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Abstract: Due to the profitability and selfishness of crowdfunding system users, under fixed budget
conditions, there are problems, such as low task completion rate due to insufficient participants
and low data quality. However, the existing incentive mechanisms are mainly based on traditional
economics, which believes that whether users participate in tasks depends on whether the benefits
of the task outweigh the costs. Behavioral economics shows that people judge the value of gains
and losses according to a reference point. The weight given to losses is more important than the
weight given to the same gains. Therefore, this article considers the impact of reference dependency
and loss aversion on user decision-making and proposes a participant selection mechanism based
on reference dependency (PSM-RD) and a quality assurance mechanism based on loss aversion
(QAM-LA). PSM-RD uses reference points to influence user pricing and selects more participants
based on relative value. QAM-LA pays additional rewards based on the data quality of participants
and motivates them to improve data quality by reconstructing utility functions. The simulation
results show that compared with the ABSee mechanism, data quality has improved by 17%, and the
value of completed tasks has increased by at least 40%.

Keywords: mobile crowdsensing; task completion rate; data quality; reference dependence; loss
aversion

MSC: 37M10

1. Introduction

Mobile Crowdsensing (MCS) consists of three parts, the server platform, data requester,
and data provider. The data requester requests data or services from the platform. The plat-
form connects data requesters and data providers, receiving requests from data requesters
and transforming them into tasks for publication to all data providers. At the same time,
the platform is responsible for selecting participants, conducting quality checks on the data
uploaded by data providers, and distributing rewards to data providers. The data provider
is the participant in the task [1]. MCS is widely used in environmental monitoring [2,3],
intelligent transportation [4,5], and other fields [6–8]. In MCS applications, data quality is a
key factor in measuring the sensing level, and high-quality data to high-precision, wide-
coverage, and low-redundancy data submitted within a specified time [9]. For example,
people use vertical acceleration sensing information with data accuracy of cm/s2 to draw a
road smoothness map, which can find and improve road conditions in time [10]. When the
user completes the sensing task, the devices’ computing resources will be consumed [11–13].
These result in a low task completion rate, and participants are more reluctant to improve
data quality.

Thus, incentive mechanisms, including non-monetary and monetary, are currently
used to motivate users to participate and improve data quality [14]. The non-money
incentive mechanism mainly uses reputation mechanism [15], virtual credit mechanism [16],
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etc., for incentives. Since there are many specific requirements for applying non-monetary
mechanisms, the current incentive mechanisms are mainly monetary incentive, which
pays the participant’s sensing cost to improve the task completion rate [17] and submit
high-quality data [18–22].

However, there are two problems. Firstly, the current mechanisms are mainly based
on the cost–benefit model of traditional economic theory. Users will participate in sensing
tasks as long as the benefits of completing the task outweigh the costs. In addition, the cur-
rent mechanism assumes that when participants face equal losses and benefits, the absolute
utility value is equal as long as the benefits of completing the task are equal. However,
the reference dependence theory in behavioral economics [23] shows that the user’s deci-
sion is affected by the relative value, that is, by the difference between revenue and the
reference point [24,25]. When the reference point affects the user’s decision, the external
environment is the exogenous reference point, and the user’s changes are the endogenous
reference point [26,27]. Based on the two reference points, the difference in profit between
a participant and other participants is the exogenous reference point, and the change in
reward earned by the participant is the endogenous reference point. Otherwise, the loss
aversion theory points out that when evaluating utility, if the benefit is above the reference
point, it is regarded as a gain. Otherwise, it is viewed as a loss below the reference point [24].
Moreover, the evaluation value of the loss is more than the evaluation value of the gain [28].
In summary, current incentive mechanisms have theoretical defects in motivating data
quality, resulting in higher theoretical data quality than the actual situation.

This paper introduces the reference dependence theory and loss aversion theory of
behavioral economics to design an incentive mechanism to improve the task completion
rate and promote the data quality in MCS. In summary, the main contributions of this paper
are as follows:

• The paper proposes a participant selection mechanism based on reference dependency
(PSM-RD). By setting the average pricing and average extra reward as the reference
point, the relative value is used to reduce the user’s pricing, increase the number of
users who meet the selecting conditions within the platform budget, and thus improve
the task completion rate.

• The paper proposes a quality assurance mechanism based on loss aversion(QAM-
LA). According to the quality of the data submitted by the participant, an extra
reward will be issued. The utility function is reconstructed using loss aversion theory,
and the evaluation of negative utility is influenced by the extra reward, increasing the
probability of participants submitting high-quality data.

The rest of the paper is organized as follows. Section 2 introduces the existing incentive
mechanism and some studies in behavioral economics. Section 3 introduces a system model
for MCS and the proposed system, mainly consisting of PSM-RD and QAM-LA. Section 4
verifies the effectiveness of the proposed mechanism through simulation experiments.
Finally, in Section 5, we summarize our conclusions.

2. Related Work

This section summarizes the existing MCS incentive mechanisms and then introduces
the reference dependence and loss aversion theories.

2.1. Mobile Crowdsensing Incentive Mechanism

Existing MCS incentive mechanisms are divided into non-monetary incentives [15,16,29–33]
and monetary incentives [34–41]. Non-monetary incentives include based on entertainment
games, based on services, and based on reputation. Incentives based on entertainment
games and those based on services depend on a specific environment, while the quan-
titative standard of incentive mechanisms based on reputation cannot be unified. Thus,
the non-monetary incentives are limited [42]. Monetary incentives typically use profits or
bonuses to compensate for sensing costs and apply to various sensing scenarios. Often,
monetary incentives are better at motivating participants to participate [43].
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Guaranteeing the task completion rate is the basis for obtaining high-quality data [34,44,45].
To improve the task completion rate under budget constraints, Ref. [46] proposes a reverse
auction-based mechanism combined with a geometric coverage model. Ref. [47] applies the
Stackelberg game model to improve the task completion rate and data quality based on the
principle of utility maximization. Ref. [48] considers the case where participants drop out
randomly and determines the participant’s payout in proportion to time, which improves
the task completion rate and average participant utility. Ref. [49] introduces a mathematical
model to characterize the data quality and maximize the collection of high-quality data while
improving the task completion rate by optimizing the utility function.

The average quality of data is an essential measure of the sensing level. Ref. [39]
proposes a mechanism considering participants’ social networks to achieve long-term in-
centives to improve data quality. Ref. [50] proposed a mechanism based on reverse auction,
recruiting participants who are more likely to submit high-quality data. Ref. [51] optimized
the quality reward strategy based on the matching degree of tasks and participants, which
improved the data quality and budget consumption rate. The reward distribution in [52]
was determined by the weighted participant reputation, which guarantees the number and
quality of users participating in the task. Ref. [51] solves the quality maximization problem
by formalizing the reward payment and using the Lambert W function to obtain the optimal
price under budget constraints. Ref. [53] maps participant rewards to reputation and rated
reputation based on engagement and data accuracy to improve data quality. Ref. [54] selects
the highest quality datasets based on 2D image features for maximally satisfying different
quality requirements within the budget. Ref. [55] selects participants and assigned tasks
according to the participant’s sensing ability attribute value, and proposes a data quality
self-estimation method to urge participants to improve data quality actively. Ref. [56] uses
the deviation between reliable data and ground-truth values to quantify data quality and
assigns rewards based on data quality to improve data quality under budget constraints.

However, the existing incentive mechanisms generally have the following problems.
The mechanism of recruiting users through pricing does not consider the relative value
formed by setting reference points, which will affect pricing. For example, in [46], the par-
ticipant adjusts the bid based on the absolute percentage of the current bid rather than
the relative value of the current bid and the participant’s lowest bid. Ref. [48] did not
consider the impact of falsely reported prices on bids when bidding. In [50], participants’
bids, and the platform selects the winner based on prices, not considering other factors.
In addition, participants with a high reputation in [52] received higher rewards. Other-
wise, when calculating the utility, current incentive mechanisms did not consider that the
impact of the same amount of loss is more significant than the same amount of gain on
the participant’s decision-making. Ref. [57] assumes that there is no other loss except the
cost that the participant has paid after the task fails. In [48,50], the utility function value
was zero when the participant did not complete the task. In order to solve the above prob-
lems and consider the differences between the scenarios, it is necessary to reconstruct the
model and design a more effective incentive mechanism. Therefore, this paper introduces a
reference dependence-based mechanism to influence participants’ pricing and uses a loss
aversion-based mechanism to promote participants to improve data quality.

2.2. Behavioral Economics

Reference dependence refers to the influence of other factors when an individual makes
decisions, that is, reference points [24,25]. The reference point is a vital aspect distinguishing
traditional and behavioral economics. It expresses the individual’s expectation of the
decision result, and the most recent choice determines the next reference point [24,25,58].
Usually, the utility function v(∆x) is used to measure the deviation of the actual outcome
of the decision from the expected outcome. When the actual decision result is better,
v(∆x) > 0, otherwise v(∆x) < 0. Compared with the reference point, even if losses and
gains are equal, the negative utility brought by losses is greater than the positive utility
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brought by gains, that is, loss aversion [23,59–62]. Figure 1 illustrates the difference between
utility functions in traditional economics and behavioral economics.

Figure 1. User utility function.

In Figure 1, quadrant I represent the utility curve at the time of gain, and the third
quadrant represents the utility curve at the time of loss. It is known from Figure 1 that
the utility curve in traditional economics v1(x) is a straight line with a constant slope,
which represents the same amount of losses and gains with equal utility. That is, for any
value of m, when | −m| = |m|, there is |v1(−m)| = |v1(m)|. However, the utility curve in
behavioral economics v2(x) is divided into two parts. The slopes of the curves in quadrants
I and III are different, and the curve in quadrant III is steeper. That is, the slope of the
loss part is larger. Figure 1 shows that in the face of equal losses and gains, the negative
utility brought by losses is greater than the positive utility brought by gains. Namely, when
| −m| = |m|, there is |v1(−m)| > |v1(m)|.

To quantify loss aversion more accurately, [63] gives the loss aversion utility function
under risk conditions, expressed as Formula (1).

v(x) =

{
(x− p0)

α, x ≥ p0

−λ(p0 − x)β, x < p0
(1)

where p0 represents the reference point, α and β are risk attitude coefficients and 0 < α,
β < 1, λ is the loss aversion coefficient and λ > 1.

In order to solve the two problems of low task completion rate and low data quality,
reference dependence theory and loss aversion theory are introduced to design a more
effective incentive mechanism.

3. Design and Analysis of PSM-RD and QAM-LA

Section 3.1 introduces the system model. Sections 3.2 and 3.3 detail the design and princi-
ple of PSM-RD and QAM-LA, respectively. Finally, we illustrate PSM-RD using examples.

3.1. System Model

This section will further illustrate the physical model in combination with the physical
background and construct the logical model of the incentive mechanism.

3.1.1. Physical Model

MCS consists of three parts, the server platform, data requester, and data provider.
The data requester informs the platform of task requests and related information. The plat-
form publishes these tasks to users, collects information, such as user pricing, selects
participants under budget constraints, and pays rewards after the participants submit the
data. At the same time, the platform can use incentive mechanisms to achieve specific
goals, such as obtaining higher data quality through incentive mechanisms. The sensing



Mathematics 2023, 11, 2288 5 of 23

process of MCS is generally divided into six sub-processes, and the corresponding process
in specific application scenarios is shown in Figure 2.

Figure 2. Physical model.

The specific physical process is as follows.

(1) Proposing task requirements. The task initiator submits task requirements to the
platform, including data requirements, task budget, acceptable delay, task value,
and other attributes. Each task is indivisible.

(2) Publishing task. After receiving the request, the platform publishes the rth round of
task sets T = {t1, t2, . . . , tm} and related attributes to the user sets P = {p1, p2, . . . , pn}
of size n ∈ N+, where m ∈ N+ and m ≥ 2.

(3) Selecting tasks and uploading pricing. The user pi uploads pricing 2-tuple Pricer
i ={

Tr
i , br

i
}

to the platform according to the attributes of the task and their abilities, where
Tr

i = {ti,1, ti,2, . . . , ti,m} is the task sets priced by pi, ti,m is the mth task priced by pi,
and br

i is the total pricing corresponding to Tr
i . Due to the possible correlation between

multiple tasks, the total cost of a task set is not necessarily equal to the sum of the
costs of each task. Therefore, this article uses the total pricing br

i for the task set Tr
i .

(4) Selecting the participant. The platform selects the users according to PSM-RD and
obtains participant sets Wr = {w1, w2, . . . , ws} of size s ∈ N+, where 0 ≤ s < n and
Wr ⊆ P. For any pi /∈Wr, it needs to reduce the pricing to be selected by the platform.

(5) Completing tasks and submitting sensing data. After the participant pi completes the
sensing task sets Tr

i , the collected data are processed by the platform and fed back to
the task initiator.

(6) Paying the reward. After evaluating the data quality of pi, the platform pays pi the
corresponding extra reward Bk

i according to QAM-LA. Users who fail to obtain Bk
i

must continue participating in the task and submit high-quality data to obtain the
extra reward temporarily frozen F r

i .

3.1.2. Logical Model

The incentive mechanism mainly includes PSM-RD and QAM-LA, which mainly
involve platform and participant sets. The design of the logical framework for PSM-RD and
QAM-LA is shown in Figure 3, where the PSM-RD acts on all users to change their pricing
through reference points, the platform selects participants through the relative value ratio,



Mathematics 2023, 11, 2288 6 of 23

selecting more participants, and the QAM-LA mechanism incentivizes participants through
loss aversion, improving their data quality.

Figure 3. Design of logical framework for PSM-RD and QAM-LA.

Definition 1. (Average pricing ψk
i ). If pi was selected as a participant in the most recent round

(assuming that the kth round and k < r), its pricing tuples are Pricer
i =

{
Tr

i , br
i
}

and submits high-

quality data this round, then the average pricing of pi for a single task in the kth round ψk
i =

bk
i
|Tk

i |
.

Otherwise, ψk
i does not exist. The definition of ψk

i is shown in Formula (2).

ψk
i =

 +∞, pi /∈Wr and 1 ≤ k < r
bk

i
|Tk

i |
, pi ∈Wr and 1 ≤ k < r (2)

Definition 2. (Average extra reward ϕk
i ). If pi was selected as participant in kth round and

obtained extra reward Bk
i , then the average extra reward in the kth round is ϕk

i =
Bk

i
|Tk

i |
. Otherwise,

ϕk
i does not exist. The definition of ϕk

i is shown in the Formula (3).

ϕk
i =

 −∞, pi /∈Wr and 1 ≤ k < r
Bk

i
|Tk

i |
, pi ∈Wr and 1 ≤ k < r (3)

The goal of the PSM-RD is to improve the task completion rate. Combined with the
relevant research on reference points, when pi participates in bidding, the average pricing
ψk

i is the exogenous reference point, and the average extra reward ϕk
i is the endogenous

reference point, both of which affect the user’s pricing br
i . After pi submits the pricing,

the platform selects the participant ws to complete the task by the ratio of user’s pricing to
task’s value. Users who fail to become participants must decrease the pricing br+1

i to meet
the selecting criteria of the platform, then they can complete the task and receive payment.

The goal of the QAM-LA is to improve the data quality. After the participant submits
the data, the platform evaluates the level of data quality Kr

i according to the average level
Hr of the data quality Qr

i , where Sdq, Mdq, and Idq represent good, general, and low data
quality, and the equation will be discussed in Section 3.1.1, respectively. The platform pays
the corresponding payment according to Kr

i . If participants submit high-quality data, they
will also receive an extra reward Br

i , and the total payment Ar
i includes the task payment

and extra reward. Otherwise, the platform will temporarily withhold its extra reward Br
i . if

participants lose extra rewards, the total payment is less than the sensing cost. To avoid
losses, participants must continue to improve data quality Qr+1

i for extra rewards.
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To motivate participants to continue to participate in sensing tasks and improve the
data quality Qr+1

i , when participants submit high-quality data, i.e., Kr
i = Sdq, the platform

pays all its payment and extra reward. Otherwise, the platform temporarily freezes its extra
reward Br

i . When the accumulated extra frozen rewards F r+ f
i reaches a specific value ði,

and high-quality data are submitted in this round, the platform will issue all extra rewards
temporarily frozen.

Definition 3. (Sensitivity factor
∫ r

i ). Assuming that participant pi’s accumulated frozen extra
rewards in multiple rounds is F r

i , and the unfreezing threshold for extra reward is ði, then F r
i =

∑
pi∈Wr and Kr

i 6=Sdq
Br

i and ði =
1−θ

θ br
i . The definition of

∫ r
i is shown in the Formula (4).

∫ r

i
=
F r

i
ði

=

∑
pi∈Wr and Kr

i 6=Sdq
Br

i

1−θ
θ br

i
(4)

where Wr is the sets of participants of the rth round of sensing tasks, Kr
i is the level of data quality,

Sdq represents the level of good data quality, Br
i is the extra reward of the rth round of wi, br

i is the
total pricing of pi to the task set Tr

i in the rth round, and θ is the budget allocation factor which the
meaning is given in Section 3.2.1.

If the extra reward Br
i is lost, the gain after completing the sensing task is less than

zero. The sensitivity factor measures the impact of Br
i on the participant’s utility ur

i .
To avoid the sensing cost, the participant must improve the data quality Qr+1

i to increase
the participant’s total utility ur

i . When the participant participates in pricing, the average
pricing ψk

i is the exogenous reference point, and the extra reward ϕk
i is the endogenous

reference point. Under the influence of the exogenous reference point and the endogenous
reference point, the participant updates the pricing br+1

i to meet the selection criteria of the
platform. Table 1 lists some symbols commonly used in this paper and their meanings.

Table 1. Common symbols and meanings.

Variable Description

Tr
i In rth round, the sets of tasks that pi participates in pricing

br
i Total pricing of pi to Tr

i
Vr

i Total value of all tasks in Tr
i

vi The value of completing a single task ti
E r

i Cost-benefit conversion factor for pi
Cr

i The sensing cost of the pi to complete the Tr
i

ξr
i Pricing for unit value

Wr The sets of participants of the rth round of sensing tasks
Ar

i The total payment of wi round r
Br

i wi extra reward for round r
F r

i Accumulated frozen extra reward at round r
ði unfreezing threshold for extra rewards F r

i
f The number of rounds for unfreezing the current F r

i
d The total number of rounds for submitting high-quality data
ur

i The total utility of the rth round of wi
Qr

i The data quality of the rth round of wi
Ur The total utility of the platform after round r

3.2. Participant Selection Mechanism Based on Reference Dependence

According to the physical model in Section 3.1.1, assuming that the sensing radius
of the rth round of pi is dr

i , and the distance between the user and the task tk ∈ Tr
i is distr

ik.
The user can select and complete the task when distr

ik < dr
i . When the user submits pricing,

PSM-RD influences the user’s pricing through the reference point.
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3.2.1. Collecting User Pricing

Assuming that the total budget of the platform is G, and θ ∗ G is used as the task
paymentAr

i and (1− θ) ∗G is used as the extra reward Br
i , where θ is the budget allocation

factor. At the same time, Ar
i ≥ Br

i is required.
If pi participates in the task sets in the rth round (r ≥ 2) is Tr

i , and is selected as the
participant in the kth round, the average pricing and average extra reward are ψk

i and ϕk
i ,

respectively. From Ar
i ≥ Br

i , it is known that θ ≥ 0.5, then ψr
i ≥ ϕr

i . As described in the
reference dependency theory of behavioral economics introduced in the introduction, par-
ticipants’ behavior is affected by reference points (including endogenous reference points
and exogenous reference points). Therefore, combining Definitions 1 and 2, the exogenous
reference factor λ and the endogenous reference factor γ are used to represent the degree

to which pi is affected by ψk
i and ϕk

i , then its pricing b̂r
i = λ

bk
i
|Tk

i |
+ γ

Bk
i
|Tk

i |
= λψk

i + γϕk
i for

a single task in the rth round, where 0 < λ < 1, 0 < γ < 1 and λ + γ = 1. If pi has not
participated in any previous rounds, it makes pricing based on sensing cost. Therefore,
the pricing of pi in the rth round is expressed as the Formula (5).

br
i =

{
E r

i ∗ Cr
i , (pi /∈Wr and r ≥ 2) or r = 1(

λψk
i + γϕk

i

)
∗
∣∣Tr

i

∣∣, pi ∈Wr and r ≥ 2
(5)

It can be known from Formula (5) that users who have become participants are affected
by both the average pricing ψk

i and the average extra reward ϕk
i . For any pi ∈ Wk, a certain

task payment will be obtained after completing the task, and the payment will affect the
pricing. That is, ψk

i will affect pi’s pricing br
i . The influence of λ on br

i will be explored in
Theorem 1 below.

Theorem 1. For any user pi ∈ P,when the value of λ increases,br
i increases. That is,br

i ∝ λ.

Proof of Theorem 1. Assuming that ∃λ1, λ2, and 0 < λ1 < λ2 < 1, then br
i1
− br

i2
=(

λ1ψk
i + γ1 ϕk

i

)
∗
∣∣Tr

i

∣∣− (λ2ψk
i + γ2 ϕk

i

)
∗
∣∣Tr

i

∣∣. From λ+γ = 1, there is br
i1
− br

i2
=
(

λ1ψk
i +

(1− λ1)ϕk
i

)
∗
∣∣Tr

i

∣∣−(λ2ψk
i + (1− λ2)ϕk

i

)
∗
∣∣Tr

i

∣∣. After simplification, we obtain br
i1
− br

i2
=∣∣Tr

i

∣∣ ∗ [(ψk
i − ϕk

i

)
(λ1 − λ2)

]
.

Because there is ϕk
i ≤ ψk

i , there is ψk
i − ϕk

i ≥ 0. Furthermore, because there is λ1 < λ2,
then λ1 − λ2 < 0, we can obtain br

i1
− br

i2
< 0. That is, the larger the λ, the greater the

impact of the average pricing on the participant’s pricing. As the mechanism ensures that
the average pricing is always higher than the average extra rewards. Therefore, the larger
the λ, the greater the impact of the average pricing on the pricing in this round, that is,
the higher the pricing. Then Theorem 1 is proved.

It is known from Theorem 1 that λ and br
i are positively correlated. With the increase

in λ, the weight of the influence of the average pricing on br
i increases. When reference

dependence is not considered, the user’s pricing br
i is only related to sensing cost Cr

i .
In PSM-RD, the user’s pricing br+1

i is influenced by the reference point. The following will
explore the trend of user pricing after applying PSM-RD through Theorem 2.

Theorem 2. For the same task sets T ⊆ T, the pricing of pi is b̃r
i when the reference dependence is

not considered, and the pricing of pi in PSM-RD is br
i , then br

i ≤ b̃r
i .

Proof of Theorem 2. A. When r = 1, because there is no average pricing and average extra
reward in the previous round, then there is no reference point, so b1

i = b̃1
i ;

B. When r ≥ 2, there is b̃r
i =

˜br−1
i = . . . = b̃1

i ,if reference dependence is not considered.

In PSM-RD, it can be known from Formula (5) that br
i =

(
λ ∗ ψk

i + γ ∗ ϕk
i

)
∗
∣∣Tr

i

∣∣.
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Because Tk
i = Tr

i , thus br
i = λ

bk
i
|Tk

i |
+ γ

Bk
i
|Tk

i |
. It can be known from Theorem 1 that

ϕk
i ≤ ψk

i , then ϕk
i ∗
∣∣∣Tk

i

∣∣∣ ≤ ψk
i ∗
∣∣∣Tk

i

∣∣∣, so Bk
i ≤ bk

i . Furthermore, because 0 < λ,γ < 1 and

λ + γ = 1, we can obtain γψk
i ≤ γbk

i . From br
i = λbk

i + γBk
i ≤ λbk

i + γbk
i = bk

i ≤ . . . ≤ b1
i =

b̃1
i = b̃r

i ,there is br
i ≤ b̃r

i (r ≥ 2). Combining A and B, we can see that br
i ≤ b̃r

i . Theorem 2
is proved.

It is known from Theorem 2 that the user’s pricing br
i after applying PSM-RD is lower,

It means that under the influence of the reference point, PSM-RD reduces the user’s pricing.
When the platform budget is fixed, the user decreases the pricing, the platform can select
more participants from the user sets. The number of sensing tasks completed will increase
accordingly.

3.2.2. Selecting Participants

After the user submits the pricing, the platform selects the participants. Because each
user participates in a different number of tasks and the sensing cost of completing the
sensing tasks is not equal, the user’s pricing is also different. Therefore, in the criteria for
selecting the participant, not only the pricing br

i of the task sets Tr
i , but also the value Vr

i of

the task sets should be considered, and ξr
i =

br
i

Vr
i

. When selecting the participant, the user
satisfied ξr

i = 0 is eliminated first. Then, the user whose value of ξr
i is smaller and ξr

i < 1

are selected in order from small to large. When ∑
pi∈Wr

br
i

Vr
i
> 1 stop selecting participants.

According to the participant selection criteria, for task sets Tr
i ⊆ T, assuming that

the number of participants without considering the reference dependence is S̃ , and there

is the jth participant pj that satisfies
j

∑
i=1,pi∈Wr

b̃r
i

Ṽr
i
=

j
∑

i=1,pi∈Wr
ξ̃r

i > 1 and
j−1
∑

i=1,pi∈Wr

b̃r
i

Ṽr
i
=

j
∑

i=1,pi∈Wr
ξ̃r

i ≤ 1. From the above participant selection criteria, it is known that S̃ = j− 1.

Under the PSM-RD mechanism, assuming that the number of participants is S, it can
be known from Theorem 2 that br

i ≤ b̃r
i . For the same task sets Tr

i ⊆ T,so Vr
i = Ṽr

i , then
br

i
Vr

i
≤ b̃r

i
Ṽr

i
. Therefore,

j−1
∑

i=1,pi∈Wr

br
i

Vr
i
≤

j−1
∑

i=1,pi∈Wr

b̃r
i

Ṽr
i
≤ 1, there is at least the jth participant pj

that satisfies
j

∑
i=1,pi∈Wr

br
i

Vr
i
≤ 1. Furthermore, pj is also the participant at this time, then

S = j > j− 1, thus S ≥ S̃ . Therefore, under the PSM-RD mechanism, more participants
meet the participant selecting criteria, and the number of participants completing the task
increases. Since each participant will complete at least one task, thus the number of tasks
being completed increases, and then the task completion rate increases.

3.3. Data Quality Assurance Mechanism Based on Loss Aversion

When the task completion rate is improved and the amount of data collected by the
platform is sufficient, the frequency of obtaining high-quality and low-quality data will
increase. To solve the problem of low-quality data submitted by the participants, this
section introduces the loss aversion theory of behavioral economics and designs QAM-LA
based on Section 3.2.

3.3.1. Evaluation of the Data Quality

According to the formula of the quality [26] , Qr
i is defined as the data quality of the

task sets Tr
i completed by the participant wi, denoted as Formula (6).

Qr
i = χr

i ∗ log(1 + J r
i ) (6)
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where χr
i is the weight of Tr

i , and J r
i is the average quality of Tr

i completed by wi, denoted
as Formula (7).

J r
i =

1∣∣Tr
i

∣∣ ∑
tk∈Tr

i

δr
ik (7)

where δr
ik is the data quality of wi completing a certain task tk. Assuming that Qr

max and
Qr

min denote the maximum and minimum data quality, respectively, then the range of Qr
i is

expressed as Formula (8).
Rr = Qr

max −Qr
min (8)

Assuming that the average quality of the data submitted by the participants is Hr,
denoted as Formula (9).

Hr =
∑pi∈Wr Qr

i

|Wr| =
∑pi∈Wr χi log

(
1 + 1

|Ti | ∑tk∈Ti
δik

)
|Wr| (9)

When Qr
i > Hr, there is Kr

i = Sdq. When Qr
i < Hr, assuming that the degree of

deviation between Qr
i andHr is Dr

i = |Qr
i −Hr|, denoted as Formula (10).

Dr
i =

∣∣∣∣Qr
i −

∑pi∈Wr Qr
i

|Wr|

∣∣∣∣ (10)

Furthermore, the maximum value of Dr
i is Dr

max. Assuming that the quality threshold

interval of platform is
(
Hr − D

r
max
3 ,Hr

]
, then Kr

i is denoted as Formula (11).

Kr
i =


Sdq, Qr

i ∈ (Hr,+∞)

Mdq, Qr
i ∈

(
Hr − D

r
max
3 ,Hr

]
Idq, Qr

i ∈
(
−∞,Hr − D

r
max
3

] (11)

3.3.2. Calculating Payment

After the participant submits data, the platform will pay extra rewards according to
Kr

i . For any participant wi ∈ Wr, when Kr
i = Sdq, its extra reward is Br

i = 1−θ
θ br

i , where
θ represents the proportion factor of the budget for selecting the winners to the platform
budget, and the extra reward is issued to wi at one time. When Kr

i = Mdq or Kr
i = Idq, the

platform will temporarily freeze its extra rewards. Only when wi continues to participate
in the sensing task, the accumulated extra reward reach 1−θ

θ ∗ br
i , and the current round

submits high-quality data, the platform will issue all the extra rewards temporarily frozen.
Taking into account the sensing cost and the platform budget constraint, when Kr

i = Mdq,

its extra reward is Br
i =

2(1−θ)
3θ br

i ; when Kr
i = Idq, its extra reward is Br

i =
1−θ
3θ br

i . Therefore,
Br

i is expressed as the Formula (12).

Br
i =



1− θ

θ
br

i , Kr
i = Sdq

2(1− θ)

3θ
br

i , Kr
i = Mdq

1− θ

3θ
br

i , Kr
i = Idq

(12)

Combined with Formula (12), assuming that the total payment for any participant
wi is Ar

i . When Kr
i = Sdq, it means that wi submits high-quality data in this round, then

Br
i = 1−θ

θ br
i . If F r

i = ði, then F r
i can be unfrozen, thus Ar

i = 1−θ
θ br

i + br
i + F r

i =
br

i
θ + F r

i .

If F r
i < ði, then F r

i cannot be unfrozen, thus Ar
i =

br
i

θ . When Kr
i = Mdq or Kr

i = Idq,
it means that wi did not submit high-quality data in this round, and Br

i can be obtained,
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but both Br
i and Fi are temporarily frozen by the platform, thus Ar

i = br
i . In summary, Ar

i
is expressed as the Formula (13).

Ar
i =


br

i
θ +F r

i , Kr
i = Sdq and F r

i = ði
bi

i
θ , Kr

i = Sdq and F r
i < ði

br
i , Kr

i = Mdq or Kr
i = Idq

(13)

3.3.3. Utility Analysis

It is known from Section 3.3.2 that the maximum benefit of any wi is Ar
max = br

i +
max

(
Br

i
)
+ ði. If wi does not submit high-quality data in this round, its total payment loss

is Lr
i = Ar

max −Ar
i , and it is defined as Formula (14).

Lr
i = br

i + max(Br
i ) + ði −Ar

i (14)

If wi fails to obtain extra rewards because of not submitting high-quality data, the total
payment obtained in this round is only close to the sensing cost Cr

i , the utility generated by
the total extra reward loss value is negative. To sum up, for any participant wi ∈ Wr, its
utility ur

i includes the positive utility brought by Ar
i and the negative utility N r

i brought by
Lr

i , which is expressed as Formula (15).

ur
i =

{
Ar

i − Cr
i , pi ∈WrandQr

i ∈ (Hr,+∞)
Ar

i − Cr
i +N r

i , pi /∈WrorQr
i /∈ (Hr,+∞)

(15)

where N r
i = (−λ) ∗

(
Ar

max −Ar
i
)β, and it is expressed as Formula (16).

N r
i = (−λ) ∗ [br

i + max(Br
i ) + ði −Ar

i ]
β (16)

From Formula (14), it is known that for any wi,Lr
i ≥ 0. When λ > 0, there is (−λ) ∗

Lr
i ≤ 0, then (−λ) ∗

(
Ar

max −Ar
i
)β

= (−λ) ∗
[
br

i + max
(
Br

i
)
+ ði −Ar

i
]β ≤ 0 , thusN r

i ≤
0. If the user is not selected as the participant, that is, when pi /∈ Wr, Ar

i = br
i = 0, then

ur
i = 0.

It is known from Definition 3 that when the value of
∫ r

i is closer to 1, it indicates that the
accumulated frozen extra rewards are closer to the unfreezing threshold for extra rewards ði.
The negative utility of the participant wi is more significant if the extra rewards temporarily
frozen are lost. Therefore, when the value of

∫ r
i is more significant, the probability of the

participant unfreezing the accumulated frozen extra reward is higher, and the probability
of improving the data quality in the next round is more increased.

Assuming Qr
i and Qr+1

i denote the data quality of the participant in the rth and
(r + 1)th rounds, respectively. When Kr

i 6= Sdq, Qr+1
i is simultaneously affected by Qr

i and∫ r
i . When Kr

i = Sdq or pi /∈ Wr,Qr+1
i is calculated according to Formula (6). Therefore,

Qr+1
i is expressed as the Formula (17).

Qr+1
i =

{ (
1 +

∫ r
i
)
∗Qr

i , Kr
i 6= Sdq

χr
i ∗ log

(
1 + J r

i
)
, Kr

i = Sdq
(17)

Combining Equations (15) and (17), it is known that the participant’s total utility ur
i

consists of positive and negative utility. Furthermore, Qr
i determines the quality, which

corresponds to different payments and extra rewards, and affects the total utility. Therefore,
Theorem 3 will illustrate the relationship between Qr

i , N r
i and ur

i .

Theorem 3. For any wi,the higher the data quality Qr
i , the higher N r

i and the higher ur
i . That is,

Qr
i ∝ N r

i and Qr
i ∝ ur

i .
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Proof of Theorem 3. Assuming that Cr
i1
= Cr

i2
and br

i1
= br

i2
, there is Qr+1

i1
> Qr+1

i2
, satisfies

F r
i1
= F r

i2
and Kr

i1
≥ Kr

i2
, then we know from Formula (13) that Ar

i1
≥ Ar

i2
> 0.

Because Lr
i = br

i + max
(
Br

i
)
+ ði −Ar

i and max
(
Br

i
)
= ði =

1−θ
θ br

i , thus Lr
i1
≤ Lr

i2
.

Combined with Formula (17), we know N r
i1
≥ N r

i2
. When Cr

i1
= Cr

i2
, because of Ar

i1
≥ Ar

i2
and N r

i1
≤ N r

i2
≤ 0, it is known from Formula (16) that ur

i1
≥ ur

i2
. That is, when Qr+1

i1
>

Qr+1
i2

, there are N r
i1
≥ N r

i2
,ur

i1
≥ ur

i2
. Theorem 3 is proved.

From Theorem 3, it is known that when the accumulated extra frozen rewards F r
i > 0,

no matter whether the quality of the data in the previous round is good or not, if the
participant does not submit high-quality data in the next round, the absolute value of the
negative utility will be more significant. Thus, the total utility is smaller. To avoid losses and
improve the utility, accumulated extra frozen rewards must be unfrozen. Participants must
enhance the data quality submitted in the next round to reach the unfreezing threshold for
the platform to issue an extra reward.

The total utility Ur of the platform is the difference between the total value of tasks
completed by all participants and the total payment paid by the platform, expressed as
Formula (18).

Ur = ∑
ti∈Tandpi∈Wr

vi − ∑
pi∈Wr

Ar
i (18)

3.4. A Detailed Example

This section will show the participant’s selection process with specific examples and
compare the situation without PSM-RD. According to the parameter values given in [64],
there are α = β = 0.88, λ = 2.25.

Assuming that the task sets is T = {t1, t2, t3, t4, t5}, the participant set is P = {p1, p2, p3,
p4, p5, p6} and the task value sets is V = {v1, v2, v3, v4, v5} = {5, 7, 10, 9, 14}. The specific
information is shown in Table 2.

Table 2. Task and user’s pricing.

Properties Tr
i bi Vi

p1 t1, t2 3 12
p2 t1, t2, t3 6 22
p3 t2, t3 4 17
p4 t1, t2, t4 5 21
p5 t3, t4 4 19
p6 t4, t5 7 23

3.4.1. Participant Selection without Reference Dependence

The specific process for selecting a participant is as follows when the reference depen-
dence is not considered.

Step 1: Calculating the pricing bi of each user for the unit value ξi, then ξ1 = b1
V1

=
3

5+7 = 3
12 = 0.2500, ξ2 = b2

V2
= 6

5+7+10 = 6
22 ≈ 0.2727, ξ3 = b3

V3
= 4

7+10 = 4
17 ≈ 0.2353, ξ4 =

b4
V4

= 5
5+7+9 = 5

21 ≈ 0.2381, ξ5 = b5
V5

= 4
10+9 = 4

19 ≈ 0.2105, ξ6 = b6
V6

= 7
9+14 = 7

23 ≈ 0.3043;
Step 2: Eliminating users with ξi = 0, and sort the values of ξi from small to large.

If the user’s ξi values are the same, sort them according to the i value from small to large,
then the order of ξi is ξ5, ξ3, ξ4, ξ1, ξ2, ξ6;

Step 3: Accumulating the value of ξi of each user in turn until
6
∑

i=1
ξi > 1. According to

Table 2, there are ξ5 + ξ3 + ξ4 + ξ1 = 0.9339 < 1, ξ5 + ξ3 + ξ4 + ξ1 + ξ2 = 1.2066 > 1;
Step 4: the sets of participants Wr = {p1, p3, p4, p5}. That is, the number of participants

is 4.
The user’s pricing process is shown in Figure 4.
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Figure 4. Pricing without reference dependence.

3.4.2. Participant Selection with Reference Dependence

It is known from Theorem 2 that the pricing br
i when reference dependence is consid-

ered is smaller than the pricing b̃r
i when reference dependence is not considered. In or-

der to simplify the calculation, assuming that b̃r
i = br

i + 1, then the user’s pricing are
{b1, b2, b3, b4, b5, b6} = {2, 5, 3, 4, 3, 6}. the specific process for selecting a participant is
as follows.

Step 1: Calculating the pricing bi of each user for the unit value ξi, then ξ1 = b1
V1

=
2

5+7 = 2
12 ≈ 0.1667, ξ2 = b2

V2
= 5

5+7+10 = 5
22 ≈ 0.2272, ξ3 = b3

V3
= 3

7+10 = 3
17 ≈ 0.1765, ξ4 =

b4
V4

= 4
5+7+9 = 4

21 ≈ 0.1905, ξ5 = b5
V5

= 3
10+9 = 3

19 ≈ 0.1579, ξ6 = b6
V6

= 6
9+14 = 6

23 ≈ 0.2609;
Step 2: Eliminating users with ξi = 0,and sort the values of ξi from small to large.

If the user’s ξi values are the same, sort them according to the i value from small to large,
then the order of ξi is ξ5, ξ3, ξ1, ξ4, ξ2, ξ6;

Step 3: Accumulating the value of ξi of each user in turn until
6
∑

i=1
> 1. According

to Table 2, there are ξ5 + ξ3 + ξ1 + ξ4 + ξ2 = 0.9188 < 1, ξ5 + ξ3 + ξ1 + ξ4 + ξ2 + ξ6 =
1.1797 > 1;

Step 4: the sets of participants Wr = {p1, p2, p3, p4, p5}. That is, the number of
participants is 5.

The user’s pricing process is shown in Figure 5.

Figure 5. Pricing with reference dependence.

The above process shows that the number of participants in PSM-RD is more significant
than that without considering reference dependence. Since each participant will complete
at least one task, the task completion rate increases, proving the effectiveness of PSM-RD.

4. Simulations and Evaluations

To illustrate the effectiveness of PSM-RD and QAM-LA, this section will verify the
theory through simulation experiments and compare it with the traditional ABSee mecha-
nism [65]. ABSee selects participants under budget constraints. It maximizes the generated
value by completing tasks and improves sensing data quality. Section 4.1 will introduce
the environment settings of simulation experiments, and Sections 4.2–4.4 will analyze the
experimental results.
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4.1. Experimental Environment Settings

This simulation experiment runs on the open-source Repast platform [66]. To en-
sure rationality and fairness, this experiment’s experimental environment and parameter
settings are the same as those of ABSee. Table 3 shows the details.

Table 3. Experimental parameter settings.

Symbol Value Description

ηi [1,5] Uniform distribution Average cost per task of pi
Ci ηi ∗ |Ti| The sensing cost of pi
χi [1,5] Uniform distribution The weight of the task ti
d 50 Distance threshold
θ (0,1) Budget allocation factor
λ (0,1) Exogenous reference point
γ (0,1) Endogenous reference point

Figure 6 shows the topology. Users and tasks are randomly distributed in the range
of 1 km × 1 km, and the effective distance for the user to complete tasks is 50 m, and the
same task can be selected and completed by multiple users. For each task, the quality of the
completed data obeys a uniform distribution between (0, 1), and all experimental results
are the average value over 100 runs.

4.2. Number of Participants

First, we explore the influence of θ and λ on the number of participants, with more
participants indicating higher task completion rates. When λ = 0, the participant may
not receive any extra reward. When λ = 1, the mechanism will fail. Therefore, λ ∈ (0, 1).
Similarly, when θ = 0, the participant may not receive any extra reward; the mechanism
will fail when θ = 1. Therefore, θ ∈ (0, 1). The fixed number of users is 100, and Figure 7
shows the change in the number of participants when both θ and λ are in (0, 1).

Figure 6. Experimental environment topology diagram.

It is known from Figure 7 that the number of participants gradually decreases as θ
trends to 0 and λ trends to 1. When θ trends to 1 and λ trends to 0, the number of participants
gradually increases, and the task completion rate is the highest under this condition.
If θ ∈ (0, 0.5] and λ are increased, the proportion of extra reward to the total platform
budget is relatively large because the user’s pricing is relatively high, and the number of
participants that can be selected gradually decreases. When θ gradually increases, and λ
gradually decreases, the number of participants gradually increases, which means that
the user’s pricing decreases. Moreover, when θ increases to 0.5 and λ decrease to 0.5,
the growth rate of the number of participants gradually increases. Then, we explore the
influence of the budget allocation factor θ on the number of participants. Setting that
number of tasks to 100 and the platform budget to 100, Figure 8 shows the relationship
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between the number of users and the number of participants for different θ values when
λ = 0.5.

Figure 7. Effects of θ and λ on the number of participants.

Figure 8. The number of users vs. the number of participants when λ = 0.5.

It is known from Figure 8 that when λ = 0.5, the number of participants increases
as the number of users increases. When θ ∈ (0, 0.5], the number of participants of PSM-
RD is relatively tiny; when θ ∈ (0.5, 1), the number of participants of PSM-RD increases
significantly, and as θ increases, more users are selected. Therefore, we focus on the case of
θ ∈ (0.5, 1).

Finally, we explore the influence of λ on the number of participants. To ensure the
comparability of the experimental results, the number of tasks is set to 100, and the platform
budget is set to 100. Figure 9 shows the relationship between the number of users and the
number of participants for different λ values when θ = 0.5.

Figure 9. The number of users vs. the number of participants when θ = 0.5.
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It is known from Figure 9 that if θ = 0.5, the number of participants increases as the
number of users increases. When λ ∈ [0.5, 1), the number of participants of PSM-RD is
relatively tiny. When λ ∈ (0, 0.5), the number of participants of PSM-RD is more significant,
and as λ decreases, more users are selected. Therefore, we focus on the case of λ ∈ (0, 0.5).

Once users are selected, changes in data quality will be explored. At the same time,
other parameters that vary with data quality are analyzed, including total platform pay-
ment, and participant utility.

4.3. Task Value

The value V(s) generated by the participant refers to the total value of all completed
sensing tasks, mainly affected by task completion rate and data quality. Figure 10 shows
the impact of the number of participants on the value generated by the participants when
λ = 0.1 and θ ∈ (0.5, 1).

Figure 10. The number of participants vs. V(s) when λ = 0.1.

Figure 10 shows that if λ = 0.1 and the number of participants is constant, V(s) in the
PSM-RD and the ABSee increases as θ increases, and V(s) in the PSM-RD is larger than the
ABSee. When θ is the same, as the number of participants increases, V(s) still increases,
but the magnitude of its increase gradually decreases. The reason is that under a specific
budget condition and the number of participants reaches 500, and the participants are
saturated. At this point, even if the number of users continues to increase, the number of
participants will remain relatively high.

Figure 11 shows that if θ = 0.9 and the number of participants is constant, V(s) in
the PSM-RD and the ABSee increases as λ increases, and V(s) in the PSM-RD is larger
than the ABSee. When λ is the same, as the number of participants increases, V(s) also
increases, but the magnitude of its increasing becomes smaller, and the reason is the same
as Figure 10.

Comparing Figures 10 and 11, we can see that the general trend of V(s) is consistent,
but the influence of λ on V(s) is more significant than that of θ on V(s). Figures 12–15
will explore how the value generated by the participant changes as the number of tasks
increases or the budget increases.

It is known from Figure 12 that when λ is the same, if θ = 0.9, the more the number
of tasks, the greater the V(s). In this figure, when the number of tasks is in [100,200],
the growth of V(s) is the fastest, and the growth trend gradually decreases as the number of
tasks increases. The reason is that when the number of tasks reaches 200, the platform’s cost
is relatively close to the platform budget. Even if the number of tasks increases, the platform
cannot select more participants.
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Figure 11. The number of participants vs. V(s) when θ = 0.9.

Figure 12. The number of tasks vs. V(s) when λ = 0.1.

Figure 13 shows that when θ is the same, if λ = 0.1, the more the number of tasks,
the larger the V(s). In this figure, when the number of tasks is in [100,200], the growth
of V(s) is the fastest, and the growth trend gradually decreases as the number of tasks
increases. The reason is the same as in Figure 12.

Comparing Figures 12 and 13, we can see that the effects of θ and λ on the trend of
V(s) are the same when the number of tasks is the same. The larger θ, the larger V(s)
generated by the participants. Moreover, λ has a more significant impact on V(s).

For the fairness of the comparison, when discussing the relationship between the
budget and the value generated by the participant, we set the number of tasks to 100 and
the number of participants to 1000, as with ABSee.

Figure 13. The number of tasks vs. V(s) when θ = 0.9.
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Figure 14. Platform budgets vs. V(s) when λ = 0.1.

It is obtained from Figures 14 and 15 that when G ∈ [1000,2000], V(s) grows faster.
When G > 2000, even if G increases again, V(s) increases less. Because in the area of 1 km
× 1 km, when the number of participants is 1000, the participant density is high, and most
tasks can be completed. So when G > 2000, increasing the budget does not increase the
number of tasks that can be completed. Therefore, V(s) growth is negligible. At the same
time, comparing Figures 14 and 15, we can see that the general trend of V(s) is consistent,
but the influence of λ on V(s) is more significant than that of θ on V(s). Based on the above
analysis, it is known that the participant generates more value after applying PSM-RD
than ABSee.

Figure 15. Platform budgets vs. V(s) when θ = 0.9.

Figure 16 shows the change in data quality based on the condition with the highest
number of participants, i.e., θ = 0.9 and λ = 0.1.

Figure 16. The comparison of data quality between QAM-LA and ABSee.
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It can be seen from Figure 16 that the data quality of the AB-See mechanism fluctuates
between [6, 7], and the data quality of QAM-LA is stable above 7. That is, the data quality
in QAM-LA is better than that of the ABSee mechanism. The reason is that participants
with substandard quality in QAM-LA will improve the data quality in the next round,
so the overall level of data quality is higher than that of the ABSee mechanism. If more
participants did not submit high-quality data in certain rounds, the average data quality
decreased slightly. In the next round, there will be more participants to improve the data
quality, so there will be a fluctuating trend.

Figure 17 shows the influence of number of participants and number of tasks on the
total utility of participants.

Figure 17. The influence of the number of participants and number of tasks on the total utility
of participants.

It can be seen from Figure 17 that when the number of participants is constant, the total
participant utility negatively correlates with the number of tasks. The reason is that when
a single participant selects many tasks, the probability of submitting high-quality data is
relatively low. The total loss value increases negative utility, which leads to a decrease in
total utility. When the number of tasks is constant, the number of participants increases
as the number of users increases, and the sum of the negative utility generated increases,
resulting in a decrease in the total utility of participants.

4.4. Total Platform Payment

In the ABSee mechanism, the total platform budget is set at 50 and 100, respectively,
and the total platform payment is analyzed. Under the same setting conditions, the total
platform payment of QAM-LA is shown in Figure 18.

Figure 18. The relationship between the number of participants and the total platform payment.

It can be seen from Figure 18 that when the total platform budget is 50 or 100, the total
platform payment increases with the number of participants. Under QAM-LA, the total



Mathematics 2023, 11, 2288 20 of 23

platform payment is close to the platform budget. On the premise of making full use of the
platform budget, it can create more value for the platform.

Figure 19 shows the influence of the number of participants and tasks on the total
utility of the platform.

Figure 19. Effects of the number of participants and the number of tasks on the total utility of platform.

It can be seen from Figure 19 that when the number of participants is constant, the total
utility of the platform increases as the number of tasks. The reason is that when the number
of tasks is larger, the average number of tasks completed by the participant is larger,
and more value is created for the platform, so the total utility of the platform is higher.
When the number of tasks is constant, the total utility of the platform increases as the
number of participants. The reason is that, as the number of users increases, the number of
participants will also increase. When more tasks are completed, the platform creates more
value, so the total utility of the platform is higher.

In this section, we use the same experimental parameter settings as the comparative
paper [65] and ensure that the evaluation method for data quality is the same. This
paper explores the impact of various factors on the incentive effect in this mechanism,
such as θ, λ, number of users, etc. Then this paper compares the ABSee mechanism and
analyzes the results regarding participant number, task value, data quality, total platform
payment, etc. The simulations and evaluations show that the PSM-RD mechanism can
increase the number of participants, thereby increasing the total value of completed tasks
and the QAM-LA mechanism can improve data quality; however, the platform’s reward
expenditure is higher in this mechanism than in the ABSee mechanism. This is because
increasing the number of participants also means more rewards, and higher data quality
also raises the spending on extra rewards. The platform’s budget has been fully utilized.
In summary, the mechanism proposed in this paper has an overall better incentive effect
than the ABSee mechanism.

5. Conclusions

Addressing the problem of low-quality data submitted by participants, this paper
designs incentive mechanisms under budget constraints, including the PSM-RD and the
QAM-LA. The simulation results show that, compared with the ABSee mechanism, data
quality has improved by 17%, and the value of completed tasks has increased by at least 40%.
In user pricing, the PSM-RD considers the reference dependence, and selects users with
the ratio of the user’s pricing to the task’s value. When paying participants, the QAM-LA
determines extra rewards based on the data quality, using the participant’s sensitivity factor
to improve the participant’s data quality. However, more participants mean more payment
expenses and higher data quality means more extra rewards. Therefore, the mechanism
proposed in this paper also increases budget expenses to some extent.

In addition, this paper only considers the endogenous and exogenous reference points,
and multiple reference points may influence individual decision-making behavior [67,68].
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In this case, whether multiple reference points will still impact user decision-making in the
same way still requires further research. Furthermore, the results presented are generated at
each specific value of λ and θ. Future research will also focus on finding a combined search
algorithm for these two parameters to improve task completion rate and data quality.
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35. Wang, T.; Xu, Y.; Withanage, C.; Lan, L.; Ahipaşaoğlu, S. D.; Courcoubetis, C. A. A fair and budget-balanced incentive mechanism

for energy management in buildings. IEEE Trans. Smart Grid 2016, 9, 3143–3153. [CrossRef]
36. Zheng, Z.; Wu, F.; Gao, X.; Zhu, H.; Tang, S.; Chen, G. A budget feasible incentive mechanism for weighted coverage maximization

in mobile crowdsensing. IEEE Trans. Mob. Comput. 2016, 16, 2392–2407. [CrossRef]
37. Lin, Y.; Cai, Z.; Wang, X.; Hao, F. Incentive mechanisms for crowdblocking rumors in mobile social networks. IEEE Trans. Veh.

Technol. 2019, 68, 9220–9232. [CrossRef]
38. Zhong, S.; Tao, D.; Luo, H.; Obaidat, M. S.;Wu, T. Staged incentive mechanism for mobile crowd sensing. In Proceedings of the

2018 IEEE International Conference on Communications (ICC), Beijing, China, 16–18 August 2018; pp. 1–5.
39. Shi, Z.; Yang, G.; Gong, X.; He, S.; Chen, J. Quality-aware incentive mechanisms under social influences in data crowdsourcing.

IEEE/ACM Trans. Netw. 2021, 30, 176–189. [CrossRef]
40. Zhou, R.; Li, Z.; Wu, C. A truthful online mechanism for location-aware tasks in mobile crowd sensing. IEEE Trans. Mob. Comput.

2017, 17, 1737–1749. [CrossRef]
41. Cai, Z.; Duan, Z.; Li, W. Exploiting multi-dimensional task diversity in distributed auctions for mobile crowdsensing. IEEE Trans.

Mob. Comput. 2020, 20, 2576–2591. [CrossRef]
42. Jaimes, L. G.; Vergara-Laurens, I. J.; Raij, A. A survey of incentive techniques for mobile crowd sensing. IEEE Internet Things J.

2015, 2, 370–380. [CrossRef]
43. Liu, J.; Yang, Y.; Li, D.; Deng, X.; Huang, S.; Liu, H. An incentive mechanism based on behavioural economics in loca-tion-based

crowdsensing considering an uneven distribution of participants. IEEE Trans. Mob. Comput. 2020, 21, 44–62.
44. Wu, J.; Xiao, P.; Huang, H.; Gou, F.; Zhou, Z.; Dai, Z. An artificial intelligence multiprocessing scheme for the diagnosis of

osteosarcoma MRI images. IEEE J. Biomed. Health Inform. 2022, 26, 4656–4667. [CrossRef]
45. Jaimes, L. G.; Vergara-Laurens, I.; Chakeri, A. SPREAD, a crowd sensing incentive mechanism to acquire better representative

samples. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communication Workshops
(PERCOM WORKSHOPS), Budapest, Hungary, 24–28 March 2014; pp. 92–97.
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