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by the inverse scattering transform. The main objective of this paper is to find the conservation
laws of the equations using their transformations. The algorithmic method for finding Hamiltonians
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1. Introduction

It is well known that the conservation laws of a nonlinear evolution equation are
among its most important properties [1–5]. The study of conservation laws allows us to
understand the property of integrability of an equation because an infinite number of
conservation laws leads to its integrability by the inverse scattering transform. The conser-
vation law allows us to estimate the conservative quantity for the solution of the equation,
which is especially important when conducting numerical modeling of the physical pro-
cesses described by the equations [6–8]. There are several methods for finding conservation
laws [9–14].

However, the construction of Hamiltonians for generalized nonlinear Schrodinger
equations is a difficult problem since the Lagrangians generating these Hamiltonians
are degenerate [8]. In this regard, the Bergman-Dirac formalism is used to construct the
corresponding Hamiltonians [15–17], as a result of which a certain set of constraints is
imposed that contributes to the Hamiltonian [8].

The essence of our method is that we use direct transformations of the system of
equations corresponding to the original generalized nonlinear Schrödinger equation. Com-
pared to other methods, our approach is not as formal as the approaches mentioned above,
but it allows us to use the symbolic computation programs for whole classes of generalized
nonlinear Schrödinger equations. To the best of our knowledge, this approach has not yet
been used to construct Hamiltonians for generalized nonlinear Schrödinger equations.

In this paper, we present a simple algorithm for construction of Hamiltonians using
transformations for some generalized nonlinear Schrödinger equations. The method pre-
sented can be used to construct Hamiltonians of a number of equations. The advantage of
our method lies in its scope of application and in the fact that it allows us to practically con-
struct Hamiltonians for whole classes of nonlinear evolutionary equations. We demonstrate
the application of the method for the following types of nonlinear Schrödinger equations:

i qt + a qxx + α F(|q|2) q = 0, (1)

Mathematics 2023, 11, 2304. https://doi.org/10.3390/math11102304 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11102304
https://doi.org/10.3390/math11102304
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5926-9715
https://doi.org/10.3390/math11102304
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11102304?type=check_update&version=1


Mathematics 2023, 11, 2304 2 of 12

i qt + a qxx + i c qxxx + b qxxxx + β F(|q|2) q = 0, (2)

i qt + a qxx + i c qxxx + b qxxxx + i h qxxxxx + d qxxxxxx + β F(|q|2) q = 0 (3)

and
i qt + a qxx + i β

∂

∂x

(
F(|q|2) q

)
= 0. (4)

In Equations (1)–(4) q(x, t) is a complex valued function, x and t are the spatial and temporal
coordinates; a, b, c, h, d, α and β are parameters of nonlinear differential equation (1).
The function F(|q|2) of |q|2 characterizes the nonlinear properties of the medium [2,3].
Expressions qxx, qxxx, qxxxx, qxxxxx and qxxxxxx correspond to the various types of dispersion
of optical solitons.

The Cauchy problem for Equations (1)–(4) in the general case cannot be solved by the
inverse scattering transform [18–20]. However, there are a number of nonlinear Schrödinger
equations in the form (1) useful for description of the pulse propagation in optical fiber.
Using the formula [18],

F(|q|2) = |q|2, (5)

we have the famous nonlinear Schrödinger equation

i qt + a qxx + α |q|2 q = 0, (6)

where q(x, t) is a complex function, a and α are the parameters of the mathematical model,
qxx corresponds to the the light diffraction and |q|2 q is the term with Kerr medium.

Taking into account
F(|q|2) = ln (|q|2), (7)

we obtain from Equation (1) the logarithmic Schrödinger equation [8]

i qt + a qxx + α log (|q|2) q = 0. (8)

In the case of
F(|q|2) = α |q|−4n + β |q|−2n + γ |q|2n + δ |q|4n, (9)

where α, β, γ and δ are parameters of mathematical model, n is the value of refractive index
for non-Kerr optical medium. We have the equation in the form [21]

i qt + a qxx +
(

α |q|−4n + β |q|−2n + γ |q|2n + δ |q|4n
)

q = 0. (10)

This paper is organized as follows. In Section 2, we describe the method for finding
the conservation laws including the Hamiltonians of the generalized nonlinear Schrödinger
equations. In this section, we also present examples of some Hamiltonians corresponding
to Equation (1). The generalization of the method to classes of Equations (2) and (3) is given
in Sections 3 and 4. In Section 5, using our approach, we present the conservation laws for
the generalized Kaup–Newell equation.

2. Method Applied

The proposed algorithm for constructing Hamiltonians of nonlinear Schrödinger
equations is based on the construction of conservation laws. Apparently, our method does
not have the degree of generality of the construction of Hamiltonians characteristic for the
classical method of constructing Hamiltonians. However, for the whole class of functions,
the method is universal.

In the first step, equations like Equations (1) and (2) are written as the system of
equations. In the the second step, each of the equations is multiplied by q∗ and by q
and resulting expressions are added. As a result, we obtain the first conservation law
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that is further used for construction of the Hamiltonians. In the third step, we multiply
each equation of the system by conjugate functions of derivatives and add the resulting
expressions as well. In the fourth step, we multiply the first conservation law by the
corresponding expressions and add it to the result obtained earlier. In the final step, we
have to obtain expressions containing time derivatives, which we write down in the form
of the conservation law from which the Hamiltonian follows.

Let us demonstrate the method for finding the Hamiltonian for Equation (1). Firstly,
we write Equation (1) as the system of equations

i qt + a qxx + α F(|q|2) q = 0, (11)

and
−i q∗t + a q∗xx + α F(|q|2) q∗ = 0. (12)

We multiply Equation (11) by q∗ and Equation (12) by −q and add the expressions. We
have

i
∂

∂t
|q|2 + a (qxx q∗ − q q∗xx) = 0. (13)

One can see that Equation (13) can be presented as the conservation law in the form

i
∂

∂t
(|q|2) + a

∂

∂x
(qx q∗ − q q∗x) = 0. (14)

We get the following conservative quantity

P =

∞∫
−∞

|q|2 dx = Const. (15)

After multiplying Equation (11) by q∗x and Equation (12) by qx and adding the resulting
expressions, we obtain the conservation law as follows:

i
2

∂

∂t
(q∗x q− qx q∗)− i

2
∂

∂x
(q∗t q− qt q∗)+

a
∂

∂x
(|q|2) + α

∂

∂x
(Q(|q|2)) = 0,

(16)

where Q(|q|2) is the following integral

Q(|q|2) =
|q|2∫
0

F(ξ)dξ. (17)

From Equation (16), we obtain the conservative quantity in the form

M =

∞∫
−∞

(q∗x q− qx q∗) dx = Const. (18)

In order to obtain the Hamiltonian corresponding to Equation (1), we multiply
Equation (11) by the function q∗xx and Equation (12) by −qxx and add these expressions,
which yields

i (q∗xx qt + qxx q∗t ) + α F(|q|2) (q∗xx q− qxx q∗) = 0. (19)

Taking into account the following formula

i (q∗xx qt + qxx q∗t ) = −i
∂

∂t

(
|qx|2

)
+ i

∂

∂x
(q∗x qt + qx q∗t ), (20)
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we rewrite Equation (19) as the following:

−i
∂

∂t

(
|qx|2

)
+ i

∂

∂x
(q∗x qt + qx q∗t ) + α F(|q|2) (q∗xx q− qxx q∗). (21)

Multiplying (13) by −a F(|q|2) and adding it to Equation (21) multiplied by a, we get the
following expression

−i a
∂

∂t

(
|qx|2

)
+ i a

∂

∂x
(q∗x qt + qx q∗t ) + i α F(|q|2) ∂

∂t
(|q|2) = 0. (22)

Equation (22) allows us to obtain the Hamiltonians for many nonlinear Schrödinger equa-
tions. Equation (22) can be written as the conservation law in the form

∂H
∂t

+
∂X
∂x

= 0, (23)

where H and X are expressed by the formulas

H = a |qx|2 − α Q(|q|2), Q(|q|2) =
|q|2∫
0

F(ξ)dξ (24)

and
X = q∗x qt + qx q∗t . (25)

Formula (24) gives the Hamiltonian for the nonlinear Schrödinger equation (1). One can
note that the the conservative quantities P and M do not depend on the form of the function
F(|q|2) but the Hamiltonian corresponding to Equation (1) does.

Let us present some examples.

Example 1. The generalized nonlinear Schrödinger equation [2]

i qt + a qxx + α |q|2n q = 0, (26)

where q(x, t) is a complex function, a and α are the parameters, n is the value of refractive index. The
term with the second derivative corresponds to the diffraction of the light. The nonlinear expression
|q|2n q is responsible for the reflection of light in the optical fiber. Equation (26) has the function
F(|q|2) as the following

F = |q|2n (27)

and the Hamiltonian in the form

H1 =
α |q|2n+2

n + 1
− a |qx|2. (28)

Example 2. The logarithmic nonlinear Schrödinger equation [8]

i qt + a qxx + α ln(|q|2) q = 0, (29)

with the function F in the form
F2 = ln(|q|2) (30)

has the following Hamiltonian

H2 = a |qx|2 + α |q|2)− |q|2 ln(|q|2). (31)
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Example 3. The equation for description of the pulse propagation in saturable medium [22–27]

i qt + a qxx + α|q|2 q−m
(

q− q
(1 + a |q|2)p

)
= 0. (32)

Using the function F(|q|2) in the from

F(|q|2) = α |q|2 −m
(

1− 1
(1 + a |q|2)p

)
(33)

we obtain at p 6= 1 the following Hamiltonian

H3a = a |qx|2 − α
|q|4

2
−m |q|2 + (1 + b |q|2)1−p

b (p− 1)
. (34)

In the case p = 1, we have the Hamiltonian corresponding to Equation (32) in the form

H3b = a |qx|2 − α
|q|4

2
−m |q|2 + m ln (1 + a |q|2). (35)

Example 4. The generalized nonlinear Schrödinger equation with anti-cubic nonlinearities [28–32]

i qt + a qxx +
(

b1 |q|−4 + b2 |q|2 + b3 |q|4
)

q = 0. (36)

The function F(|q|2) is determined by the formula

F(|q|2) = b1 |q|−4 + b2 |q|2 + b3 |q|4 (37)

and the Hamiltonian has the form

H4 = a |qx|2 − b1 |q|−2 +
b2

2
|q|4 + b3

3
|q|6. (38)

Example 5. The generalized nonlinear Schrödinger equation with four nonlinearities [33–36]

i qt + a qxx +
(

α |q|2n + β |q|4n + γ |q|6n + δ |q|8n
)

q = 0. (39)

The function F(|q|2) takes the form

F(|q|2) = α |q|2n + β |q|4n + γ |q|6n + δ |q|8n (40)

and the Hamiltonian is as follows:

H5 = a |qx|2 −
(

α

n + 1
|q|2n+2 +

β

2 n + 1
|q|4n+2+

γ

3n + 1
|q|6n+2 +

δ

4n + 1
|q|8n+2

)
.

(41)

It is clear that using formula (24) we can find a number of Hamiltonians which correspond to
Equation (1).

3. Hamiltonian of the Generalized Nonlinear Schrödinger Equation of the
Fourth Order

Let us demonstrate that we can use the same algorithm for finding the Hamiltonian of
Equation (2). First of all, we write Equation (2) as the system of equations

i qt + a qxx + i c qxxx + b qxxxx + β F(|q|2) q = 0, (42)



Mathematics 2023, 11, 2304 6 of 12

and
−i q∗t + a q∗xx − i c qxxx + b q∗xxxx + β F(|q|2) q∗ = 0. (43)

Multiplying Equation (42) by q∗ and Equation (43) by −q and adding the expressions
obtained, we have the equation

i
∂

∂t
|q|2 + a (q∗ qxx − q q∗xx) + i c (q∗ qxxx + q q∗xxx)+

b (q∗ qxxxx − q q∗xxxx) = 0.
(44)

Equation (44) can be written as the conservation law in the form

i
∂

∂t
|q|2 + a

∂

∂x
(q∗ qx − q q∗x) + i c

∂

∂x
(q∗ qxx + q q∗xx − |qx|2)+

b
∂

∂x
(q∗ qxxx − q q∗xxx)− b

∂

∂x
(q∗x qxx − qx q∗xx) = 0.

(45)

As a result, we have the conservative quantity for the function q in the form of Equation (15).
We also obtain the conservative quantity (18) using the approach presented in Section 2.

One can find the Hamiltonian corresponding to Equation (2) if we multiply Equation (42)
by q∗xx and Equation (43) by −qxx and add these expressions. We have

i (q∗xx qt + qxx q∗t ) + b (q∗xx qxxxx − qxx q∗xxxx)+

i c (qxx q∗xxx + q∗xx qxxx) + β F(|q|2) (q q∗xx − q∗ qxx) = 0.
(46)

After multiplying Equation (42) by q∗xxx and Equation (43) by qxxx and adding them,
we obtain

i (q∗xxx qt − qxxx q∗t ) + a (q∗xxx qxx + qxxx q∗xx)+

b (q∗xxx qxxxx + qxxx q∗xxxx) + β F(|q|2) (q q∗xxx + q∗ qxxx) = 0.
(47)

Multiplying Equation (42) by q∗xxxx and (43) by qxxxx and adding the resulting expres-
sions, we obtain the equation

i (q∗xxxx qt + qxxxx q∗t ) + a (q∗xxxx qxx − qxxxx q∗xx)+

+i c (q∗xxxx qxxx + qxxxx q∗xxx) + β F(|q|2) (q q∗xxxx − q∗ qxxxx) = 0.
(48)

Adding Equation (44) multiplied by F(|q|2), Equation (46) multiplied by a, Equation (47)
multiplied by −i c and Equation (48) multiplied by b, yields the equation

i a (q∗xx qt + qxx q∗t ) + i b (q∗xxxx qt + qxxxx q∗t )+

c (q∗xxx qt − qxxx q∗t ) + i β F(|q|2) ∂

∂t
|q|2 = 0.

(49)

Using the formulas

q∗xx qt + qxx q∗t =
∂

∂x
(qx q∗t + qt q∗x)−

∂

∂t
|qx|2, (50)

q∗xxx qt − qxxx q∗t =
1
2

∂

∂t
(q∗xxx q− qxxx q∗)− 1

2
∂

∂x
(q∗xxt q− qxxt q∗)−

−1
2

∂

∂x
(q∗xt qx − qxt q∗x)−

1
2

∂

∂x
(q∗t qxx − qt q∗xx)

(51)

and
q∗xxxx qt + qxxxx q∗t =

∂

∂x
(qxxx q∗t + qt q∗xxx)−

∂

∂x
(qxx q∗xt + qxt q∗xx) +

∂

∂t
|qxx|2.

(52)
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we rewrite Equation (49) in the form of the following conservation law:

b
∂

∂t
|qxx|2 − a

∂

∂t
|qx|2 −

i c
2

∂

∂t
(q∗xxx q− qxxx q∗) + β

∂

∂t
Q(|q|2)+

+a
∂

∂x
(qx q∗t + qt q∗x) + b

∂

∂x
(qxxx q∗t + qt q∗xxx − qxx q∗xt − qxt q∗xx)+

i c
2

∂

∂x
(q q∗xxt − q∗ qxxt − qx q∗xt + q∗x qxt + qxx q∗t − q∗xx qt) = 0,

(53)

where (Q(|q|2)) is determined by the formula

Q(|q|2) =
|q|2∫
0

F(ξ)dξ (54)

From the conservation law (53), we get the Hamiltonian of Equation (2) in the form

H3 = b |qxx|2 − a |qx|2 + β Q(|q|2)− i c
2
(q q∗xxx − q∗ qxxx). (55)

Let us again consider examples of Hamiltonians.

Example 6. The generalized nonlinear Schrödinger equation with nonlinearities [37–42]

i qt + a qxx + b qxxxx +
(

α |q|2n + β |q|4n + γ |q|6n + δ |q|8n
)

q = 0. (56)

The function F(|q|2) takes the form

F(|q|2) = α |q|2n + β |q|4n + γ |q|6n + δ |q|8n (57)

and the Hamiltonian is as follows

H4 = b |qxx|2 − a |qx|2 −
(

α

n + 1
|q|2n+2 +

β

2 n + 1
|q|4n+2+

γ

3n + 1
|q|6n+2 +

δ

4n + 1
|q|8n+2

)
.

(58)

Some other examples of Hamiltonians (55) can be found for other functions F(|q|2) too.

4. Hamiltonian of the Generalized Nonlinear Schrödinger Equation of the Sixth Order

Using the presented approach we can find the Hamiltonian of Equation (3). We write
the system of equations corresponding to Equation (3) in the form

i qt + a qxx + i c qxxx + b qxxxx + i h qxxxxx + d qxxxxxx + β F(|q|2) q = 0 (59)

and
−i q∗t + a q∗xx − c q∗xxx + bq∗xxxx − i h q∗xxxxx + dq∗xxxxxx + βF(|q|2) q∗ = 0. (60)

Multiplying Equation (59) by q∗ and Equation (60) by −q∗ and adding them, we obtain
the equation

i
∂

∂t
|q|2 + a (q∗ qxx − q q∗xx) + i c (q∗ qxxx + q q∗xxx) + b (q∗ qxxxx−

q q∗xxxx) + i h (q∗ qxxxxx + q q∗xxxxx) + d (q∗ qxxxxxx − q q∗xxxxxx) = 0.
(61)
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From Equation (61) follows the conservation Law

i
∂

∂t
|q|2 + a

∂

∂x
(q∗ qx − q q∗x) + i c

∂

∂x
(q∗ qxx + q q∗xx − |qx|2)+

b
∂

∂x
(q∗ qxxx − q q∗xxx − q∗x qxx + qx q∗xx) + i h

∂

∂x
(q∗ qxxxx+

q q∗xxxx − q∗x qxxx − qx q∗xxx + |qxx|2) + d
∂

∂x
(q∗xxxxx q− q∗ qxxxxx−

q∗xxxx qx + q∗x qxxxx + q∗xxx qxx − q∗xx qxxx) = 0.

(62)

As a result, we have the conservative quantity for the function q in the form of Equation (15).
One can obtain the conservative quantity (18) using the approach mentioned in Section 2.

Further, we multiply Equation (59) by q∗xx and (60) by −qxx and add the resulting
expressions together. We have the equation

i (q∗xx qt + qxx q∗t ) + i c (q∗xx qxxx + qxx q∗xxx) + b (q∗xx qxxxx − qxx q∗xxxx)+

+i h (q∗xx qxxxxx + qxx q∗xxxxx) + d (q∗xx qxxxxxx − qxx q∗xxxxxx)+

β F (q∗xx q− q∗ qxx) = 0

(63)

By multiplying Equation (59) by q∗xxx and (60) by qxxx and adding them, we obtain the
equation

i (q∗xxx qt − qxxx q∗t ) + a (q∗xxx qxx + qxxx q∗xx) + b (q∗xxx qxxxx+

qxxx q∗xxxx) + +i h (q∗xxx qxxxxx − qxxx q∗xxxxx) + d (q∗xxx qxxxxxx+

qxxx q∗xxxxxx) + β F (q∗xxx q + q∗ qxxx) = 0.

(64)

We also multiply Equation (59) by q∗xxxx and (60) by −qxxxx and add them

i (q∗xxxx qt + qxxxx q∗t ) + a (q∗xxxx qxx − qxxxx q∗xx) + ic (q∗xxxx qxxx+

qxxxx q∗xxx) + i h (q∗xxxx qxxxxx + qxxxx q∗xxxxx) + d (q∗xxxx qxxxxxx−
qxxxx q∗xxxxxx) + β F (q∗xxxx q− q∗ qxxxx) = 0.

(65)

We multiply Equation (59) by q∗xxxxx and (60) by qxxxxx and add the resulting expressions
together, which yields

i (q∗xxxxx qt − qxxxxx q∗t ) + a (q∗xxxxx qxx + qxxxxx q∗xx) + b (q∗xxxxx qxxxxx+

qxxxxx q∗xxxx) + i c (q∗xxxxx qxxx − qxxxxx q∗xxx) + d (q∗xxxxx qxxxxxx+

qxxxxx q∗xxxxxx) + β F (q∗xxxxx q + q∗ qxxxxx) = 0.

(66)

At last, by multiplying Equation (59) by q∗xxxxxx and (60) by −qxxxxxx and adding, we get

i (q∗xxxxxx qt + qxxxxxx q∗t ) + a (q∗xxxxxx qxx − qxxxxxx q∗xx)+

ic (q∗xxxxxx qxxx + qxxxxxx q∗xxx) + i h (q∗xxxxxx qxxxxx + qxxxxxx q∗xxxxx)+

b (q∗xxxxxx qxxxx − qxxxxxx q∗xxxx) + β F (q∗xxxxxx q− q∗ qxxxxxx) = 0.

(67)

Taking into consideration the following direct calculations:

β F(|q|2) ∗ Equation (61)− i a ∗ Equation (63)− c ∗ Equation (64)−
i b ∗ Equation (65)− h ∗ Equation (66)− i d ∗ Equation (67) = 0,

(68)
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we obtain the equation

a(qt q∗xx + q∗t qxx)− i c (qt q∗xxx − q∗t qxxx) + b (qt q∗xxxx + q∗t qxxxx)−
i h (qt q∗xxxxx − q∗t qxxxxx) + d (qt q∗xxxxxx + q∗t qxxxxxx)+

β F(|q|2) ∂

∂t
(|q|2) = 0.

(69)

Using Equations (50)–(52) and the formulas

q∗xxxxx qt − qxxxxx q∗t =
1
2

∂

∂t
(q∗xxxxx q− qxxxxx q∗)− 1

2
∂

∂x
(q∗xxxxt q−

qxxxxt q∗) +
1
2

∂

∂x
(q∗xxxt qx − qxxxt q∗x)−

1
2

∂

∂x
(q∗xxt qxx − qxxt q∗xx)+

1
2

∂

∂x
(q∗xt qxxx − qxt q∗xxx)−

1
2

∂

∂x
(q∗t qxxxx − qt q∗xxxx)

(70)

and

q∗xxxxxx qt + qxxxxxx q∗t =
∂

∂x
(qxxxxx q∗t + qt q∗xxxxx)−

∂

∂x
(qxxxx q∗xt + qxt q∗xxxx) +

∂

∂x
(qxxx q∗xxt + qxxt q∗xxx)−

∂

∂t
|qxxx|2

(71)

we get the conservation law corresponding to Equation (3). From this conservation law, we
have the Hamiltonian of Equation (3) in the form

H5 = Q(|q|2)− d |qxxx|2 + b |qxx|2 − a |qx|2−
i c (q∗xxx q− qxxx q∗)− i h (q∗xxxxx q− qxxxxx q∗).

(72)

Using the explicit expression of F(|q|2) in Equation (54), we can obtain a number of Hamil-
tonians corresponding to Equation (2).

5. Conservation Laws of the Generalized Kaup–Newell Equation

A modification of the method can be used to construct the conservation laws of
Equation (4). We present Equation (4) as the system of equations again

i qt + a qxx + i β
∂

∂x

(
F(|q|2) q

)
= 0, (73)

and
−i q∗t + a q∗xx − i β

∂

∂x

(
F(|q|2) q

)
= 0. (74)

Multiplying Equation (73) by q∗ and Equation (74) by q and adding these expressions, we
obtain the equation

i
∂

∂t
(|q|2) + a (q∗ qxx − q q∗xx) + i β

∂

∂x

(
|q|2 F(|q|2)

)
= 0. (75)

One can note that Equation (75) is written in the form of the conservation Law at F = F(|q|2).
At the next step, we multiply Equation (73) by q∗x and Equation (74) by qx. After adding

the resulting expressions, we obtain

i
2

∂

∂x
(q∗ qt − q q∗t ) + a

∂

∂x

(
|qx|2

)
− i β (qx q∗ − q q∗x)

∂

∂x

(
F(|q|2)

)
−

i
2

∂

∂t
(q∗ qx − q q∗x) = 0

(76)
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By multiplying Equation (75) by i β F(|q|2) and Equation (76) by −a and adding, we obtain
the conservation law in the form

i a
2

∂

∂t
(q∗ qx − q q∗x)− β F(|q|2) ∂

∂t
(|q|2)−

i a
2

∂

∂x
(q∗ qt − q q∗t )− β2 ∂

∂x

(
|q|2 F(|q|2)

)
− a2 ∂

∂x
(|qx|2)+

i β a
∂

∂x

(
F(|q|2)(qx q∗ − q q∗x)

)
= 0.

(77)

The last equation can be presented in the form of conservation law

∂H6

∂t
+

∂X2

∂x
= 0 (78)

where H6 and X2 are determined by the formulas

H6 =
i a
2
(q∗ qx − q q∗x)− β Q(|q|2), Q(|q|2) =

|q|2∫
0

F(ξ) dξ (79)

and
X2 =

i a
2
(q∗ qt − q q∗t )− β2

(
|q|2 F(|q|2)

)
− a2 (|qx|2)+

i β a
(

F(|q|2)(qx q∗ − q q∗x)
)
= 0.

(80)

The conservative quantity T2 does not give the Hamiltonian. This value corresponds to
conservative density in the form

T2 =

∞∫
−∞

[
i a
2
(q∗ qx − q q∗x)− β Q(|q|2)

]
dx = Const. (81)

The conservation law (81) at F = |q|2 was obtained in paper [14]; in this work, it has been
indicated that this law does not correspond to either energy or momentum. It seems to be a
hybrid of the Hamiltonian at a = 0 and the momentum in the case β = 0.

6. Conclusions

In this paper, we have considered the generalized nonlinear Schrödinger equations
of the second, fourth and sixth order with integrable nonlinearity in the form (17). In
contrast to the generally accepted approaches by means of the Euler–Lagrange operators
used before for the construction of Hamiltonians of evolution differential equations, in this
paper, we used direct transformations of the original system of equations. We have shown
that this rather large class of nonlinear Schrödinger equations has three conservation
laws characterizing the power, moment and energy of the wave. One of the obtained
conservation laws corresponds to the Hamiltonian of the original equation. We present six
examples of constructed Hamiltonians of the well-known nonlinear Schrödinger equations
to demonstrate our method.
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