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Abstract: This paper investigates the latent block structure in the heterogeneous panel data model. It
is assumed that the regression coefficients have group structures across individuals and structural
breaks over time, where change points can cause changes to the group structures and structural
breaks can vary between subgroups. To recover the latent block structure, we propose a robust
biclustering approach that utilizes M-estimation and concave fused penalties. An algorithm based
on local quadratic approximation is developed to optimize the objective function, which is more
compact and efficient than the ADMM algorithm. Moreover, we establish the oracle property of the
penalized M-estimators and prove that the proposed estimator recovers the latent block structure
with a probability approaching one. Finally, simulation studies on multiple datasets demonstrate the
good finite sample performance of the proposed estimators.
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1. Introduction

Panel data models can fully utilize both cross-sectional and time-series information,
making them a popular tool in fields such as economics and finance. Traditional panel data
models often assume that the regression coefficients are homogeneous across individuals
and over periods, which is too rigid an assumption. In many real-world applications,
heterogeneity in individual and/or time dimensions is often observed. For example, in
precision medicine research, different subgroups of patients may respond differently to
treatments, while in economics, events such as the 2009 European debt crisis led to varying
debt-to-GDP ratios among European countries. Although these heterogeneous factors are
unobserved and latent, modeling them will bring significant improvement to data analysis.

Numerous estimation methods have been developed for panel data models with
heterogeneous coefficients, addressing two main sources of heterogeneity: individual and
period. To account for heterogeneity across individuals, a commonly used assumption
is that individuals can be classified into subgroups with identical coefficients within the
same subgroup but different coefficients across subgroups. Penalty-based methods have
been frequently used to cluster coefficients in the individual direction. Su et al. [1] propose
C-Lasso, a modified version of Lasso, for subgroup identification and coefficient estimation.
This method is based on a penalized objective function inspired by the fused Lasso method
introduced by Tibshirani et al. [2]. Wang and Zhu [3] study high-dimensional panel data
models using a concave fused penalty method for both subgroup identification and variable
selection and proved the asymptotic properties of the proposed estimator under specific
regularity conditions. To capture the heterogeneity that may exist over time, structural
breaks are often assumed. Qian and Su [4] use a group fused Lasso method to estimate
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both the number of breaks and model parameters simultaneously. Furthermore, Qian and
Su [5] employ an adaptive group fused Lasso approach that applies the shrinkage method
to PLS and PGMM estimations. Their method can consistently determine the number of
breaks and estimate the break dates with a probability approaching one.

However, these studies have two primary limitations. Firstly, they only account for
heterogeneity in one dimension, which may be insufficient for modeling complex data
prevalent in the era of big data. Secondly, their objective functions employ the least squares
loss which can result in substantial estimation bias when the data distribution contains a
heavy tail or outliers. Consequently, further research has been conducted to address these
issues. Some researchers have focused on the two-dimensional heterogeneous panel data
model, where the coefficients exhibit both subgroup structure and structural breaks. Okui
and Wang [6] allow the number, timing, and size of structural breaks to vary across different
subgroups and employ the K-means method and adaptive group fused Lasso method to
identify the individual group structure and structural breaks, respectively. Lumsdaine
et al. [7] study cases where the group structure of coefficients changes after the unknown
structural break and develop a novel iterative algorithm to estimate the coefficients and
recover the unknown structure. Additionally, some researchers have focused on robust
estimation. For example, Zhang et al. [8] set the objective function as the sum of L1 loss and
concave pairwise fused penalty when studying the panel data model with an individual
group structure and provide an easy-to-implement algorithm based on the idea of local
linear approximation [9] to find local minima. Cheng et al. [10] further generalize the L1
loss to a general loss function under the framework of M-estimation.

In this paper, we generalize the coefficient structure studied by [6,7] to a more general
block structure. The regression coefficients with a block structure exhibit both an individual-
group structure and temporal–structural breaks, where the individual-group structure can
change at change points, and the temporal–structural breaks can vary across different
groups. Furthermore, the regression coefficients are identical within the same sub-block,
while they exhibit heterogeneity across different sub-blocks. This block structure is highly
flexible and more general compared to the structures studied previously. Additionally, the
homogeneous panel data model, the panel data model with a group structure, and the
panel data model with structural breaks can all be viewed as special cases of the model
being investigated in this study.

We propose a robust biclustering method based on M-estimation and double concave
fused penalties for simultaneously recovering the unknown block structure and estimating
the regression coefficients. The M-estimator exhibits robustness to heavy-tailed distri-
butions and outliers, while the double concave fused penalty can automatically identify
potential block structure. We develop an effective algorithm utilizing local quadratic ap-
proximation to optimize the objective function, which is computationally more efficient
than the Alternating Direction Method of Multipliers (ADMM) [11] algorithm. Moreover,
we establish the asymptotic convergence property of the oracle estimator and prove that the
proposed estimator can recover the latent block structure with a probability approaching
one. Simulation experiments on multiple datasets demonstrate that the estimator proposed
in this paper has an excellent performance in finite sample situations. Additionally, models
based on L1 loss and Huber loss functions can achieve more accurate results than those
based on L2 loss functions in the presence of heavy-tailed data distributions.

2. Materials and Methods
2.1. Model Setting

Given panel data observations {(xit, yit), i = 1, · · · , N; t = 1, · · · , T}, this paper
explores a linear panel data model that accounts for the heterogeneity of intercept and slope
coefficients across both the individual and time dimensions. The model is represented as
follows,

yit = µit + x>it ζit + εit, i = 1, · · · , N; t = 1, · · · T, (1)
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where yit ∈ R is the response variable, and xit ∈ RP−1 is the explanatory variable. The
intercept term µit and the slope coefficient ζit ∈ RP−1 can vary across both individual and
time dimensions in the model. The random errors are assumed to be independent and
identically distributed with a mean of 0 and a standard deviation of σ, and their distribution
is denoted by f .

We assume that the observed data are collected from an unknown, L0 different blocks,
where the regression coefficients are homogeneous within the same block but heterogeneous
across different blocks. It is worth noting that the group structure and structural breaks can
be viewed as special cases of the block structure. Below, we provide the relevant notation
to describe this block structure.

Let βit = (µit, η>it )
> and zit = (1, x>it )

>. Then, Equation (1) can be expressed as follows,

yit = z>it βit + εit, i = 1, · · · , N; t = 1, · · · , T. (2)

We denote the block structure as B = {B1, · · · , BL0}, where Bk represents the index
set of samples belonging to the kth sub-block. If the ith individual’s observation at time
t belongs to the kth sub-block, then (i, t) ∈ Bk. Let α0

1, · · · , α0
L0 denote the real regression

coefficients corresponding to the L0 sub-blocks, and let β0
it be the real value of βit. Then,

we have

β0
it =


α0

1, if (i, t) ∈ B1,
α0

2, if (i, t) ∈ B2,
· · ·
α0

L0 if (i, t) ∈ BL0 .

(3)

In practical scenarios, the real block structure is often unknown. To recover the block
structure described above, it is necessary to estimate the number of sub-blocks, the index
sets of each block, and the block-specific coefficients.

2.2. Proposed Estimator

In this subsection, we propose a biclustering estimation method to automatically
recover the block structure without specifying the number of blocks and provide robust
estimates of regression coefficients via M-estimation and concave fused penalties. Let
β = (β>11, β>12, · · · , β>1T , · · · , β>N1, β>N2, · · · , β>NT)

> denote the coefficients to be estimated.
To recover the block structure under the fused sparse assumption, a natural idea is to shrink
the coefficient differences ||βit − βjt′ || between two samples (i, t) and (j, t

′
) that belong to

the same block Bl to zero. In the following, we present the objective function based on
M-estimation and concave fused penalty as follows,

Q(β; λ, γ) =
N

∑
i=1

T

∑
t=1

ρ(yit − z>it βit) +
T

∑
t=1

∑
i<j

Pλ(||βit − βjt||)

+
N

∑
i=1

∑
t<t′

Pγ(||βit − βit′ ||),
(4)

where the first term on the right-hand side is the regular loss function ρ in the M-estimation
literature. It satisfies several conditions, including being a continuous convex function on
R, almost everywhere differentiable except for a finite set of points, having a unique global
minimum at 0, and ρ(0) = 0. Commonly used loss functions such as least squares (L2),
absolute deviation (L1), and Huber loss all satisfy these conditions. The second and third
terms are two fused penalty terms designed to identify the individual-group structure and
temporal–structure breaks.

Commonly used penalty terms include Lasso [12], Ridge [13], and Elastic net [14].
Ridge and Elastic net can shrink the fusion terms toward small values, but not exactly zero,
which makes it challenging to cluster coefficients within the same block. Lasso, on the
other hand, can shrink the fusion terms to exactly zero but has a tendency to introduce
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bias in the estimated coefficients. This bias can impact the accuracy of the parameter
estimates and potentially lead to suboptimal results in recovering the latent block structure.
To achieve both automatic recovery of the parameter structure and unbiased or nearly
unbiased estimation of coefficients, concave fused penalty functions have been proposed,
such as the smoothly clipped absolute deviation (SCAD) [15] and the minimax concave
penalty (MCP) [16]. In this paper, following the approach of Wang and Zhu [3], Ma and
Huang [17], Wang et al. [18], we use the SCAD penalty function with a tuning parameter λ,

Pλ(k) = λ
∫ k

0
(1− x/(λa))+dx, (5)

and the MCP penalty function with a tuning parameter γ,

Pγ(k) = γ
∫ k

0
min{1, (a− x/γ)/(a− 1))}dx, (6)

where the fixed parameter a controls the concavity of the penalty function, and k represents
pairwise differences in regression coefficients between individuals or periods. Pλ(k) and
Pγ(k) can compress some pairwise difference values ||βit − βjt|| and ||βit − βit′ || to zero,
thereby recovering the block structure of the regression coefficients.

For a given λ and γ, we define the proposed estimator as

β̂(λ, γ) = arg min
β∈RNTP

Q(β; λ, γ). (7)

In the following, we abbreviate β̂(λ, γ) as β̂ when there is no ambiguity. Although the
penalty term in Equation (4) is concave and global minimum points are difficult to obtain,
local minimum points can be obtained through iterative algorithms. Ma and Huang [17] and
Wang et al. [18] apply the ADMM algorithm to solve the penalized optimization problem
by transforming it into a Lagrangian-constrained optimization problem. However, the
algorithm is computationally intensive and involves cumbersome steps. In this paper, we
develop a novel algorithm based on local quadratic approximation [15] to solve Equation (4).
In the next section, we provide a detailed derivation.

2.3. Proposed Algorithm

We propose a local quadratic approximation-based algorithm to solve Equation (7).
The local quadratic approximation algorithm was introduced by Fan and Li [15]. Specifi-
cally, given a non-zero value x0 as the initial value for the penalty function Pλ(|x|), we can
apply a first-order Taylor expansion on x2 as follows,

Pλ(|x|) = Pλ((x2)
1
2 ) ≈ Pλ(|x0|) +

P
′

λ(|x0|)
2|x0|

(x2 − x2
0). (8)

Specifically, let β(k−1) denote the estimate of β obtained after the (k− 1)th iteration.
At the kth iteration, we locally approximate ρ(·), Pλ(·), and Pγ(·) around β(k−1), which
yields

Q(k)(β; γ, λ)

=
N

∑
i=1

T

∑
t=1

φ(|yit − zT
it β

(k−1)
it |)

2|yit − zT
it β

(k−1)
it |

(yit − zT
it βit)

2

+
T

∑
t=1

∑
i<j

P
′

λ(||β
(k−1)
it − β

(k−1)
jt ||)

2||β(k−1)
it − β

(k−1)
jt ||

||βit − βjt||
2

+
N

∑
i=1

∑
t<t′

P
′
γ(||β

(k−1)
it − β

(k−1)
it′

||)

2||β(k−1)
it − β

(k−1)
it′

||
||βit − βit′ ||

2

+ C,

(9)
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where φ(·), P
′
λ(·), and P

′
γ(·) are the derivatives of ρ(·), Pλ(·), and Pγ(·), respectively. C

depends on β(k−1) and can be treated as a constant when solving for the kth estimator. By
minimizing Q(k)(β; γ, λ), we obtain β(k).

Equation (9) has an explicit solution. To simplify Equation (9), we first define some
symbols as follows,

Y = (y11, · · · , y1T , · · · , yN1, · · · , yNT)
>,

Zi = diag(z>i1, · · · , z>iT), Z = diag(Z1, · · · , ZN),

∆1 = diag
{√

φ(|Y − Zβ(k−1)|)/|Y − Zβ(k−1)|
}

,

where the square root symbol
√
·, the function φ(·), the division symbol ·/·, and the

absolute value function | · | represent the corresponding operations performed on each
element of the vector when they act on vectors.

Let e(c)i be an N-dimensional vector with 1 in the i-th dimension and 0 in the other

dimensions, and let e(r)t be a T-dimensional vector with 1 in the tth dimension and 0 in the
other dimensions. We define

δ
(c)
i,j = IT×T ⊗

[
(e(c)i − e(c)j )> ⊗ IP×P

]
, δ

(r)
t,t′

= IN×N ⊗
[
(e(r)t − e(r)

t′
)> ⊗ IP×P

]
,

where IT×T , IP×P, and IN×N are identity matrices, and ⊗ represents the Kronecker product.
We concatenate δ

(c)
i,j for i < j and δ

(r)
t,t′

for t < t
′

to obtain

δc = (δ
(c)
1,2

>
, · · · , δ

(c)
N−1,N

>
)>, δr = (δ

(r)
1,2

>
, · · · , δ

(r)
T−1,T

>
)>.

Let U = δcβ(k−1) and V = δrβ(k−1). U and V are both NTP-dimensional vectors that
can be expressed as U = (u>11, · · · , u>NT)

> and V = (v>11, · · · , v>NT)
>, respectively, where uit

and vit are P-dimensional vectors. Let uit and vit be the L2 norms of uit and vit, respectively.
Let U = (u11, · · · , uNT)

>, V = (v11, · · · , vNT)
>.

Thus, Equation (9) can be written as

Q(k)(β; γ, λ) =
1
2
(Y − Zβ)>∆>1 ∆1(Y − Zβ) +

1
2

β>∆>2 ∆2β +
1
2

β>∆>3 ∆3β + C, (10)

where ∆2 =

[
IP×P ⊗

√
P′λ(U)/U

]
δc, ∆3 =

[
IP×P ⊗

√
P′γ(V)/V

]
δr.

By minimizing the above equation, we obtain the iteration formula for the kth step,

β(k) = (Z>∆1
>∆1Z + ∆2

>∆2 + ∆3
>∆3)

−1Z>∆1
>∆1Y . (11)

We repeat this iteration process until the norm of the difference between β(k) and
β(k−1) is smaller than a given threshold δ (set to 1e-5 in our experiments), at which point
the algorithm terminates. As noted by Hunter and Li [19], this algorithm belongs to the
class of MM algorithms, and its convergence is guaranteed.

To perform the iterative process, it is necessary to specify the initial value of the
regression coefficients. An appropriate initial value can reduce the number of iterations
and computation time. Following the approach of Wang et al. [18], we use ridge regression
to obtain the initial values. The specific formula is as follows,
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β(0) = arg min
β∈RNTP

{
N

∑
i=1

>
∑
t=1

(yit − z>it βit)
2 + λ∗

>
∑
t=1

∑
i<j
||βit − βjt||

2

+ γ∗
N

∑
i=1

∑
t<t′
||βit − βit′ ||

2}

= arg min
β∈RNTP

{
||Y − Zβ||2 + λ∗||δcβ||2 + γ∗||δr β||2

}
= (Z>Z + λ∗δc

>δc + γ∗δr
>δr)

−1X>Y .

(12)

Here, λ and γ are tuning parameters, which are set to 1e-3 in all subsequent experi-
ments.

To select the optimal tuning parameters in the objective function, we use the modified
Bayesian information criterion (mBIC) [20], which has been widely utilized for hyperpa-
rameter selection in the field of heterogeneous structure recovery [8,10,21,22]. Notably,
Cheng et al. [10] have demonstrate the selection consistency of mBIC within the context
of subgroup identification tasks under the framework of M-estimation. In this paper, we
denote the mBIC as follows,

mBIC(λ, γ) = log

(
1

NT

N

∑
i=1

T

∑
t=1

ρ(yit − zit
> β̂it)

)
+ c

log log(NT)
NT

log(NTP)L̂(λ, γ)P, (13)

where L̂(λ, γ) is an estimate of the number of sub-blocks, and c is a constant. In this
paper, when ρ is the L2 loss, we follow the setting of Ma and Huang [17] and set c = 10;
when ρ is the L1 loss, we follow the setting of Zhang et al. [8] and set c = 5; when ρ is
Huber, we also set c = 5. To search for the optimal values of the parameters λ, γ, and
the controlling parameter a in the penalty functions, we use grid search to traverse the
ranges of [λmin, λmax], [γmin, γmax], and [amin, amax], respectively, with a given step size.
We calculate the mBIC value for each combination of λ, γ, and a. The combination that
results in the minimum mBIC is selected as the optimal tuning parameters, which are then
used to obtain the final estimation result.

2.4. Asymptotic Properties

We first investigate the property of oracle estimator. If the underlying block structure
B = {Bl : l = 1, ..., L0} is known, the oracle estimator is defined by

α̃ = arg min
α∈RPL0

{
L

∑
l=1

∑
(i,t)∈Bl

ρ(yit − zT
itαl)}, (14)

where α̃ = (α̃T
1 , ..., α̃T

L)
T . The oracle estimator is unavailable in practice because it assumes

the knowledge of the real block structure, but it plays a significant role in theoretical
analysis.

First, we define some notations. Let zit,p denote the pth element of zit. λmin(·)
and λmax(·) denote the minimum and maximum eigenvalues of a matrix, respectively.
Let φ denote the derivative of ρ, φ

′
and φ

′ ′
denote the first and second derivatives of

φ, respectively, and f
′

denotes the first derivative of the distribution function f of εit.
SP = {d ∈ RP : ||d||2 = 1} denotes the unit sphere in RP.

Since ρ may have nondifferentiable points, its derivative φ may have discontinuities.
Therefore, we need to classify and discuss φ according to its properties. Following the
method of He and Shao [23], we classify φ into two categories: smooth function and jump
function. When φ is Lipschitz continuous on its domain, we call it a smooth function; when
φ has a finite number of jump points but is Lipschitz continuous on the intervals between
two adjacent jump points, we call it a jump function. It is clear that L2 loss and Huber loss
are smooth functions, while L1 loss is a jump function.
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We introduce the following assumptions.
(A1). There exists a constant M1 such that

|xit,p| ≤ M1, ∀1 ≤ i ≤ N, 1 ≤ t ≤ T, 1 ≤ p ≤ P,

and there exist two positive constants C1 and C2 such that

C1 ≤ λmin

(
1

NT
Z>Z

)
≤ λmax

(
1

NT
Z>Z

)
≤ C2.

(A2). L0P = O((NT)c1), for some 0 < c1 < 1
3

(A3). When the loss function is a smooth function, φ
′

and φ
′′

are bounded by c0 =

Eφ
′
(εit) ∈ (0, ∞); when the loss function is a jump function, φ, f , and f

′
are bounded by

c0 = −
∫ ∞
−∞ φ(r) f

′
(r)dr ∈ (0, ∞).

(A4). supd1,d2∈Sp

N
∑

i=1

>
∑

t=1
|z>it d1|2|z>it d2|2 = O(NT).

Remark 1. Assumption (A1) is a regularization assumption on the design matrix, where the
minimum and maximum eigenvalues of (NT)−1Z>Z are bounded by constants, which is a
common assumption in heterogeneity panel data analysis based on concave fused penalties; see
Ma and Huang [17], Ma et al. [22], Wang and Zhu [3], etc. Assumption (A2) allows the real co-
efficients dimension L0P to increase with the sample size NT but at a slower rate. Assumption
(A3) provides bounds on the loss function and error term distribution for different types of φ. This
assumption is used by He and Shao [23] to prove the asymptotic normality of the M-estimator in
linear regression models. For commonly used loss functions in the M-estimation field (such as L1,
L2, and Huber) and commonly used error term distributions (such as normal and t-distributions), it
is easy to prove that assumption (A3) is satisfied. Assumption (A4) further imposes restrictions on
the design matrix, where if zit is a random sample from a P-variate distribution and for any d ∈ SP,
E(|d>zit|4) that is uniformly bounded, then assumption (A4) holds, obviously.

Under these assumptions, we can obtain the consistency properties of the oracle
estimator.

Theorem 1. Under assumptions (A1)–(A4), we have

||α̃− α0|| = Op

(√
L0P
NT

)
, ||β̃− β0|| = Op

(√
L0P|Bmax|

NT

)
,

sup
i,t
||β̃it − β0

it|| = Op

(√
L0P
NT

)
.

We can also provide the asymptotic normal theory for the oracle estimator (Proof of
Theorem 1 in Appendix A.1).

Theorem 2. Under assumptions (A1)–(A4), we have

NTdT(α̃− α0)/σ(d)→ N(0, 1),

where σ2(d) = (c0Eφ2(εit))
−1d>(Z>Z)d, and d is a PL× 1 vector such that ||d|| = 1 (Proof of

Theorem 2 in Appendix A.2).

Let b denote the minimum difference between coefficients of any two sub-blocks,
i.e., b = min

l 6=l′
||α0

l − α0
l′
||. Let |Bmin| denote the sample size of the smallest sub-block. Let

pλ(s) = λ−1Pλ(s) and pγ(s) = γ−1Pγ(s) denote the standardized penalty functions, where
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p
′
λ(s) and p

′
γ(s) are their derivatives. To derive the asymptotic properties of our proposed

estimator, additional assumptions are required.
(A5). For any c1 < c2 ≤ 1, there exists M2 > 0 such that

(NT)(1−c2)/2b ≥ M2,

where c1 is defined in Assumption (A2).
(A6). There exist two positive constants c3 and c4 such that for any εit and c ∈ [−c3, c3],

we have
P(|φ(εit + c)| > x) ≤ 2 exp(−c4x2).

(A7). The normalized penalty functions pλ(s) and pγ(s) are symmetric non-decreasing
functions that are convex on [0, ∞). We have pλ(0) = pγ(0) = 0. There exist positive
numbers a > 0 and a

′
> 0 such that pλ(s) and pγ(s

′
) are constant when s ≥ aλ and

s
′ ≥ a

′
γ, respectively. The derivatives p

′
λ(s) and p

′
γ(s) are continuous except at a finite

number of points, and p
′
λ(0+) = p

′
γ(0+) = 1.

Remark 2. Assumption (A5) provides the minimum difference in regression coefficients between
different sub-blocks, which is essential for the separability of the coefficients. Assumption (A6)
further restricts the error term, which is relatively mild for M-estimators. Specifically, when ρ is the
L2 loss, φ(εit) = 2εit, and assumption (A6) is equivalent to requiring that the error term εit has
sub-Gaussian tails, which is a common assumption in the field of high-dimensional statistics. When
ρ is the L1 or Huber loss, assumption (A6) obviously holds because φ is bounded by a constant.
Assumption (A7) restricts concave penalty functions, which can be easily verified to be satisfied by
SCAD and MCP, where positive a and a′ control the concavity of the penalty function. It should
be noted that when s ≥ aλ, p

′
λ(s) is constant. This means that when (i, t) and (j, t′) belong to

different sub-blocks, the fused penalty term pλ(||βit − βjt′ ||) tends to be constant; i.e., it does not
compress the coefficient differences of different sub-blocks.

Theorem 3. Under assumptions (A1)–(A7) and max(λ, γ) = o((NT)−(1−c2)/2),
√

P
√

log (NT)
min (λ,γ)|Bmin|

=

o(1), the oracle estimator is a local minimizer of the objective function with probability tending to one,
i.e., as both N and T→ ∞, we have

lim
N,T→∞

P(β̂ = β̃)→ 1.

Under the conditions of Theorems 2 and 3, we can obtain the following corollary
(Proof of Theorem 3 in Appendix A.3).

Corollary 1.
NTdT(α̂− α0)/σ(d)→ N(0, 1),

where σ2(d) =
(
c0Eφ2(εit)

)−1d>(Z>Z)d, and d is a PL× 1 vector such that ||d|| = 1.

In practice, the distribution of εit is unknown, and the estimate of Eφ2(εit) can be
taken as

̂Eφ2(εit) = (NT − L̂P)−1
N

∑
i=1

>
∑
t=1

[
φ(yit − z>it β̂it)

]2
.

When φ(·) is a smooth function, the estimate of c0 is denoted as

ĉ0 = (NT)−1
N

∑
i=1

>
∑
t=1

φ
′
(yit − z>it β̂it).
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3. Simulation
3.1. Simulation Setting

This section presents two artificially constructed examples to investigate the finite-
sample performance of the proposed estimator. The simulated data are independently
generated from the following model,

yit = µit + xT
itηit + εit, i = 1, ..., N; t = 1, ..., T,

We consider different combinations of the number of individuals N, the time range
T, and the dimension of the regression coefficients P. For each combination of (N, T), we
change the distribution of εit from normal to heavy-tailed and compared the estimation
results under different loss functions, including L1, Huber, and L2 loss.

We use the MCP penalty function in the experiment, as SCAD yields similar results
and is therefore not presented. The maximum number of iterations is set to 50, and the
threshold δ is set to 10−5. The algorithm terminates when the number of iterations exceeds
50 or the update range of coefficients is less than 10−5. Each group of experiments is
repeatedR = 100 times. In each experiment, we perform a grid search to select the optimal
tuning parameters λ, γ, and a by comparing the mBIC values. The range of λ and γ is
[0.1, 1.5] with a step size of 0.2, and the range of a is [2, 10] with a step size of 2. We utilize
the following metrics to assess the systematic error of the regression coefficient estimation
and the precision of the block structure recovery.

1. RMSE: root mean square error between the estimated parameter β̂ and the real
parameter β0.

1
R
R
∑
r=1

√
1

NTP
||β̂r − β0||2

2. Bias: bias between the estimated parameter β̂ and the real parameter β0.

1
R
R
∑
r=1

[
1

NTP

N

∑
i=1

T

∑
t=1

P

∑
p=1
|β̂r

it,p − β0
it,p|
]

3. Per: the percentage that the estimated number of blocks and the real number of blocks
are equal.

1
R
R
∑
r=1

I(L̂r = L0)

4. ERI: The Rand Index (RI) is used to evaluate the accuracy of clustering, which ranges
between 0 and 1, with higher values indicating better performance. Motivated by the
formation of RI, we can calculate individual or period-specific RIs, denoted as RIt or
RIi, respectively. We define ERI as the averages over all periods and individuals, as
follows,

ERI =
1
2

[
1
T

T

∑
t=1

RIt +
1
N

N

∑
i=1

RIi

]

3.2. Simulation Examples

Example 1. In this example, we generate simulated data from the following model,

yit = µit + xitηit + εit, i = 1, · · · , N; t = 1, · · · , T,

where xit = 2× eit and eit are independent and identically distributed standard normal random
variables. The intercept term µit and slope coefficients ηit have dimension 1 and exhibit the same
block structure. As shown in Figure 1, we construct three sets of panel data by varying the
combinations of N and T. Each set of data can be partitioned into two sub-blocks B1 and B2,
corresponding to coefficients β1 = (2, 3) and β2 = (2, 5), respectively.



Mathematics 2023, 11, 2333 10 of 19

To verify the robustness of the proposed method, we consider three scenarios for
generating εit. Scenario 1 (normal distribution): εit ∼ N (0, 1). Scenario 2 (heavy-tailed
distribution): εit ∼ 0.5× t(3), where t(3) denotes the Student’s t-distribution with 3 degrees
of freedom. Scenario 3 (mixture distribution): εit ∼ 0.3×N (0, 0.52) + 0.2×N (0, 52).

We obtain nine groups of panel data by varying the combinations of (N, T) and the
distribution of εit. For each group of data, we compare the performance of the oracle
estimator, the L1-loss-based estimator, the L2-loss-based estimator, and the Huber-loss-
based estimator. The oracle estimator is the estimator when the block structure is known,
and for convenience, we use the L2 loss as its loss function, so the oracle estimator has
an explicit solution. The estimators under an unknown block structure are influenced by
the tuning parameters λ, γ, and a. We use a grid search method to obtain the optimal
hyperparameter combination following the setting in Section 2.3. Additionally, there is an
extra parameter δ in the Huber loss function to control the shape of the loss function, and
we use the default value of 1.345.

0 4 8 12 16

T=16

4

8

12

16

N=
16

(a)

0 4 8 12 16 20 24 28 32

T=32

4

8

12

16

20

24

28

32

N=
32

(b)

0 4 8 12 16 20 24 28 32

T=32

4

8

12

16

N=
16

(c)

1

2

1

2

1

2

Figure 1. Block structures corresponding to different combinations of N and T in Example 1. The
orange regions correspond to block 1, and the blue regions correspond to block 2. (a) shows the
block structure for N = T = 16. (b) shows the block structure for N = T = 32. (c) shows the block
structure for N = 16 and T = 32.

Example 2. In this example, we adopt the block partitioning method under different combinations
of (N, T) as in Example 1 with the difference being an increase in the dimension of the regression
coefficients from 2 to 4. The model is specified as follows,

yit = µit + xi1ηit,1 + xi2ηit,2 + xi3ηit,3 + εit, i = 1, · · · , N; t = 1, · · · , T,
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where the real coefficients of the first block are β1 = (2, 3,−2, 1), and those of the second block are
β2 = (−2, 1, 3,−1). The explanatory variables (xi1, xi2, xi3) are generated from a multivariate
normal distribution with mean (0, 0, 0) and covariance matrix 1 0.5 0.25

0.5 1 0.5
0.25 0.5 1


The error term εit is generated according to the same mixture distribution as in Example 1. We
obtain three sets of panel data for different combinations of N and T.

For each set of data, we compute the oracle estimator and the estimator for the
unknown block structure following the same procedure as in Example 1. Then, we analyze
various result indicators to investigate the performance of the proposed method as the
dimension of the regression coefficients increases.

Example 3. To evaluate the effectiveness of a dual-penalty in handling two-dimensional heteroge-
neous panel data, we conduct an ablation experiment by removing either the individual dimension
penalty or the time dimension penalty from the objective function (4) and comparing the results
with the full objective function that includes both penalties.

We use a set of simulated data from Example 1, where the data have a dimension of
N = T = 32, the error term follows a standard normal distribution, and the loss term in
the objective function is the L2 loss.

3.3. Simulation Results

Tables 1–3 display the simulation results for Example 1, corresponding to three differ-
ent distributions of the error term. In each table, we consider three combinations of (N, T),
reporting the results of the oracle estimator when the block structure is known, and the
results based on three different loss functions when the block structure is unknown. The
objective function for obtaining the oracle estimator is set to use the L2 loss. Since obtaining
the oracle estimator is difficult in practice, we use it only for comparison. We report the
mean and standard deviation of 100 repeated experiments, with the standard deviation
displayed in parentheses.

Table 1. Experimental Indicators of Each Combination When the Error Term is Normally Distributed
in Example 1.

(N, T) Model Rmse Bias Per ERI

(16, 16)

Oracle 0.034 (0.025) 0.056 (0.021)
L1 0.040 (0.031) 0.087 (0.041) 0.99 0.998 (0.002)
L2 0.039 (0.026) 0.073 (0.030) 1 0.999 (0.001)

Huber 0.039 (0.026) 0.075 (0.031) 1 0.998 (0.001)

(16, 32)

Oracle 0.020 (0.015) 0.039 (0.014)
L1 0.024 (0.020) 0.068 (0.034) 1 0.999 (0.001)
L2 0.021 (0.016) 0.040 (0.020) 1 0.999 (0.001)

Huber 0.022 (0.016) 0.041 (0.018) 1 0.998 (0.001)

(32, 32)

Oracle 0.015 (0.012) 0.028 (0.011)
L1 0.016 (0.014) 0.035 (0.021) 1 0.998 (0.001)
L2 0.016 (0.011) 0.028 (0.012) 1 0.999 (0.001)

Huber 0.016 (0.010) 0.028 (0.012) 1 0.999 (0.001)

In Table 1, the error terms follow the standard normal distribution. Simulations based
on L1 loss and Huber loss perform similarly to those based on L2 loss. In terms of coefficient
estimation, when N = T = 16, the L2 loss slightly outperforms L1 and Huber losses, but as
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N and T increase, the differences among the three simulation results diminish, and they
all approach the oracle estimator. In terms of structural recovery, the Per metric equals 1
in the second and third combinations of (N, T), indicating that the estimated number of
blocks equals the actual number of blocks. The ERI metric approaches 1, indicating that the
method accurately classifies the samples into the correct sub-blocks.

Table 2. Experimental Indicators of Each Combination When the Error Term is t-Distributed in
Example 1.

(N, T) Model Rmse Bias Per ERI

(16, 16)

Oracle 0.024 (0.020) 0.046 (0.022)
L1 0.023 (0.018) 0.058 (0.032) 0.98 0.998 (0.001)
L2 0.026 (0.021) 0.063 (0.039) 0.89 0.983 (0.011)

Huber 0.024 (0.019) 0.060 (0.035) 0.99 0.998 (0.001)

(16, 32)

Oracle 0.016 (0.013) 0.030 (0.011)
L1 0.017 (0.013) 0.041 (0.019) 1 0.999 (0.001)
L2 0.023 (0.018) 0.054 (0.033) 0.91 0.987 (0.006)

Huber 0.018 (0.014) 0.043 (0.028) 1 0.998 (0.002)

(32, 32)

Oracle 0.012 (0.009) 0.021 (0.009)
L1 0.012 (0.009) 0.032 (0.012) 1 0.999 (0.001)
L2 0.015 (0.012) 0.037 (0.023) 0.94 0.993 (0.004)

Huber 0.012 (0.010) 0.033 (0.022) 1 0.999 (0.001)

In Table 2, the error terms follow a heavy-tailed t distribution. It is evident that
the results based on L1 loss and Huber loss outperform those based on L2 loss. When
N = T = 16, we even observe that the RMSE metric based on L1 loss is slightly lower
than the oracle estimator based on L2 loss. This is because the heavy-tailed distribution
increases the probability of outliers in the simulated data, and L2 loss is more sensitive
to outliers than L1 loss. As N and T increase, the results based on L1 and Huber losses
approach the oracle estimator, and the RMSE and Bias metrics for coefficient estimation
become increasingly closer to those of the oracle estimator. The Per and ERI metrics reach
or approach 1, indicating that the method accurately recovers the block structure.

In Table 3, the error terms follow a mixture of normal distributions with a stronger
heavy-tailed effect. The simulation results are worse than those of the previous two cases,
but those based on L1 loss and Huber loss are still better than those based on L2 loss. As N
and T increase, the Per and ERI metrics gradually approach 1. This simulation experiment
also confirms the robustness and block structure recovery ability of the proposed estimator.

Table 3. Experimental Indicators of Each Combination When the Error Term Follows a Mixture
Distribution in Example 1.

(N, T) Model Rmse Bias Per ERI

(16, 16)

Oracle 0.044 (0.037) 0.084 (0.038)
L1 0.054 (0.038) 0.122 (0.056) 0.79 0.986 (0.012)
L2 0.081 (0.066) 0.162 (0.098) 0.42 0.943 (0.037)

Huber 0.057 (0.065) 0.151 (0.117) 0.74 0.980 (0.011)

(16, 32)

Oracle 0.034 (0.025) 0.062 (0.025)
L1 0.049 (0.034) 0.112 (0.530) 0.81 0.986 (0.010)
L2 0.088 (0.075) 0.207 (0.129) 0.49 0.953 (0.028)

Huber 0.051 (0.040) 0.118 (0.073) 0.76 0.984 (0.010)

(32, 32)

Oracle 0.023 (0.017) 0.044 (0.017)
L1 0.032 (0.024) 0.086 (0.066) 0.89 0.989 (0.005)
L2 0.061 (0.073) 0.149 (0.106) 0.62 0.971 (0.021)

Huber 0.044 (0.046) 0.093 (0.068) 0.83 0.987 (0.007)
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Below, we analyze the performance of the proposed estimator as the dimension of the
coefficient P increases. In Table 4, the error term follows a heavy-tailed mixture normal
distribution. Increasing P makes coefficient estimation and block structure recovery more
challenging, but the performance metrics corresponding to L1 loss and Huber loss remain
superior to those of L2 loss. As N and T increase, all performance metrics of the estimator
improve significantly, and the Per metric corresponding to L1 loss approaches 0.9 when
N = T = 32.

Table 4. Experimental Indicators of Each Combination When the Error Term Follows a Mixture
Distribution and P = 4 in Example 2.

(N, T) Model Rmse Bias Per ERI

(16, 16)

Oracle 0.044 (0.037) 0.084 (0.038)
L1 0.054 (0.038) 0.122 (0.056) 0.79 0.986 (0.012)
L2 0.073 (0.062) 0.157 (0.093) 0.42 0.943 (0.037)

Huber 0.057 (0.045) 0.151 (0.087) 0.74 0.980 (0.011)

(16, 32)

Oracle 0.034 (0.025) 0.062 (0.025)
L1 0.049 (0.034) 0.112 (0.053) 0.81 0.986 (0.010)
L2 0.070 (0.063) 0.154 (0.091) 0.49 0.953 (0.028)

Huber 0.051 (0.040) 0.118 (0.073) 0.76 0.984 (0.010)

(32, 32)

Oracle 0.023 (0.017) 0.044 (0.017)
L1 0.032 (0.024) 0.086 (0.066) 0.89 0.989 (0.005)
L2 0.061 (0.073) 0.149 (0.106) 0.62 0.971 (0.002)

Huber 0.044 (0.036) 0.093 (0.068) 0.83 0.987 (0.007)

Finally, we present the results of the ablation experiment with fused penalty terms.
Since the simulated data have a block structure, setting penalty terms only in one dimension
cannot effectively compress the coefficient differences in the other dimension and thus
cannot recover the block structure. Hence, we report only the results of the RMSE and
Bias metrics in Table 5. The performance of the double-penalty method exceed those of
any single-dimensional penalty method by a large margin, indicating the necessity of
biclustering analysis for block panel data. The double-penalty method not only recovers
unknown structures but also greatly reduces the estimation error of the coefficients.

Table 5. Ablation Experiment of Penalty Terms in Example 3.

Model RMSE Bias

Oracle 0.015 (0.012) 0.028 (0.011)
Double Penalties 0.016 (0.011) 0.028 (0.012)

Individual Penalty Only 0.155 (0.119) 0.799 (0.342)
Temporal Penalty Only 0.226 (0.130) 0.440 (0.154)

4. Discussion

Panel data models with heterogeneous coefficients have gained a lot of attention in
various fields due to their ability to capture complex data patterns. In this paper, we
extend the existing literature by proposing a more general block structure that captures
heterogeneity in individual and time dimensions in a flexible manner. Our proposed
model exhibits both an individual-group structure that can change at change points and
temporal–structural breaks that can vary across different groups. A robust biclustering
method based on M-estimation and double concave fused penalties is developed to es-
timate the coefficients, which can handle heavy-tailed data and outliers. Under certain
regularity conditions, we established the asymptotic normality of the oracle estimator and
the proposed estimator. Numerical simulations have validated the excellent finite-sample
performance of our proposed method by evaluating the recovery of unknown structures as
well as the estimated bias of regression coefficients. Furthermore, in our numerical simula-
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tions, we specifically investigate the performance of our proposed model in the presence
of heavy-tailed distributions, which highlights the superior performance of our proposed
method in handling outliers. We believe that our method has potential applications in
various fields where data exhibit complex heterogeneity.

Despite the progress made, there are still some limitations and further research topics
that warrant further exploration. First among these is the lack of convergence proof for the
Bayesian information criterion. To achieve this, more regularization assumptions would
be required for the distribution of covariates and error terms. For relevant work in this
area, researchers can consider the methodology proposed by Cheng et al. [10] for clustering
individual group structures. A second challenge arises from the high-dimensional matrix
calculations involved in the algorithm for solving the objective function. The computational
requirements increase exponentially with N and T. To address this issue, the divide-and-
conquer method can be used for parallel computation to improve the algorithm’s efficiency.
Finally, variable selection through L1 penalty on covariates is another promising area for
further research, particularly in situations with high-dimensional covariate dimensions P.
These areas of investigation will be the topic of future studies.
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Appendix A

In the appendix, we provide the proofs of Theorems 1–3.

Appendix A.1. Proof of Theorem 1

Here, we present the proof of Theorem 1. The first conclusion of Theorem 1 follows
directly from Example 1 in He and Shao [23].

Since ||α̃− α0|| = Op

(√
L0P
NT

)
, there exists a positive constant C such that ||α̃− α0|| ≤

C
√

L0P
NT . Using the relationship between α̃ and β̃, we have

||β̃− β0||2 =
L0

∑
l=1

∑
(i,t)∈Bl

||α̃l − αl0 ||2

≤ |Bmax|
L0

∑
l=1
||α̃l − αl0 ||2

= |Bmax|||α̃− α0||2

≤ C2L0P|Bmax|
NT

.

(A1)

Thus, ||β̃− β0|| ≤ C
√

L0P|Bmax|
NT .

Finally, applying a simple inequality yields

sup
i,t
||β̃it − β0

it|| = sup
l
||α̃l − α0

l || ≤ ||α̃− α0|| ≤ C

√
L0P
NT

. (A2)

This completes the proof of Theorem 1.
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Appendix A.2. Proof of Theorem 2

By assumption (A2), there exists 0 < c1 < 1
3 such that L0P = O((NT)c1). Clearly,

(L0P)3(log(L0P))2 = o(NT). (A3)

Therefore, by Example 1 in He and Shao [23], the result of Theorem 2 follows directly.

Appendix A.3. Proof of Theorem 3

We partition the block structure of regression coefficients as follows: we first divide
the samples into C groups according to the group structure in the dimension of individuals;
then, we partition them into K time periods according to the structural breaks in the
time dimension (if there exist structural breaks for any individuals at given time period,
we perform segmentation on all individuals instead of splitting individuals under given
groups). In this way, we obtain KC sub-blocks, which obviously exceeds the number of
true sub-blocks. Let Blc be the set of sample indexes that belong to both the cth individual
group and the l-th true sub-block, and let Blk be the set of sample indexes that belong to
both the kth time group and the lth true sub-block. Denote

L(β) =
N

∑
i=1

T

∑
t=1

ρ(yit − zT
itβit), (A4)

P(β) =
T

∑
t=1

∑
i<j

Pλ(||βit − βjt||) +
N

∑
i=1

∑
t<t′

Pγ(||βit − βit′ ||), (A5)

LB(α) =
L

∑
l=1

∑
(i,t)∈Bl

ρ(yit − z>it αl), (A6)

PB(α) = λ ∑
l<l′

C

∑
c=1

(|Blc||Bl′ c|)ρλ(||αl − αl′ ||)

+ γ ∑
l<l′

K

∑
k=1

(|Blk||Bl′ k|))ργ(||αl − αl′ ||),
(A7)

where the variable |Blc| denotes the number of samples belonging to both the cth individual
group and the lth true sub-block, while |Blk| represents the number of samples belonging
to both the kth time group and the lth true sub-block. To simplify the notation without
creating confusion, we use Q(β) to refer to the objective function in Equation (4), which is
defined as

Q(β) = L(β) + P(β), (A8)

and let
QB(α) = LB(α) + PB(α). (A9)

Let MB denote the set of RNTP coefficients with a block structure. We define a
mapping T : MB → RLP, which maps a block-structured NTP-dimensional vector β
to an LP-dimensional vector α. Here, α = (α>1 , · · · , α>L )

> is the concatenation of L P-
dimensional vectors, with the lth vector αl representing the coefficients for the lth sub-block.
Additionally, we define a mapping TB : RNTP → RLP, which maps any NTP-dimensional
vector β to an LP-dimensional vector α based on the block structure of B as follows. For
any β = {β>11, · · · , β>1T , · · · β>N1, · · · , β>NT} and B = {B1, · · ·BL}, the mapping process is
given by

TB(β) =

|B1|−1 ∑
(i,t)∈B1

β>it , · · · , |BL|−1 ∑
(i,t)∈BL

β>it

. (A10)
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From the properties of the mappings T and TB , it follows that for any β ∈ MB ,
we have T(β) = TB(β), P(β) = PB(T(β)). Let α = T(β), then P(T−1(α)) = PB(α).
Therefore, we conclude that,

Q(β) = QB(T(β)), QB(α) = Q(T−1(α)). (A11)

We denote the true regression coefficients as β0 and α0, and the oracle estimators as β̃
and α̃. Then, we define the set

Θ1 =

{
β ∈ RNTP : sup

it
||βit − β0

it|| ≤
√

L0P
NT

}
. (A12)

We now prove Theorem 2 in two steps.
(i) Let β ∈ Θ1, and denote β∗ = T−1(TB(β)). For all β∗ 6= β̃, we have Q(β∗) > Q(β̃)

with a probability tending to 1.
(ii) Define the set Θ2 = {βit : sup

it
||βit − β̂it|| ≤ s}, where s is a positive sequence.

When s is small enough, we have Q(β) ≥ Q(β∗) with a probability tending to 1 for all
β ∈ Θ1 ∩Θ2.

Clearly, if (i) and (ii) are proved, then for any β ∈ Θ1 ∩Θ2, we have Q(β) > Q(β̃),
which means that the oracle estimator β̃ is a local minimum of Q(β), and this conclusion
holds with probability tending to 1.

The proof for (i) is as follows. Let α = TB(β); then,

sup
l

∥∥∥αl − α0
l

∥∥∥2
= sup

l

∥∥∥∥∥∥|Bl |−1 ∑
(i,t)∈Bl

βit − α0
l

∥∥∥∥∥∥
2

= sup
l

∥∥∥∥∥∥|Bl |−1 ∑
(i,t)∈Bl

(
βit − β0

it

)∥∥∥∥∥∥
2

≤ sup
l
|Bl |−1 ∑

(i,t)∈Bl

∥∥∥βit − β0
it

∥∥∥2

≤ sup
i,t

∥∥∥βit − β0
it

∥∥∥2

≤ L0P
NT

,

(A13)

therefore, all l and l
′
, the following inequation holds,

||αl − αl′ || ≥ ||α
0
l − α0

l′
|| − 2 sup

l
||αl − α0

l || ≥ b− 2

√
L0P
NT

. (A14)

Using the inequality from assumption (A5), (NT)(1−c2)/2b ≥ M2, and the condition
max(λ, γ) = o((NT)−(1−c2)/2), we can obtain

b− 2

√
L0P
NT

> max(aλ, a
′
γ), (A15)

Therefore, assumption (A7) implies PB(α) = C, where C is a constant, and QB(α) =
LB(α) + C. Since α̃ is the global minimum of LB(α), it follows that QB(α) > QB(α̃) for
any α 6= α̃. Finally, using (A11), we have QB(α) = Q(T−1(α)) = Q(β) and QB(α̃) = Q(β̃),
so Q(β∗) > Q(β̃) for any β 6= β̃. This completes the proof of conclusion (i).
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Continuing with the proof for result (ii), we define two functions

P1(β) =
>
∑
t=1

∑
i<j

Pλ(||βit − βjt||), P2(β) =
N

∑
i=1

∑
t<t′

Pγ(||βit − βit′ ||). (A16)

By Taylor expanding around βit, we can decompose the difference of the objective
function into three parts,

Q(β)−Q(β∗) = Γ1 + Γ2 + Γ3 (A17)

where each part takes the following form:

Γ1 = L(β)− L(β∗), (A18)

Γ2 =
>
∑
t=1

N

∑
i=1

∂P1(βm)

∂βit
(βit − β∗it), (A19)

Γ3 =
N

∑
i=1

>
∑
t=1

∂P2(βm)

∂βit
(βit − β∗it). (A20)

Here, βm = θβ + (1− θ)β∗, where θ is a scalar between 0 and 1.
First, let us handle the first part,

Γ1 =
N

∑
i=1

>
∑
t=1

(ρ(yit − z>it βit)− ρ(yit − z>it β∗it))

= −
N

∑
i=1

>
∑
t=1

φ(yit − z>it βm
it )z

>
it (βit − β∗it)

= −
N

∑
i=1

>
∑
t=1

φ(εit + z>it (β0
it − βm

it ))z
>
it (βit − β∗it).

(A21)

By Assumption (A6) and z>it (β0
it − βm

it ) = op(1), we can deduce that,

P(φ(εit + z>it (β0
it − βm

it )) >
√

log(NT)) ≤ 2(NT)−c4 , (A22)

which implies that as N and T approach infinity, φ(εit + z>it (β0
it − βm

it )) ≤
√

log(NT) holds
with probability tending to one. Thus, we can bound Γ1 as follows,

Γ1 ≥ −
N

∑
i=1

>
∑
t=1

√
c−1

4

√
log(NT)z>it (βit − β∗it)

= −
L

∑
l=1

∑
(i,t)∈Bl

√
c−1

4

√
log(NT)z>it (βit − |Bl |−1 ∑

(j,t′ )∈Bl

βjt′ )

= −
L

∑
l=1

∑
(i,t),(j,t′ )∈Bl

√
c−1

4

√
log(NT)|Bl |−1z>it (βit − βjt′ )

≥ −
L

∑
l=1

∑
(i,t),(j,t′ )∈Bl

√
c−1

4

√
log(NT)|Bmin|−1

√
PM1||βit − βjt′ ||.

(A23)
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For Γ2 and Γ3, using the results from Wang et al. [18] and Fang et al. [24], we have

Γ2 ≥ λ
>
∑
t=1

L

∑
l=1

∑
(i,t),(j,t)∈Bl ,i<j

ρ
′
(4s)||βit − βjt||,

Γ3 ≥ γ
N

∑
i=1

L

∑
l=1

∑
(i,t),(i,t′ )∈Bl ,t<t′

ρ
′
(4s)||βit − βit′ ||.

(A24)

Finally, by combining the above results, we can obtain

Q(β)−Q(β∗) ≥ −4
L

∑
l=1

∑
(i,t),(j,t′ )∈Bl ,i<j,t<t′

√
c−1

4

√
log(NT)|Bmin|−1

√
PM1||βit − βjt′ ||

+
L

∑
l=1

[
>
∑
t=1

∑
(i,t),(j,t)∈Bl ,i<j

λρ
′
(4s) +

N

∑
i=1

∑
(i,t),(i,t′ )∈Bl ,t<t′

γρ
′
(4s)]||βit − βjt′ ||

≥ −4
L

∑
l=1

∑
(i,t),(j,t′ )∈Bl ,i<j,t<t′

√
c−1

4

√
log(NT)|Bmin|−1

√
PM1||βit − βjt′ ||

+
L

∑
l=1

∑
(i,t),(j,t′ )∈Bl ,i<j,t<t′

min(λ, γ)ρ
′
(4s)||βit − βjt′ ||.

(A25)

As s→ 0, ρ
′
(4s)→ 1. Moreover, since

√
P
√

log (NT)
min (λ,γ)|Bmin|

= o(1), we have Q(β)−Q(β∗) ≥ 0.
This completes the proof.
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