057-8
http://dx.doi.org/10.1109/9.536497
http://dx.doi.org/10.1016/S0005-1098(01)00303-X
http://dx.doi.org/10.1049/iet-cta.2008.0413
http://dx.doi.org/10.1016/S0005-1098(03)00119-5
http://dx.doi.org/10.1016/j.jfranklin.2019.10.024
http://dx.doi.org/10.1002/rnc.4078
http://dx.doi.org/10.1002/rnc.5289
http://dx.doi.org/10.1007/s11071-019-05450-3
http://dx.doi.org/10.1016/j.jfranklin.2020.04.028
http://dx.doi.org/10.1080/00207179.2019.1569262
http://dx.doi.org/10.1049/iet-cta.2010.0219
http://dx.doi.org/10.1002/acs.2996
http://dx.doi.org/10.1016/j.sysconle.2012.11.020
http://dx.doi.org/10.1109/TAC.2011.2179869
http://dx.doi.org/10.1007/s00498-005-0151-x
http://dx.doi.org/10.1016/j.jmaa.2005.11.046
http://dx.doi.org/10.1016/j.isatra.2019.10.012
http://www.ncbi.nlm.nih.gov/pubmed/31703850
http://dx.doi.org/10.1016/j.isatra.2018.04.007
http://www.ncbi.nlm.nih.gov/pubmed/29699696
http://dx.doi.org/10.1299/jsmec.40.493
http://dx.doi.org/10.1002/rnc.1666
http://dx.doi.org/10.1049/iet-cta.2016.0094

	Introduction
	Preliminaries and Conceptualization of the Problem
	Preliminary Considerations for the Finite-/Fixed-Time Stability
	Formulation of the Problem

	Main Results
	Stabilization of the Z0(t)-Subsystem with Matched Perturbation
	Stabilization of the Second System with Disturbances
	Stabilization of Nonholonomic Chained-Form Systems with Unknown Perturbations

	Analysis of the Simulation Results 
	Conclusions
	References

