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Abstract: This paper presents a concise and orderly methodology to obtain universal solutions to
different problems in science and engineering using the nondimensionalization of the governing
equations of the physical–chemical problem posed. For its application, a deep knowledge of the
problem is necessary since it will facilitate the adequate choice of the references necessary for
its resolution. In addition, the application of the methodology to examples of coupled ordinary
differential equations is shown, resulting in an interesting tool to teach postgraduate students in
the branches of physics, mathematics, and engineering. The first example used for a system of
coupled ordinary differential equations is a model of a continuous flow chemical reactor, where
it is worth noting; on the one hand, the methodology used to choose the reference (characteristic)
time and, on the other, the equivalence between the characteristic times obtained for each one of
the species. The following universal curves are obtained, which are validated by comparing them
with the results obtained by numerical simulation, where it stands out that the universal solution
includes an unknown that must be previously obtained. The resolution of this unknown implies
having a deep knowledge of the problem, a common characteristic when using the methodology
proposed in this work for different engineering or physicochemical problems. Finally, the second
example is a coupled oscillator, where it is worth noting that the appearance of characteristic periods
that implicitly or explicitly affect the particles’ movement is striking.

Keywords: nondimensionalization; universal solution; dimensionless groups; numerical simulation;
differential equations; engineering problem

MSC: 00A73; 00A69; 00A79

1. Introduction

The technique of nondimensionalization of a physical–chemical problem in engineer-
ing, either of an equation or of a system of equations with the mathematical formulation in
partial derivatives or ordinary differential equations, is a well-known methodology nowa-
days since it allows obtaining the dimensionless groups that provide essential information
on the weight of the variables in the problem [1–10].

This procedure is explained in many books on fluid dynamics and heat transfer [5,7,11,12]
as an application of dimensional analysis [13,14] that allows qualitative information to be
obtained with a few simple mathematical operations. However, the scientific literature
relativizes the importance of this technique for problems containing coupled or not ordinary
differential equations.
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Currently, this methodology has been developed and applied to different physical
and chemical problems with ordinary differential equations, where the concepts of dis-
crimination and normalization are introduced [15–17]. The information provided by the
solutions after the application of this methodology is very useful since it allows us to know
the weight of a variable in the problem posed or how the different variables involved
in the problem should be grouped. After verifying its usefulness, this methodology had
to evolve to obtain universal solutions to the problems posed. Thus, for example, it has
been used to obtain universal curves in the problem of diffusion of chlorides in reinforced
concrete structures saturated with water subjected to saline environments, where the bound
chlorides present a non-linear relationship [18]. In this manner, through the nondimension-
alization of the mathematical model, formed by five coupled equations with five unknowns,
and the application of the π-theorem, an abacus of universal curves is created that relates
the characteristic time of the process, the local instantaneous chloride concentration, and
the total chloride that penetrates the concrete. In addition, expressions relating the char-
acteristic time of the process and the different types of isotherms for the calculation of
the concentration of bound chlorides are calculated. Solving this problem by using the
universal solution provided saves days of numerical simulation since the problem can be
solved in a few minutes, obtaining the same results as in the simulation with relative errors
of less than 0.6% [18].

Another discipline in which this methodology has been successfully used is soil
consolidation within the field of ground engineering. Thus, universal curves have been
obtained for the characteristic consolidation time and for the evolution of the average degree
of settlement, both in linear models in rectangular and cylindrical 2D coordinates [19] and in
1D models with a marked non-linear character [20,21]. The applications of these universal
curves are very useful for the geotechnical engineer. On the one hand, 2D consolidation
models in radial coordinates make it possible to address real cases where soil consolidation
is accelerated by arranging stone columns, sand drains, or prefabricated vertical drains
(PVDs) on the ground, allowing the evacuation of interstitial water occur, both in the
vertical (vertical consolidation) and in the horizontal direction (radial consolidation). On
the other hand, nonlinear consolidation models add a constitutive law for the variation of
the hydraulic conductivity with the void ratio (which, in turn, is related to the soil effective
stress by another different constitutive relationship). Therefore, by using the universal
curves of characteristic time and average degree of settlement [21], it is possible to address
an inverse problem [22] in which, from a simple oedometer test, we obtain the initial
hydraulic conductivity of the soil sample as well as its variation during the consolidation
process. At this point, it is important to note that in the oedometer test (based on the linear
consolidation theory and normalized in ASTM D2435), it is only possible to obtain the soil
compressibility curve (relationship between the void ratio and the effective stress) and
consolidation time. In this test, hydraulic potentials, flow rates, or evacuated water velocity
are not measured, so hydraulic conductivity cannot be determined. However, the existence
of universal curves for the non-linear problem and their use in an inverse methodology,
based on the application of two successive load steps in the oedometer test, have allowed
obtaining this property in a very precise way [22].

The objective of this paper is to expose the nondimensionalization methodology and
its subsequent application to obtain universal solutions concisely applied to systems of
coupled ordinary differential equations. A tool that can be very useful when teaching
postgraduates in the fields of physics, mathematics, and engineering. The creation of
universal curves can be made by numerical simulation. In this paper, we use the Network
Simulation Method that has been used in numerous engineering problems.

2. Basis of Discriminated Nondimensionalization

As with dimensional analysis, classical nondimensionalization is usually applied to
complex problems governed by partial differential equations [6,7,12]. These are applications
to problems governed by ordinary differential equations or systems of these equations.
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The first step to carry out classical nondimensionalization, and the only requirement,
is to choose the reference magnitudes that allow defining the dimensionless variables.
The references are magnitudes with the same dimension as the corresponding variables,
which makes them dimensionless. Since there may be different options for choosing these
references, depending on whether one or the other is chosen, the resulting dimensionless
groups are expressed in different ways, and it is difficult to interpret its physical meaning.
The use of discrimination [12,17,23–26] can help us choose the best reference, which leads
to the solution through the most precise dimensionless groups, as there could be different
references for each of the coupled ordinary differential equations or several characteristic
times. Choosing the references so that the variation range of the numerical value of the
dimensionless variables that they define is the same is the most appropriate since it allows
us to obtain monomials with the same range of variation. If this range covers the numerical
interval [0–1], we will talk about normalized dimensionless variables.

The steps to perform a discriminated nondimensionalization can be summarized as
follows [17,26]:

i) Choice of appropriate references

These can appear explicitly in the statement of the problem, or be hidden magnitudes
with a clear physical meaning. In the latter case, they are unknowns whose order of magni-
tude is determined after nondimensionalization. The references are related to each other
insofar as they refer to values of the variables associated with the same physical interval
of the independent variable. This implies that the range of variation of the dimensionless
variables that define the references is confined to the interval of values [0–1].

In problems with an asymptotic solution, references close to the limit are taken for the
dependent variable, making it possible to define a finite and well-discriminated reference
for the independent variable. This does not modify the range of values of the dimensionless
variables [0–1]. The choice of this reference value may vary depending on the study
problem, as occurs in the example shown in this work.

ii) Definition of dimensionless variables and formation of dimensionless governing equations

The dimensionless variables are the ratios between the dimensional variables and their
respective references. The introduction of these variables in the dimensional governing
equations converts the latter into dimensionless. Each addend of the latter is formed by the
product of two factors, one constituted by the dimensionless variables and their derivatives
and another constituted by a grouping of physical parameters of the problem and references,
called coefficients. Since the first factor is assumed to be of order of magnitude unity, it
should imply that the coefficients are of the same order of magnitude.

iii) Obtaining the dimensionless groups

Dimensionless groups are obtained by the ratios between the coefficients, so there
can be at most the number of addends in the dimensionless equation minus one. Some of
the groups may appear in more than one equation in systems of coupled equations. The
groups can finally be manipulated among themselves with simple mathematical operations
to be expressed in the most convenient way, for example, by having each unknown appear
in only one group;

iv) Existence of m groups with a different unknown each (πu), and n groups without
unknowns (πw)

The solution for each unknown is expressed explicitly as a function of the groups that
do not contain unknowns, that is, in the form of

πu,i (1≤i≤m) = Ψi(πw,1, πw,2, . . .πw,n) (1)

where Ψi, is an arbitrary function of the n groups without unknowns (πw). When the
groups are of unit order of magnitude, the arbitrary function will also be of this order
of magnitude.
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3. Network Simulation Method

The Network Simulation Method [27–29] is a mathematical modeling technique used
in the simulation and analysis of complex systems, especially those with multiple variables
and non-linear relationships. This technique is based on the construction of an electrical
network of interconnected nodes, which represents the physical medium or system in
which the variables of interest (pressure, humidity, velocity, etc.) and the relationships
between them are defined.

Once the network is built, a set of mathematical rules that describe the behavior in
each node, as well as the interaction between them (through the network links), is applied.
These rules can be more or less simple, depending on the complexity of the system that
is being simulated, but in engineering problems, such as those presented in this article
and that can be described by sets of mathematical equations, it is common to establish
relationships (or analogies) of an electrical type. In this way, phenomena such as heat or
water storage can be represented by electrical capacitors since the behavior equations of
these and the storage phenomena that occur in nature are similar. Similarly, a variable
that remains invariant over time (for example, a constant pressure) can be represented by
a battery (constant voltage source). The same is true for a flow, where we would use a
current source. For those situations where the variables are not constant (either in stationary,
transient, or any other situations), it is always possible to specify, for both voltage and
current sources, the desired behavior pattern. On the other hand, the greater or lesser
opposition of a physical medium to the transfer (for example, of heat) or diffusion (of a gas
or the excess pore pressure dissipation in a porous medium) is reproduced in a simple way
by electrical resistors [28].

The simulation is carried out by iterating the established mathematical rules, both
for each node and for the network links. For those networks in which the electrical
analogy is used, it is common to make use of the powerful electrical circuit resolution
software available today, such as NgSpice [30] (freely distributed) or PSpice [31], which
have extensive libraries with all kinds of electrical devices (capacitors, sources, resistors,
diodes, transistors, etc.) and always provide the exact solution of the electrical circuit, both
steady state and transient (if any). These libraries include algorithms based on Nagel’s
thesis [32], including trapezoidal integration [29], Gear’s fixed-time methods [33], and the
Runge–Kutta algorithm. These methods increase their precision and efficiency by reducing
the local truncation error, providing stability in the convergence of the numerical solution.

The Network Simulation Method has been used in a wide variety of applications,
including the simulation of economic [34–36], social [37], and biological [38] systems,
among others. Within the fields of physics and engineering, the network method has
been successfully applied to problems of coupled flow and heat transport problems [39],
electrochemical reactions [40,41], oxidation or corrosion problems [42], membranes [43], and
soil mechanics [19], among others. In any case, the method requires a deep knowledge of
the problem or system to be studied, especially when building a precise and representative
network. For this, the mesh designer will have to carefully choose the geometry to be
used (1D, 2D, 3D, etc.; cartesian, cylindrical, or spherical coordinates; etc.), as well as an
appropriate grid (a finer grid leads to more accurate solutions but at the cost of greater use
of resources and computing time). Furthermore, a poor network design can lead to wrong
results or make convergence difficult.

In this article, the Network Simulation Method has been used as a numerical tool
to solve the proposed physical–mathematical problems, with a double purpose: first, to
perform the necessary analyzes and verifications to check that the proposed mathematical
model is correct and, secondly, to carry out the numerous simulations necessary, based on
the dimensionless groups obtained by means of the discriminated nondimensionalization
technique, to obtain the universal curves that provide the solutions to the variables of inter-
est. The models used in this paper are described below. For the first example, continuous
flow chemical reactor, the circuit was made up of three networks where the time derivative,
in each of the equations, was implemented with a capacitor and the rest of the addends as
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non-linear dependent current sources. The second example is a coupled oscillator, where
the addends are implemented as non-linear dependent current sources; however, the sec-
ond time derivative is more complicated. Its resolution is made by means of two subcircuits
that include linear current-controlled collage sources, one for each time derivative.

4. Nondimensionalization of Systems of Coupled Ordinary Differential Equations

This section presents the application of the nondimensionalization methodology in
order to clarify the mechanism for its correct use. The two cases chosen cover different
behaviors in time so that one of them has a clear asymptotic trend in time while the other
has an oscillatory nature, both described by systems of coupled equations.

4.1. Example of a Continuous Flow Chemical Reactor

As an example of nondimensionalization of systems of coupled ordinary differential
equations, a three-species chemical reaction occurring in a continuous flow reactor will be
used, where some species disappear (reactants) and others appear (products). The rate at
which the concentration of reactants decreases, or products increase in a chemical reaction
is known as reaction rate. These problems are governed by coupled non-linear equations
formulated in first derivatives and are given by the following expression:

a Reactants → b Products

v = −1
a

d[Reactants]
dt

=
1
b

d[Products]
dt

Another form of expressing this is through the rate equation

v = k[Reactants]n

where k is the rate constant, and n is the order of reaction, whose value is determined
experimentally and does not have to coincide with the stoichiometric coefficients.

In this work, we will study a direct combination reaction, also known as a synthesis
reaction (A + B→ C) in a continuous flow reactor, Figure 1, since it is a typical example of
the system of coupled ordinary differential equations. An example could be the exothermic
reaction for the formation of the barium fluoride salt, where α and β are the partial order
of reaction for each reactant.

Ba + F2 → BaF2

v = −d[Ba]
dt

= −d[F2]

dt
=

d[BaF2]

dt
= k[Ba]α[F2]

β
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Figure 1. Continuous flow reactor for a synthesis reaction.

The general model presented in this study for this type of problem, although appar-
ently simple as it contains only three compounds, requires a good level of reflection and
understanding of the chemical process for the correct application of the normalization in
order to obtain interesting results. The governing equations show that the reactants will
gradually disappear until a stationary value is reached, while the products will stabilize
their value with the same temporal cadence. Equation (2) shows the chemical reaction for
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the synthesis reaction, while Equations (3)–(5) are the coupled governing equations for the
general case.

A + B
kF→ C (2)

dA
dt

= −kFAαBβ − r(A−Ao) (3)

dB
dt

= −kFAαBβ − r(B− Bo) (4)

dC
dt

= kFAαBβ − rC (5)

where the coefficient kF is the formation reaction constant or formation rate constant, and
α and β are the partial order of reaction for each reactant. On the other hand, Ao and Bo
are the reactant concentrations at the input port, where Co takes a null value. Finally, r is
the flow rate.

If the steps specified in Section 2 are applied, firstly, the appropriate references must
be defined to then establish the dimensionless variables. With this, the dimensionless
variables are

A′ =
A
Ao

B′ =
B
Bo

C′ = ∆C′ =
∆C
∆CF

=
C
CF

t′ =
t
to

(6)

The dimensionless variable chosen for product C is its increase, ∆C, since this varies
from a null value to its final concentration, CF, when the steady state is reached. On
the other hand, given the nature of the proposed chemical reaction, the value of the
increase in C coincides with the values of decrease in A and B. In previous works, as for
the reference chosen for the dimensionless time, given that the evolution curves of the
compounds are asymptotic, a certain fraction of their evolution interval has been taken as
a reference since some variables tended to disappear or the final value they would reach
was known [16,18,21]. In this case it is not possible since the stationary values that both
reactants and products, AF, BF, and CF, will have are unknown. Thus, in this problem,
we will take as reference the time in which the reaction rate is zero, or takes a very small
value, i.e., v =

∣∣∣dA
dt

∣∣∣=∣∣∣dB
dt

∣∣∣=∣∣∣dC
dt

∣∣∣≈ 0 . By introducing the above dimensionless variables
into Equations (3)–(5), the dimensionless governing equations are written in the form[

Ao

to

]
dA′

dt′
= −

[
kFAα

o Bβ
o

]
A′αB′β − [rAo]A′ + [rAo] (7)

[
Bo

to

]
dB′

dt′
= −

[
kFAα

o Bβ
o

]
A′αB′β − [rBo]B′ + [rBo] (8)

[
CF

to

]
dC′

dt′
=
[

kFAα
o Bβ

o

]
A′αB′β − [rCF]C′ (9)

Each of these equations contains three coefficients

Ao

to
, kFAα

o Bβ
o , rAo

Bo

to
, kFAα

o Bβ
o , rBo

CF

to
, kFAα

o Bβ
o , rCF



Mathematics 2023, 11, 2303 7 of 28

Which give rise to two dimensionless monomials. Operating, in each case, with the
second coefficient, the resulting monomials are

π1,A =
[
tokFAα−1

o Bβ
o

]
π2,A =

[
r

kFAα−1
o Bβ

o

]

π1,B =
[
tokFAα

o Bβ−1
o

]
π2,B =

[
r

kFAα
o Bβ−1

o

]

π1,C =

[
tokFAα

o Bβ
o

CF

]
π2,C =

[
r CF

kFAα
o Bβ

o

]
Applying the π-theorem, the same characteristic time can be expressed, from each of

the equations, in the forms

to ∼
[

1

kFAα−1
o Bβ

o

]
Ψa

(
r

kFAα−1
o Bβ

o

)
(10)

to ∼
[

1

kFAα
o Bβ−1

o

]
Ψb

(
r

kFAα
o Bβ−1

o

)
(11)

to ∼
[

CF

kFAα
o Bβ

o

]
Ψc

(
r CF

kFAα
o Bβ

o

)
(12)

where Ψa, Ψb and Ψc are unknown functions of the arguments. Since the characteristic
time can be calculated with the three previous expressions, we choose the one that does not
contain unknowns, that is, it could be calculated with expressions (10) and (11). It is easy to
verify the results obtained by means of the study shown in Table 1, where the value of the
functional remains constant and the characteristic time will increase or decrease depending
on the value of kF.

Table 1. Cases for chemical reactions with three chemical compounds.

Case Ao Bo α β kF r to (s)

1 4 5 3 2 2 3 0.26
2 4 5 3 2 4 6 0.14
3 4 5 3 2 1 1.5 0.48
4 4 5 3 2 2 6 0.16

Note: To obtain the value of to, the time when v is less than one thousandth has been considered.

First, we compare the results between cases 1 and 2, where the value of the character-
istic time is approximately reduced by half since kF is double and the functional remains
constant, Figures 2 and 3. Similarly, the same occurs in the comparison between cases 1 and
3, where the characteristic time is doubled as kF is halved, Figures 2 and 4. In all the above
cases, since the value of the functional remains constant, the stationary values for the three
species, A, B, and C, are always the same, changing only the value of the characteristic
time. Thus, Figure 5 shows how when varying the functional, changing only the value of r,
both the characteristic time and the stationary values of all species are modified. Finally, as
previously stated, the velocity with which the species change in absolute value is the same,
as can be seen in Figures 2–5.
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4.2. Example of a Coupled Oscillator

As a second example of a coupled system of differential equations, now with oscillatory
tendencies in time, we present a system of coupled oscillators formed by two masses
connected by three springs, located on a horizontal surface without friction, attached to
opposite walls.
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In this system, the mass m1 is connected to two springs, one with a constant k1 and the
other with a constant kc, while the mass m2 is connected to two springs, one with a constant
kc, which extends between m1 and m2, and the other with a constant k3 connecting m2 to a
fixed point. The masses have displacements x1 and x2, respectively, with respect to their
equilibrium positions. The schema of this system is shown in Figure 6.
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The figure shows the positions of both masses in their oscillatory motion around the
equilibrium position and the forces to which they are subjected. The governing equations
of the system, which govern the motion of the masses, are as follows:

m1
d2x1

dt2 = −k1x1 + kcx2 − kcx1 (13)

m2
d2x2

dt2 = −k2x2 − kcx2 + kcx1 (14)

As shown in the figure, in these equations x1 and x2 represent the position of the
masses at a given instant, displaced from their equilibrium position, where k1, k2, and kc
are the elastic constants of the springs.

It is important to note that these two equations are coupled, i.e., the position and acceler-
ation of one mass depend on the position and acceleration of the other mass. Therefore, it is
necessary to solve these equations simultaneously to obtain the solutions of x1(t) and x2(t).

Since the motion of the masses is related to each other, it is also convenient to use
another equation combining (13) and (14):

m1
d2x1

dt2 + m2
d2x2

dt2 = −k1x1 − k2x2 (15)

This last equation is an equation, in which the constant kc is not present since it
is an equation that represents the motion of the center of mass, so when it comes to its
dimensionless form, we will take into account that there is only one characteristic time, t0,
and as we will see, a more simplified monomial will emerge from it.

Applying again for this problem the steps described in Section 2 of this work, the
first aim is to adopt the appropriate references to obtain the dimensionless equations. This
step is one of the most important in the nondimensionalization process, which requires a
deep knowledge of the problem addressed since they will be key in the solution reached
following this process. For the x-coordinate, the reference will be xM = x1,0 + x2,0, that is,
the sum of the initial displacements of the masses, so that we ensure that the amplitude
of the motion of each mass will never be greater than that, confining the dimensionless
variables for the length to the interval [0–1] and for the time references, we adopt two
characteristic times since the motion of both is coupled, affecting each other’s oscillation.
Two references have been chosen as t0,H and t0,L, which represent the lowest and highest
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period values, respectively, which will be the ones we seek in our solution. With this choice
for the references, the dimensionless variables are as follows:

x1
′ =

x1

xM
x2
′ =

x2

xM
t1
′ =

t
t0,H

t2
′ =

t
t0,L

(16)

Introducing these variables in (13), (14), and (15), they can be rewritten in their
dimensionless form as follows:[

m1xM

t2
0,H

]
d2x1

′

dt1
′2

= −k1xMx1
′ + kcxMx2

′ − kcxMx1
′ (17)

[
m2xM

t2
0,L

]
d2x2

′

dt2′
2 = −k2xMx2

′ − kcxMx2
′ + kcxMx1

′ (18)

[
m1xM

t2
0

]
d2x1

′

dt1
′2

+

[
m2xM

t2
0

]
d2x2

′

dt2′
2 = −k1xMx1

′ − k2xMx2
′ (19)

Each equation contains the following coefficients, from which we will form the mono-
mials that govern the solution of the problem:

m1xM

t2
0,H

, k1xM, kcxM

m2xM

t2
0,L

, k2xM, kcxM

m1xM

t2
0

,
m2xM

t2
0

, k1xM, k2xM

From which the following dimensionless monomials can be formed:

π1 =
k1t2

0,H

m1
π2 =

kc

k1

π3 =
k2t2

0,L

m2
π4 =

kc

k2

π5 =
m1

m2
π6 =

k1

k2

To obtain π5, it has been taken into account that in expression (19) there is only one
characteristic time, as mentioned above, leaving this monomial more simplified.

Applying then the π theorem, similar to the previous example, the solution for the
characteristic times of each mass can be expressed as follows:

t0,H =

√
m1

k1
Ψ1

(
kc

k1
,

m1

m2
,

k1

k2

)
(20)

t0,L =

√
m2

k2
Ψ2

(
kc

k2
,

m1

m2
,

k1

k2

)
(21)

In order to verify the solutions obtained for the characteristic times of the two masses
through the nondimensionalization process, the parameters of the system, i.e., the elastic
constants of the springs, the masses and the initial positions of each of them are varied,
intentionally maintaining the ratios between some of them. Therefore, several cases are
presented in Table 2 to check this point. We will see the accuracy of the solutions obtained
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with the nondimensionalization process from the numerical simulation of the analytical
solutions from which we will extract the periods of each movement.

Table 2. Cases for the coupled oscillator.

Case 1 2 3 4 5 6 7 8 9 10 11

k1 10 10 10 10 10 20 10 20 5 5 5
kc 0.5 0.5 0.5 1 4 0.5 0.5 0.5 10 10 10
k2 6 6 6 6 6 6 12 12 5 10 5
m1 1 4 1 1 1 1 1 1 1 1 1
m2 3 3 12 3 3 3 3 3 1 1 0.5
x1,0 1 1 1 1 1 1 1 1 1 1 1
x2,0 1 1 1 1 1 0.5 1 0.5 1 1 1

t0,L 1.9390 3.8551 1.9391 1.8886 1.6507 1.3885 1.9391 1.3885 1.2555 1.1916 1.0130
t0,H 4.2827 4.3122 8.5106 4.1477 3.7230 4.2827 3.0769 3.0769 2.8121 2.3408 2.4637
Ψ1 6.1315 6.0954 6.1320 5.9722 5.2200 6.2096 6.1320 6.2096 2.8074 2.6645 2.2651
Ψ2 1.2363 1.2448 2.4694 1.6933 3.0398 1.2363 0.6281 0.6281 3.9770 2.3408 3.4841

The first thing it can be observed from the data in Table 2 is how in cases 1, 3, and 7,
keeping the ratio between m1 and k1 constant, the analytical solution extracted from the
simulation gives the same period for the three assumptions, t0,L, and from the solution
obtained through the nondimensionalization process it should, also, give the same value
for the arbitrary function Ψ1. It can be seen that this is correct since the values of Ψ1 are
practically the same in these three cases, which have very small variations in the third and
fourth decimal places, but there are differences in the Ψ2 function since the arguments
of the function have changed considerably. However, it is observed that between cases
1 and 3, the characteristic time t0,H has been duplicated, and, therefore, so does the Ψ2
function, which is consistent with the doubling of π5, on which this function depends. The
simulations of case 1 are shown in Figure 7a; its Fourier frequency spectrum is shown in
Figure 7b, from which the periods of both masses have been extracted from their frequency.
Furthermore, Figure 8 shows case 3.

The rest of the cases validated show similar behaviors to the one mentioned in the
previous paragraph; in fact, it can be observed how the value of the Ψ1 function has a value
close to 6 in all cases from 1 to 8, where either the same ratio between m1 and k1 has been
maintained or the period extracted in the Fourier frequency simulation for m1 has varied
in the same proportion, thus demonstrating the accuracy of the solution obtained by the
nondimensionalization process.

Finally, in cases 9, 10, and 11, ratios different from the previous cases have been used,
so the values of the arbitrary functions are different, although maintaining the same trend
in the accuracy of the solutions reached by the methodology presented in this work.
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5. Functionals Adjustment: Universal Curves

The information provided by the methodology shown in Section 2 and applied in
Section 4 is very important since the grouping of the variables in the monomials provides
us with information on the weight that a variable has on the problem posed. However,
the purpose of this methodology is to obtain universal solutions to different science and
engineering problems. To do this, the following the steps shown in Section 2, two more
should be added:
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v) Obtaining the functionals

Applying the π-theorem in the previous step, we have obtained expressions of the form
π1 = Ψ (π2, π3, . . . ., πn). Thus, to obtain the functional, an adjustment is made representing
two monomials, for example, π1 and π2, and keeping the rest constant, obtaining an
equation for each constant value that is assigned to the rest of the monomials. For example,
for the equation π1 = Ψ (π2, π3), we represent π1 and π2 and assign π3 values 1, 2, and so
on, so we would have an equation of π1 and π2 for each of these values of π3;

vi) Obtaining universal curves or universal solutions

To obtain the universal solution or universal curve, the dimensionless variables defined
in each problem are represented, which, given their own definition, will be found in the
interval of values [0–1].

5.1. Example of a Continuous Flow Chemical Reactor

For illustrative purposes, we will obtain both the functionals equations and the uni-
versal curves (universal solution) for the problem of continuous flow chemical reactor.
After applying the discriminated nondimensionalization methodology to the problem,
Equations (10)–(12) arise. Since the three expressions provide the characteristic time, we
select one of them that does not contain any unknown to obtain the value of the func-

tional, in this case, Equation (10), to ∼
[

1
kFAα−1

o Bβ
o

]
Ψa

(
r

kFAα−1
o Bβ

o

)
or π1 = Ψa(π2) with

π1,A = π1 =
[
tokFAα−1

o Bβ
o

]
and π2,A = π2 =

[
r

kFAα−1
o Bβ

o

]
, was obtained as a solution.

By applying step v), the value of the Ψa functional can be obtained, that is if π1
is represented against π2 (Figure 9) Equation (22) is obtained by regression adjustment,
which can be rewritten to obtain the unknown to, Equation (23). The value obtained
for R2, the coefficient of determination, indicates that the fit is good since the closer it is
to unity, the better the adjustment will be. To obtain the values of to for the graphical
representation (Figure 9), the problem has been simulated using the Network Simulation
Method (Section 3).

π1 = 2.3795π2
−0.7636 R2 = 0.9905 (22)

to =
1

kFAα−1
o Bβ

o

(
r

kFAα−1
o Bβ

o

)−0.7636

(23)
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Then, step vi) is applied by simulating the problem for the dimensionless variables,
in this case, C′ and t′, with C′ = C

CF
and t′ = t

to
, thus obtaining the universal curve of

the problem, Figure 10. The choice of dimensionless variable C′ is due to the fact that the
decrease in species A and B is equal to the increase in variable C because of the very nature
of the problem, Equations (24) and (25). The drawback is that the final value of the species
C, CF is unknown. To obtain it, we take the zero reaction rate, dA

dt = dB
dt = dC

dt = 0, that is,
when the steady state is reached, Equations (26)–(28), and the system is solved by Ruffini’s
rule or another equation system resolution technique.

A = Ao − ∆A = Ao −C (24)

B = Bo − ∆B = Bo −C (25)

0 = −kFAα
F Bβ

F − r(AF −Ao) (26)

0 = −kFAα
F Bβ

F − r(BF − Bo) (27)

0 = kFAα
F Bβ

F − rCF (28)
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AF, BF, and CF are the final or stationary values of each species. To facilitate the reso-
lution of the problem, α = β = 1 is going to be taken since it is common for stoichiometric
coefficients and exponents to coincide. In this way, the system of Equations (26)–(28) can be
rewritten in explicit form, Equations (29)–(31).

AF =
−(kFBo − kFAo + r)±

√
(kFBo − kFAo + r)2 − (4kF(−rAo))

2kF
(29)

BF =
r(Ao −AF)

kFAF
(30)
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CF =
kFAFBF

r
(31)

In order to validate the previous expressions, a series of examples will be solved
to compare the species values, A, B, and C, obtained by simulation and those obtained
via the universal curve. As previously indicated, the method to simulate the problem is
the Network Simulation Method. To obtain the value of species C using the universal
curve, to must first be calculated with Equation (23), and later, AF, BF, and CF with expres-
sions (29)–(31). Then, t′ is calculated (t′ = t

to
). Later, C′ is calculated with the universal

curve, Figure 7. Finally, species C is obtained with C = C′CF, and species A and B with
Equations (24) and (25). In order to compare the simulated values with those obtained via
the universal curve, different times t will be used. Table 3 shows the comparison between
simulated and calculated values, Figures 11–14. It should be noted that the differences
are due to the number of decimals used in the different expressions and the fitting of
the equations.

Table 3. Comparison between simulated values and those calculated via the universal curve.

Simulated Unviversal Curves

Case Ao Bo KF r t (s) A B C A B C to (s)

1 3 4 2 3 0.1 1.75 2.75 1.24 1.77 2.77 1.23 0.63
2 4 2 2 3 0.2 2.85 0.86 1.14 2.90 0.90 1.10 0.74
3 2 2 1 4 0.3 1.53 1.53 0.47 1.49 1.49 0.51 0.70
4 1 3 4 2 0.4 0.19 2.19 0.81 0.21 2.21 0.79 0.78
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5.2. Example of a Coupled Oscillator

In this subsection, we will obtain the universal curves (universal solutions) for the
coupled oscillator problem. After applying the discriminated nondimensionalization
methodology to the problem, Equations (17)–(19) emerged. Since each of the two character-
istic times is given by two expressions, any of the expressions (17) or (19) (for i = 1) is valid
to obtain t0,L. Similarly, any of the expressions (18) or (19) (for i = 2) is valid to obtain t0,H.

In order to simplify the use of universal curves as much as possible, we are going to
renumber the dimensionless groups that governed Equations (17)–(19).

π2 =
k1

kc
π3 =

k1

k2
π4 =

m1

m2

In this way, from Equations (17) and (19) (for i = 1), two expressions (alternative one
to the other) are deduced for the low characteristic period, (t0,L):

t0,L =

√
m1

k1
Ψ1,1

(
k1

kc
,

k1

k2
,

m1

m2

)
(32)

t0,L =

√
m2

k2
Ψ1,2

(
k1

kc
,

k1

k2
,

m1

m2

)
(33)

Similarly, for the high characteristic period, (t0,H):

t0,H =

√
m2

k2
Ψ2,2

(
k1

kc
,

k1

k2
,

m1

m2

)
(34)

t0,H =

√
m1

k1
Ψ2,1

(
k1

kc
,

k1

k2
,

m1

m2

)
(35)

Expressions (32)–(35) explicitly provide the characteristic periods (t0,L and t0,H), but
their universal representation has to be calculated in terms of their dimensionless forms,
that is:
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π1,Lm1 = Ψ1,1(π2,π3,π4) with π1,Lm1 =
k1t0,L

2

m1
(36)

π1,Lm2 = Ψ1,2(π2,π3,π4) with π1,Lm2 =
k2t0,L

2

m2
(37)

π1,Hm2 = Ψ2,2(π2,π3,π4) with π1,Hm2 =
k2t0,H

2

m2
(38)

π1,Hm1 = Ψ2,1(π2,π3,π4) with π1,Hm1 =
k1t0,H

2

m1
(39)

Next, by application of step v) we obtain the functionals Ψ1,1, Ψ1,2, Ψ2,2, and Ψ2,1,
which allow us to draw the universal curves for the oscillation periods (in their dimension-
less expression). The pattern of solutions of the problem depends on three dimensionless
groups (π2, π3, and π4), but the central spring constant kc is one of the most influential
parameters of the problem. Then, the dimensionless forms of the periods (π1) will be
represented for the entire range of variation of π2, while the monomials π3 and π4 will take
specific values. Thus, π3 will take the values of 1, 2 and 5. In addition, to use the universal
curves below, the criterion that the mass m1 corresponds to that mass whose spring constant
is higher will be taken. That is, it must always be true that k1 ≥ k2 (does not apply, then
to represent the cases for which π3 takes the values of 1/2 and 1/5). As for the monomial
related to the ratio of masses, π4, it will take the values of 1/5, 1/3, 1/2, 1, 2, 3, and 5.
The expressions of the resulting functionals can be obtained by regression adjustment, but
since there are 42 curves, their presentation would be cumbersome. However, the charts
presented below are easy to use and provide high precision. Figure 15 shows the universal
abacus for π3 = k1

k2
= 1.
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As can be seen, t0,L appears in its dimensionless form π1,Lm1 (that is, normalized
with mass 1) being bounded in the interval [0,40] for π1, while t0,H is presented in its
dimensionless form π1,Hm2 (normalized with mass 2), remaining bounded in the interval
[0,200] for π1. This is caused by the curves corresponding with π4 = m1

m2
= 2, 3, and 5, which

can lead to reading inaccuracies when using the abacus. However, if for these three t0,H
curves we use the (alternative) dimensionless form π1,Hm1 (normalized with mass 1), the
whole graph is bounded in the interval [0,40] for π1, Figure 16.
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Figure 17 shows the universal abacus for π3 = k1
k2

= 2. In this chart t0,L appears
in its dimensionless form π1,Lm1 (normalized with mass 1), while t0,H is presented in its
dimensionless form π1,Hm2 (normalized with mass 2) for π4 = m1

m2
= 1

5 , 1
3 , 1

2 , 1, and 2.
On the other hand, for π4 = m1

m2
= 3 and 5, the (alternative) dimensionless form π1,Hm1

(normalized with mass 1) has been used for t0,H. In this way, the whole graph is bounded
in the interval [0,40] for π1.
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Finally, Figure 18 shows the universal abacus for π3 = k1
k2

= 5. In this chart t0,L appears
in its dimensionless form π1,Lm1 (normalized with mass 1), while t0,H is presented in its
dimensionless form π1,Hm2 (normalized with mass 2), this being enough for the graph
bounded in the interval [0,40] for π1.
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In order to validate the previous charts, a couple of examples will be solved to compare
the period values t0,L and t0,H obtained by simulation and those obtained with the universal
curves. As previously indicated, the method to simulate the problem is the Network
Simulation Method. To obtain the values of t0,L and t0,H using the universal curves, the
values of the monomials π2, π3, and π4 are calculated from the masses and the spring
constants. Once these values are known, the universal curve is chosen according to π3 is 1,
2, or 3 (Figures 15–18), and, for the values of π2 and π4, π1,Lm1 and π1,Hm2 (or, alternatively,
π1,Hm1) are read in the charts. Once these values are obtained from the expressions (36)
and (38), or, alternatively, expression (39), the values of t0,L and t0,H are solved.

Table 4 shows the comparison between simulated and calculated values of t0,L and
t0,H for two selected cases. It should be noted that the (slight) differences are due to the
precision when reading on the abacuses. Figures 19 and 20 show the oscillatory movement
and the characteristic frequencies (inverse of the periods) obtained by spectral analysis for
each of the two masses, m1 and m2.
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Table 4. Comparison between simulated values and those calculated with the universal curves.

Universal Curves Simulated

Case k1 kc k2 m1 m2 x1,0 x2,0 π2 π3 π4 π1,L π1,H t0,L t0,H t0,L t0,H

1 12 0.6 2.4 4.5 1.5 1 1/2 20 5 3 36.8 32.6 3.7148 4.5139 3.7141 4.5132
2 1/4 1/20 1/8 3 6 3/4 3/4 5 2 0.5 32.4 30.2 19.7180 38.0736 19.6822 38.0574
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6. Conclusions

This paper initially presents the bases to carry out a correct nondimensionalization.
The importance of the correct choice of the reference, which implies a deep knowledge of
the problem, should be noted since it will allow us to define the dimensionless variables in
the numerical interval [0–1], known in this case as normalized variables. The substitution
of these variables in the governing equations allows us to obtain dimensionless governing
equations, which, through the combination of their coefficients, provide us with the di-
mensionless monomials that rule the problem. The relationship between the monomials is
established through the π-theorem by using functionals. Then, obtaining the expressions of
the functionals is performed with regression adjustments using data obtained by numerical
simulation. Finally, the abacus of universal curves (solutions) is obtained by simulating the
dimensionless variables, which, by their own definition, are in the numerical interval [0–1].

In the first example, the methodology is applied to a coupled system of three chemical
species, an illustration of a system of coupled ordinary differential equations. In the cases
studied, it is worth noting the relationship of the monomials obtained for each equation, one
for each species, with the time until the steady state is reached. Finally, the universal curve
of the problem is obtained, and the resolution of several problems is exposed. It should
be noted that in this case, the same universal solution includes an unknown that must be
previously obtained. The resolution of this unknown implies having a deep knowledge of
the problem, a common characteristic when using the methodology proposed in this work
for different engineering or physicochemical problems.

Regarding the independent variable, time, a physical inspection of the problem allows
us to discern that the system of three chemical species studied only has a temporal reference,
the moment in which the steady state is reached, although three expressions are obtained
to calculate it. The biggest problem in this case study is the choice of the time value when
the mentioned steady state is reached. In previous works, since the evolution curves of the
compounds are asymptotic, a certain fraction of their evolution interval has been taken
as a reference since some variables tended to disappear or the final value they took was
known. In this case, it is not possible since the stationary values that both the reactants and
the products will have are unknown. Thus, in this problem, it is taken as a reference the
time in which the reaction rate is zero or takes a very small value.
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In the second one, a coupled oscillator is studied, where, in the first place, the reference
of the amplitude, for correct dimensioning, must be the sum of the initial displacements of
both masses since, being coupled, the displacement of one mass can exceed its initial value.
On the other hand, the study of the system shows that there are two characteristic periods.
Each of them affects the oscillation of each of the masses explicitly or implicitly. Finally,
several abacuses of universal curves have been carried out for the universal solution of the
characteristic periods.

Finally, the procedure to obtain universal solutions has been shown, highlighting that
in complex problems, this methodology could save us long periods of simulations since the
same results are obtained with precision.
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