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Abstract: In this study, a new hybrid metaheuristic algorithm named Chaotic Sand Cat Swarm Opti-
mization (CSCSO) is proposed for constrained and complex optimization problems. This algorithm
combines the features of the recently introduced SCSO with the concept of chaos. The basic aim of
the proposed algorithm is to integrate the chaos feature of non-recurring locations into SCSO’s core
search process to improve global search performance and convergence behavior. Thus, randomness
in SCSO can be replaced by a chaotic map due to similar randomness features with better statistical
and dynamic properties. In addition to these advantages, low search consistency, local optimum trap,
inefficiency search, and low population diversity issues are also provided. In the proposed CSCSO,
several chaotic maps are implemented for more efficient behavior in the exploration and exploitation
phases. Experiments are conducted on a wide variety of well-known test functions to increase the
reliability of the results, as well as real-world problems. In this study, the proposed algorithm was
applied to a total of 39 functions and multidisciplinary problems. It found 76.3% better responses
compared to a best-developed SCSO variant and other chaotic-based metaheuristics tested. This
extensive experiment indicates that the CSCSO algorithm excels in providing acceptable results.

Keywords: Chaotic Sand Cat Swarm Optimization; chaotic maps; constrained problems;
multidisciplinary problems; hybrid metaheuristics

MSC: 68R12

1. Introduction

In general, the most common and economical process for finding the best value (mini-
mum or maximum) in systems and problems with challenging design is optimization [1,2].
As the size of the problem increases, so does its complexity, and therefore it becomes
more difficult to solve [3]. Similar problems are called Nondeterministic Polynomial time
(NP-hard) problems [4]. Such problems are common in real-world problems that have
various objectives and constraints. Metaheuristic algorithms are the most popular and
efficient of the different approaches to solving such problems. These algorithms can be
efficient in solving nonlinear and non−differentiable design problems. These algorithms
are stochastic-based optimization methods that prove their adequacy to solve many design
problems in different fields [5]. Therefore, it is possible to develop different algorithms for
various problems. Moreover, according to the No Free Lunch (NFL) [6] theorem, not every
algorithm can best solve all problems, so it is important to build up new algorithms. The
methods based on this approach do not guarantee that we will find the best solution but
that we can try to find the near-best answer and do so with less complexity and a shorter
execution time. These algorithms applied in the space area can both avoid local pitfalls
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and have fast convergence by scanning global and local regions on the basis of random-
ness. Therefore, recently, many researchers have focused on developing state-of-the-art
algorithms to take advantage of this approach [7–9]. In addition to the advantages of the
metaheuristic approach described earlier, these algorithms can be easily applied in various
fields of science and real-life complex problems [10], as they have relatively simple concepts
and do not need derivative function knowledge. Some of the studies can be accessed from
References [11–14].

It will be helpful to briefly examine the properties of metaheuristic algorithms for the
motivation of the study and the explanation of the main issue. The metaheuristic algorithms
consist of two important phases: exploration and exploitation [15]. In the exploration phase,
it provides numerous population-based parameters to explore the search space. In the
second stage, it is tried to obtain the optimum solution from the existing search space, which
can be global or local. Slow convergence and high computation time are unacceptable,
although it is by nature not to reach a one-step solution. In these phases, search agents try
to seek solutions and catch what they find. In this behavior circulation, the most critical
issue is that the processes in these two phases and the transitions between phases are
balanced. However, it should be noted that some algorithms can be unstable, converge
slowly, and fail to go outside the local sometimes or in some problems. In this case, new
strategies can be proposed to solve these limitations and/or improve the performance
of current algorithms. Examples of these strategies are parameter tuning, elitism, chaos,
and hybrid strategies [5,16]. The concept of chaos, which is one of the most effective
approaches, is discussed in this study, and this strategy is planned to be used in the
Sand Cat Swarm Optimization (SCSO) algorithm [17]. The performance of this algorithm
is degraded by some complex and constrained multidisciplinary problems. Moreover,
transitions between exploration and exploitation in the SCSO are sometimes slow; based
on this, there may be slow convergence. Briefly, the main gaps of the SCSO algorithm are
sometimes the problems of low search consistency, local optimum trap, inefficiency search,
and low population diversity. Accordingly, it is planned to eliminate these problems with a
chaos strategy. The concept of chaos has been applied extensively in various applications
with the growth of nonlinear dynamical systems that are highly sensitive to the initial
state. Chaos-based algorithms can generate a large number of different search points in a
short time, which can help explore the optimization area more efficiently and quickly than
traditional optimization algorithms.

Metaheuristic algorithms try to be effective in various engineering optimization pro-
cesses by using chaotic maps based on the concept of chaos with random and regular
features. In this study, a new hybrid algorithm is proposed based on the chaos strategy.
According to [18,19], as the initial population diversity increases, it becomes possible for
the algorithm to escape from the local optimum trap and prevent premature convergence.
On the other hand, in another study [20], it was found that the application of the chaotic
component in optimization is a performance-enhancing factor in many algorithms.

This paper proposes a novel Chaotic Sand Cat Swarm Optimization (CSCSO) algo-
rithm. This chaotic-based algorithm seeks to follow global optimum solutions with better
convergence by using various chaotic maps to improve SCSO performance. In addition to
overcoming some of the limitations of SCSO, the proposed algorithm aims to determine the
most suitable chaotic plots for the SCSO algorithm. In this regard, 12 maps are integrated
to develop exploratory and exploitative mechanisms. Some benchmark test functions and
constrained problems are investigated to evaluate the performance of the CSCSO algorithm.
It is analyzed for all maps one by one. Finally, the outcomes of the proposed algorithm are
compared with several well-known algorithms in the literature. Besides these, the main
contributions of this paper are summarized below:

(1) It is to integrate the chaos feature of non-recurring locations into SCSO’s core search
process to improve global search performance.

(2) The problem of slow transitions between phases and early or late convergence is decreased.
(3) It focuses on exploration as early as possible to avoid falling into local optimization.
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(4) It tries to find the best or near−optimum solutions by increasing the probability of
the population spread.

(5) By using 12 different maps, the most suitable map for SCSO is determined. Therefore,
it is a chaos-based inclusive algorithm for SCSO.

(6) The method is flexible and can be easily adapted to different types of optimiza-
tion problems.

The rest of the paper is organized as follows. Section 2 discusses related works.
Section 3 overviews the standard sand cat swarm algorithm. Section 4 introduces a novel
hybrid chaos-based algorithm (CSCSO). Sections 5–7 include the outcomes and analysis of
the proposed algorithm in various cases and problems. The conclusion takes place in the
Section 8.

2. Related Works

Since the study mainly focuses on metaheuristic algorithms of the concept of chaos,
this section examines chaotic and hybrid methods with other metaheuristic algorithms.
Then, in the next section, the SCSO algorithm and its features are discussed. Therefore,
in this section, the analysis of chaos-based metaheuristic methods is mainly discussed.
However, first, let us briefly describe the types of metaheuristic algorithms.

The metaheuristic algorithms are broadly divided into four main categories: evo-
lutionary, physics-based, human behavior, and swarm intelligence algorithms [3]. It is
worth noting that there are also hybrid methods consisting of these four main categories.
In evolution-based algorithms, the biological behavior of different systems is taken into
account. One of the famous algorithms in this category is the Genetic Algorithm (GA) [21];
it is based on Darwin’s theory. Among the studies in this category, Refs. [22–24] are recent
studies that can be given as examples. Physics-based algorithms are the category that ex-
hibits random behavior inspired by the laws of physics in nature. Some of the studies in this
category are presented in [25–27]. Algorithms in the third category are those inspired by the
social behavior of humans. Some studies can be cited as examples in this category [28–30].
This category is expected to become widespread by incorporating more and more social
sciences in the future [3]. In particular, it should be emphasized that there are multivariate
dynamic problems in social sciences, and in solving these problems, these algorithms
expected to be used frequently, such as artificial intelligence and machine learning [31]. The
last category is Swarm Intelligence (SI) algorithms, which have received a lot of attention
recently by researchers. The SI is also defined as the collective behavior of a decentralized
or self−organizing system [32]. This approach consists of a large number of members with
limited intelligence who interact with each other based on simple principles. Many studies
have been performed in this category [32–35]. The hybrid algorithms can be presented for
more efficient solutions to some global and/or specific problems. Considering that there are
difficult and complex problems faced in our real world, it is inevitable that such algorithms
will become widespread. In accordance with this purpose, they are looking for better solu-
tions by combining the pros of the metaheuristic algorithms under consideration. Hybrid
methods generally either present different existing metaheuristic algorithms as a single
new algorithm or make improvements to existing algorithms. Recently, out−of−the−box
hybrid models realize the concept of chaos by adapting them to metaheuristic algorithms.
Some examples are listed in [36–38]. A generalized version of these classifications is pre-
sented in Figure 1. Its wide-ranging metaheuristic approach is used today for a variety of
real problems, ranging from engineering to intelligent systems [39–43]. More examples of
studies in these categories [44–65] are referred to in this figure.
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As mentioned earlier, chaos-based metaheuristic methods are explored in this section.
In this regard, the focus is on the well-known population-based SI algorithms as far as
possible. In [66], a hybrid chaos-based algorithm was proposed, called Broyden–Fletcher–
Goldfarb–Shanno algorithm (Chaos−BFGS). BFGS is a quasi−Newton method for local
optimization devised. Methods based on Newton’s model have a fast convergence rate and
high efficiency, while optimization results are based on selected initial points. The authors
introduced pseudo-randomness and disorder by adding chaotic behavior to the relevant
algorithm. In [67], researchers proposed a new metaheuristic based on chaotic strategies to
improve the performance of power distribution systems. In this algorithm, called Modified
Symbiotic Organisms Search (MSOS), they tried to solve the constraints of the economic
dispatch system of the relevant system. In this study, they helped the algorithm to find a
global optimum solution with a superior convergence rate by applying different logistic
chaos maps. Similarly, in [68], the researchers were able to significantly improve the
performance of the Big Bang–Big Crunch (BBBC) [69] algorithm with three different chaos
maps and five unique chaotic-based strategies.

In [70], the author tried to improve the performance of the Cuckoo Search Algorithm
(CSA) by incorporating ten chaotic maps. They claimed to improve the performance of
their algorithm in terms of quality solutions and convergence behaviors, based on their
results in 27 benchmarking problems. In another study [36], ten specialized chaotic maps
were applied to the Grey Wolf Optimization (GWO) algorithm. The authors claim that the
algorithm they propose has acceptable performance in the global optimum finding and
convergence rate for constrained problems, based on their results. In this regard, the results
were compared with the standard GWO. In a study [71], the authors used augmenting
chaotic maps for improving the performance of the Krill Herd Optimizer (KHO) [72] in
terms of computational time and convergence rate. This conclusion was reached after
encountering the standard KHO and a few other algorithms. In another study [73], chaos
theory was used to find the local optimum solution and solve slow convergence problems
of the GA. In this study, the proposed chaotic GA demonstrated successful performance in
the optimum design of critical hydroelectric systems.

In another study [74], the failure of the Dolphin Swarm Algorithm (DSA) [75] in some
cases, such as incomplete solution and entrapment in local optima, was discussed. To
solve these problems, the authors augmented eight chaotic logistic maps. Their outcomes
have shown a significant improvement. The authors claim that their proposed algorithm
achieved improvements in the convergence rate, along with the elimination of the above
problems, by comparing their results with the standard DSA. The Chaos Ant Colony
Algorithm (CACA) was proposed in [76]. In this study, efficient tool path, motion, and
handling were estimated. The results show that pocket milling can be optimized with
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effective tool trajectories with the help of CACA. The last study discussed in this section is
a chaos structure applied to the Artificial Bee Colony (ABC) [77]. According to the analyses
of the authors, they claimed that the chaotic ABC is superior to the ABC in reaching the
global optima and the rate of convergence. In addition, some chaos-based studies, albeit
limited, focus on phase transitions, convergence speed, computation time, and quality
results [78–81].

In this study, we focused on improving the performance of the SCSO algorithm,
especially in solving complex and constrained problems, as mentioned in the previous
section. In this context, a new chaos-based algorithm is proposed that converges fast,
does not delay transitions between phases, and does not fall into the local optima trap. A
detailed explanation of this algorithm will be given in the following sections. Summaries
and analyses of some studies from the literature are presented in Table 1.

Table 1. Summary of some current studies.

Algorithms Strong Points Weak Points Focus on

[17]

+ Easy to implement and can
handle high dimensional and
non−linear optimization
problems.

+ Try to find a suitable solution
in a reasonable amount of
time.

+ Balance behavior in phases of
transition.

− Sensitive to the choice of
parameters.

− Possibility of early or late
convergence.

− Being dependent on the initial
population form.

Engineering and global problems.

[36]

+ Fast convergence.
+ Increasing the probability of

population spread.
+ Successful performance in

finding the optimal solutions.

− Using a limited number of
chaotic maps.

− High complexity.
− Tunning based on

randomness approach.

Constrained benchmark functions
and some engineering design.

[62]
+ Strong global searchability.
+ Balance between phases.

− Long execution time.
− Just using a chaotic map.

A limited number of engineering
problems (ANN-based problems).

[66]

+ Fast convergence rate and
high efficiency.

+ Generating a very diverse
population initially.

− Possibility of premature
convergence.

− Utilizing a limited number of
chaotic maps.

Numerical optimization and
engineering design problems.

[67]

+ Balancing transitions between
phases.

+ Performing a symbiotic
relationship between
solutions to increase search
efficiency and promote
diversity in the solution space.

+ Use of valve−point effects.

− A limited number of chaotic
maps are used.

− Possibility of early
convergence.

Several thermal units’ problems.
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Table 1. Cont.

Algorithms Strong Points Weak Points Focus on

[68]

+ Good convergence rate.
+ It generates a large number of

different search points in a
short time.

− Just using a single chaotic
map.

− Possibility of early
convergence.

− Being prone to premature
convergence.

A specific engineering problem.

[69]

+ Acceptable quality solutions
and convergence behavior.

+ Improvement of the cuckoo
search algorithm.

+ Employing various chaotic
maps

+ Tuning the step size of the
cuckoos

− Insufficient exploration of the
search space sometimes.

− Does not work well in
high−dimensional functions.

Some classic benchmarking and
engineering problems.

[70]

+ Having a reasonable rate of
global convergence.

+ Strong robustness compared
to Krill Herd Algorithm.

+ Using several chaotic maps.

− Tunning parameters.
− Poor efficiency in

high−dimensional functions.
− Few comparisons.

Some classic benchmarks and a gear
train design problem.

[72]

+ Solving slow convergence
problems of the Genetic
Algorithm.

+ Supporting multiple
objectives.

+ Faster convergence.
+ High quality solutions.

− Limited use for real−time
applications.

− Requiring a large amount of
computational resources.

− Because it focuses on a
particular problem, it depends
on data and circumstances
and may not always produce
current or accurate results.

A limited number of engineering
problems.

[73]

+ Using various chaotic maps.
+ Improvement of Dolphin

Swarm Algorithm by chaos
theory.

+ Trying to solve
high−dimensional functions.

+ Trying to prevent low
optimization accuracy.

− Low convergence precision.
− Low solving efficiency.
− May not be sufficient for

complex and constraint
problems.

Some high−dimensional
benchmark problems.

[82]
+ Population diversity.
+ Good convergence.

− Slow convergence rate.
− Just using one chaotic map.

Some benchmark problems.
Economic-based problem.Energy
optimization in microgrid.

[83] + Fast convergence. − Tuning dependent.
− Long execution time.

Complex function optimization
problems.

[84] + Fast convergence. − Tuning dependent.
− Long execution time.

Solves engineering and dynamic
problems.
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3. Overview of Sand Cat Swarm Optimization

The Sand Cat Swarm Optimization (SCSO) is a new SI-based metaheuristic algo-
rithm [17]. Based on the special hearing and hunting abilities of these cats in the desert,
this algorithm can respond quickly and perform exploration-exploitation processes in a
balanced way. The sand cats, who hunt mainly at night, have interesting hearing abilities.
In this way, these cats meet at least 10% more food needs than normal cats. Moreover, these
cats can travel long distances without rest, increasing the likelihood of better response in
final iterations. These cats can track prey movement and location more precisely with these
unique features. Based on the behavioral characteristics of sand cats, their foraging consists
of two general stages. One of them is to seek prey, and the other is to attack the prey. This
easily allows the algorithm to behave in both the exploration and exploitation phases.

In this population-based algorithm, a sand cat is assigned for the uncertain parameter
to be found in each problem. Each cat (search agent) is considered a vector, and the length
of this vector is equivalent to the size of the problem. The performance measurement of the
algorithm is based on the fitness function of each problem (Equation (1)).

Fitness = f (Sand Cat) = f (SC1, SC2, . . . , SCn); ∀xi (is calculated f or t time) (1)

The mathematical models that are effective in the seeking (exploration) and hunting
(exploitation) phases in the SCSO are given below (Equations (2)–(5)). Thanks to these, it
is ensured that each cat moves toward the prey and therefore approaches the target (the
solution to the problem).

→
c = S−

(
S ∗ t

T

)
(2)

→
R = 2×→c × rand−→c (3)

→
r =

→
c × rand (4)

R and r are two coefficients that play a critical role in both phases. R controls the
algorithm to behave balanced between the two phases, and r is inspired by the hearing
sensitivity of cats. C is a parameter that decreases linearly from 2 to 0 as iterations progress.
As it turns out, parameter C affects both R and r. The S is a constant whose value is assumed
to be 2 inspired by standard SCSO [17]. However, it is made possible to assign different
values. Thanks to this flexibility, different integer values for S can be assigned according to
the need of different problems. The t represents the current iteration, and T indicates the
maximum number of iterations. In general, the behavior model of the SCSO algorithm in
position updating is presented in Equation (5), both in the exploitation phase and in the
exploration phase:

→
X(t + 1) =


→
Xb(t)−

→
Xrnd· cos(θ).

→
r

→
r .
(→

Xc(t)− rand·
→
Xk(t)

) |R| ≤ 1 ; exploitation (a)
|R| > 1 ; exploration (b)

(5)

where Xk is the current position of each agent, Xc represents the best candidate position,
Xrand points to a random position, and Xb represents the position of the global best agent.
Theta (θ) used in a cosine plays a role in bringing the cat closer to the prey. When the
condition |R| ≤ 1 is met, the search agents are directed to attack (exploit); otherwise,
the cats are tasked with finding a new possible solution in the global area. This value is
selected based on Roulette Wheel. The pseudocode of the SCSO algorithm is presented in
Algorithm 1.
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Algorithm 1. Standard SCSO pseudocode

Initialize the population.
Calculate the fitness function based on the objective function.
Obtain a random angle.
Initialize the c, R, r based on the Equations (2)–(4)
While (t <= maximum iteration)

For each search agent
If(abs(R) <= 1)

Update the search agent position based on the Equation (5a).
Else

Update the search agent position based on the Equation (5b).
End

End
t = t++

End

4. CSCSO: Chaotic Sand Cat Swarm Optimization Algorithm

In general, metaheuristic methods are recommended to reduce execution time and
computation costs, because realistic engineering or design problems are difficult and
complex. However, they may sometimes face problems such as early convergence, low
search consistency, local optimum trap, inefficiency search, and low population diversity
and may deviate from the optimal solution. Some of these problems are also present in the
SCSO algorithm. To overcome these difficulties, a new hybrid algorithm with chaotic maps
is proposed in this research. These maps can have advantages such as escaping from the
local area and speeding up the search process with their dynamic nature. So, although SCSO
has a balanced and reasonable convergence rate, it may not always perform well in finding
the global optimum that affects the convergence rate. In addition, it is likely that predators
will be blind due to the random operating mechanism and therefore offer a limited rate
of exploitation in the search space. Therefore, the chaos concept is introduced into the
proposed algorithm, called CSCSO, to reduce this deficiency and increase general efficiency.

In general terms, chaos is a deterministic, random-like method found in a nonlinear,
dynamic, period−less, non−converging, and finite system. It is also sensitive to the initial
values. Chaos means the property of a complex system whose behavior is very unpre-
dictable. In mathematical terms, chaos describes the randomness of a simple deterministic
dynamical system, and from this, chaotic systems can be thought of as sources of random-
ness. In this regard, various chaotic maps with different mathematical equations are used
to introduce chaos into the proposed algorithm. The chaotic mapping ensures a uniform
distribution of the population. Chaos maps seek to match or relate the behavior of chaos
in the optimization algorithm based on some parameter using a function. In addition,
the search space can be scanned more dynamically and globally with the help of these
maps, and therefore, dynamic behaviors are gained for the algorithm. These are maps that
exhibit complex and dynamic behavior in nonlinear systems. Briefly, it can be used as an
alternative to pseudo-random number generators in the search field and often yields better
results than pseudo-random numbers. In the global optimization process, the chaos-based
optimization algorithm uses chaotic sequences, which are mapped from chaotic maps, to
produce design variables instead of random sequences [85,86].

The main idea of the proposed CSCSO is to integrate the chaos feature of non-recurring
locations into the SCSO’s core search process to improve global search performance. That is,
the proposed algorithm combines SCSO with the concept of chaos. The CSCSO algorithm
based on probability distributions and random behavior can be advantageous when using
the chaotic concept. That is, the proposed algorithm is aimed to improve the convergence
rate by using chaotic maps. It also escapes local traps more easily than classical stochastic
methods. So, randomness in the SCSO can be replaced by a chaotic map due to similar
randomness features with better statistical and dynamic properties. These maps entice
chaos in the favorable region, which is predicted for only a very short initial time, and



Mathematics 2023, 11, 2340 9 of 47

stochastic for a longer period. Some various well-recognized chaotic maps with different
mathematical equations, which are listed in Table 2, are used to add chaos to the proposed
algorithm. In the CSCSO algorithm, 12 chaotic maps are applied to tune the step size of the
standard SCSO algorithm. It increases the probability of the population spread and tries to
achieve more robust and balanced solutions.

Table 2. Popular chaotic maps used in the CSCSO algorithm.

No. Name Chaotic Map Range

1 Chebyshev Xi+1 = cos
(
icos−1xi

)
(−1, 1)

2 Circle Xi+1 = mod
(

xi + b−
( a

2π

)
sin(2πxi), 1

)
, a = 0.5, b = 0.2 (0, 1)

3 Iterative Xi+1 = sin
(

aπ
xi

)
, a = 0.7 (−1, 1)

4 Piecewise
Xi+1 =


xi
P 0 ≤ xi < P

xi−P
0.5−P P ≤ xi < 0.5

1−P−xi
0.5−P 0.5 ≤ xi < 1− P
1−xi

P 1− P ≤ xi < 1

P = 0.4
(0, 1)

5 Sinusoidal Xi+1 = aXi
2 sin(πxi), a = 2.3 (0, 1)

6 Sine Xi+1 = a
4 sin(πxi), a = 4 (0, 1)

7 Singer Xi+1 = µ
(
7.86Xi − 23.31Xi

2 + 28.75Xi
3 − 13.302875Xi

4), µ = 1.07 (0, 1)

8 Gauss/Mouse Xi+1 =

{
1 Xi = 0

1
mod(Xi ,1)

, otherwise
(0, 1)

9 Logistic Xi+1 = aXi(1− Xi), a = 4 (0, 1)

10 Tent Xi+1 =

{ Xi
0.7 Xi < 0.7

10
3 (1− Xi), Xi ≥ 0.7

(0, 1)

11 Bernoulli Xi+1 = 2Xi(mod 1) (0, 1)
12 Quadratic Xi+1 = X2

i + c, c = [0, 2] (0, 1)

After finishing the main reproduction process of the SCSO, the chaos map is used to
update the newly generated position from SCSO search procedures based on Table 2. It
should be noted that the initial value can have significant effects on the fluctuation pattern
of some chaotic maps. In this study, the initial value for all maps was accepted as 0.7,
inspired by [34,78]. The virtualization of the chaotic maps used in this study is presented in
Figure 2. These chaotic maps are deterministic processes that also have random behavior.

Some special advantages of the SCSO algorithm cannot be overlooked, such as bal-
anced behavior between exploration and exploitation phases, and finding suitable solutions
with fewer parameters and operations. On the other hand, the pros of the concept of chaotic
should also be taken into account. This chaotic behavior, especially in the final stages, helps
sand cats to fall into the local optimum trap and solve high−dimensional problems with
fast convergence. These chaotic maps are deterministic processes with random behavior.
On the other hand, random behavior in the SCSO is greater by its very nature. In this
context, the chaotic map will be useful for initializing the population of sand cats to obtain a
better initial solution and increase the convergence precision. Therefore, this study plans to
increase the performance of the SCSO in solving difficult problems, especially constrained
multidisciplinary problems with this concept. The proposed algorithm works with a multi-
strategy mechanism based on a hybrid approach. In this regard, the CSCSO algorithm
introduces two alternative solutions for position updating in phases. One of them is the
normal position update mechanism, and the other is based on the chaotic model [34,63].
Each of them is given a 50% chance to have a balanced weight (Equation (6)):
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→
X(t + 1) =

{
i f p < 0.5 ≡ Eq.5
i f p ≥ 0.5 ≡ Eq.10

(6)

where p is a random value between 0 and 1. The behavior model of each map is presented in
Figure 2. The most important parameter in performing a similar task in the SCSO algorithm
is the C parameter. This parameter plays a direct role in the R parameter. The equation
that finds C (Equation (2)) plays an important role in exhibiting a very balanced and fair
behavior for exploration and exploitation but may face slow convergence and unsuccessful
exploitation, especially in complex and constrained problems. Accordingly, parameter
C is defined for use in the models in Equation (7). Here, it is attempted to improve the
functionality of the exploration and exploration phases.

s = 2k; k ≥ 1

C = s− s

(
T√et − 1
e− 1

)
(7)

where K is a constant coefficient. This parameter (K) plays an important role in how much
weight the algorithm gives to each stage. The exploration phase is given more chances
with respect to this equation. For example, assuming k = 2, the algorithm is given more
than a 60% chance for exploration. According to the experiments and studies, focusing
more on the exploration phase in the CSCSO algorithm yields good results in constrained
problems. The C parameter is important in making the CSCSO algorithm more flexible
because it plays a one−to−one role in the exploration and exploitation phases. According
to this new equation, the parameters R and r are also affected. Since the R parameter
depends on C, its fluctuation range is also decreased. R is a random value in the interval
[−2C, 2C]. The CSCSO algorithm forces search agents to exploit when R is less than or
equal to 1; otherwise, search agents are forced to explore and find prey. This is used when
the value of p is less than 0.5. Otherwise, chaotic maps are used. Thanks to this hybrid
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mechanism, local optimum trapping and premature convergence are avoided. The R and r
parameters expected to be obtained by the effect of chaotic maps are calculated according
to Equations (8) and (9).

→
R = 2×→c ×m−→c (8)

→
r =

→
c ×m (9)

→
X(t + 1) =


→
Xb(t)−

−−→
Xrnd · cos(θ).

→
r

→
r .
(→

Xc(t)−m·
→
Xt(t)

) |R| ≤ 1 (a)
|R| > 1 (b)

(10)

The m is a chaotic vector that is calculated based on a chaotic map. The general
mathematical model of CSCSO is calculated according to Equation (10), as mentioned
before. In various problems, especially constrained optimization problems, it will find
other possible local areas in global space with a fast and accurate convergence rate due
to the behavior of the proposed algorithm. The proposed CSCSO algorithm improves the
performance of the SCSO algorithm while being equal to the original SCSO in terms of
complexity analysis. It is useful to remind the reader that the mathematical model of the
proposed algorithm is given in Equation (6) as a summary. In addition, the pseudocode
and flowchart of the CSCSO are given in Algorithm 2 and Figure 3, respectively.

Algorithm 2. Pseudocode of proposed CSCSO

Initialize the population.
Calculate the fitness function based on the objective function to find the best search agent: Xbest.
Obtain a random angle.
Initialize p.
Initialize the r, c, and R.
Initialize the value of the chaotic map.
While (t <= Max_Iteration)

Update the chaotic value using the respective chaotic map.
For each sand cat (search agent)

If (p < 0.5)
Update the search agent position based on the Equation (5)

Else
Update the search agent position based on the Equation (10).

End If
Update r, R, and p.

End for
Check if any search agent goes beyond the search space and amend it.
Calculate the fitness of each search agent.
Update Xbest if there is a better solution.

t = t++
End while
return Xbest.
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5. Simulation Experiments
5.1. Experiments’ Settings

In this study, comprehensive problem types are discussed. This section focuses on
16 benchmarking functions (CEC2015 and CEC2016) [25,87,88], 8 competitive functions
(CEC2019) [89], 8 real-world optimization problems (CEC2020) [5,90], 5 constrained engi-
neering problems [91,92], and 2 constrained social sciences-based problems [93] to measure
the performance of the proposed algorithm (CSCSO). These famous and well-known
sample problems from different types were selected to evaluate the performance of the
proposed algorithm. In addition, the proposed algorithm is simulated with 12 chaotic
maps, and all results are compared with the best SCSO variant algorithm to evaluate and
discuss in a wide range [3]. Among the standard SCSO and its improvements in the litera-
ture [94–96], it was proven that the best performance belongs to the Stochastic variation and
Elite collaboration in SCSO (SE-SCSO) algorithm [94]. The SCSO variant with the best per-
formance was chosen instead of the standard SCSO. In addition, three algorithms (Chaotic
Grey Wolf Optimizer (CGWO) [36], Chaotic Marine Predators Algorithm (CMPA) [5], and
Chaotic Whale Optimization Algorithm (CWOA) [65]) that are well-known in the literature
and recently introduced hybrid chaotic models were compared with the obtained results.
Although the major focus of the study is constrained and real-world complex problems,
24 more test functions were used, as mentioned above. Eight of them are unimodal, eight
are multimodal, and the other eight are competitive testing functions. The reason for
considering benchmark functions is to examine the effect of chaos in the newly proposed
algorithm [26,63]. Detailed information on all functions is represented in the Appendix A.
Chaos maps can be very helpful in finding the local and global optimum. These functions
serve the designated purpose due to their nature. In addition, the behavior of algorithms
in phases can be monitored in more detail on different problem types. In this study, we
evaluated our proposed algorithm on 12 different maps (Table 2), and in tthis paper, we
present the results separately in the relevant sections. The three chaos-based algorithms
used (CGWO, CWOA, and CMPA) for comparison are based on the results obtained with
its best map. All algorithms in this study were simulated using MATLAB, on the same PC,
with a Core i7-11800 U 2.3 processor and 8GB of RAM. Specific parameters and their values
are represented in Table 3, according to the working mechanism of the algorithms.
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Table 3. Simulation of parameters for each optimization algorithm.

Algorithm Parameter Value

SE-SCSO
c [2, 0]
R [−2c, 2c]
θ [−1, 1]

CSCSO

c [2, 0]
R [−2c, 2c]
θ [−1, 1]
k 1

CGWO
a [0, 2π]
A [2, 0]
C [−2c, 2c]

CWOA
Angle (θ) [−1, 1]

α 5
µ 0.5

CMPA
P 0.5

FADs 0.2

5.2. Results and Discussion in Unimodal Test Functions

In this section, the proposed algorithm is analyzed independently on several famous
unimodal functions with different chaotic maps, and the results are compared with those
of other algorithms. The detailed information on these functions is represented in Table A1.
Accordingly, in all algorithms, the number of populations is 30, the number of iterations is
500, and the number of independent runs is 10. The results are presented in Table 4. The
analysis of the results was handled first from three different perspectives and then as a
general analysis and discussion.

Table 4. The simulation results with the different algorithms on the unimodal benchmark functions
(pop = 30, iter = 500, and run = 10).

Algorithm F1 F2 F3 F4 F5 F6 F7 F8

Map1
Best 2.41E−125 3.94E−69 8.98E−108 2.43E−58 25.43E+00 1.01E+00 8.90E−06 4.66E−95
Mean 1.59E−118 3.10E−62 1.84E−97 1.47E−48 27.17E+00 1.76E+00 4.67E−05 1.18E−90
Std 5.00E−118 8.56E−62 5.20E−97 3.58E−48 1.13E+00 4.99E−01 2.75E−05 2.72E−90

Map2
Best 3.37E−131 2.74E−93 7.39E−107 1.56E−56 26.19E+00 1.45E+00 1.71E−05 2.27E−92
Mean 1.75E−120 1.75E−84 3.78E−100 2.56E−49 27.72E+00 2.03E+00 1.68E−04 1.57E−90
Std 4.48E−120 5.54E−84 9.96E−100 7.86E−49 9,88E−01 4,23E−01 2.14E−04 3.76E−90

Map3
Best 3.44E−129 5.83E−96 3.59E−114 2.06E−53 27.11E+00 1.02E+00 1.01E−05 8.24E−96
Mean 2.48E−119 7.82E−87 1.11E−96 9.67E−51 27.95E+00 1.22E+00 1.43E−04 6.12E−91
Std 6.05E−119 2.36E−86 3.47E−96 1.71E−51 6,93E−01 2,22E−01 2.60E−04 1.19E−90

Map4
Best 1.33E−128 3.35E−93 5.15E−113 2.06E−53 26.18E+00 1.24E+00 2.32E−06 3.15E−94
Mean 4.70E−122 3.40E−86 7.34E−98 1.74E−50 27.64E+00 1.72E+00 7.36E−05 3.02E−90
Std 1.33E−121 1.02E−85 2.27E−97 2.87E−50 1.00E+00 3,99E−01 1.01E−04 8.82E−90

Map5
Best 4.50E−128 4.08E−92 2.26E−98 2.10E−48 26.14E+00 5.71E−01 4.01E−06 3.67E−95
Mean 7.52E−123 2.01E−86 4.72E−91 8.62E−46 27.59E+00 1.87E+00 9.16E−05 8.31E−88
Std 1.28E−122 4.48E−86 1.07E−90 1.65E−45 9,88E−01 7,70E−01 1.11E−04 2.62E−87

Map6
Best 3.42E−142 3.70E−93 4.48E−110 1.82E−54 26.06E+00 1.25E+00 3.27E−05 1.72E−96
Mean 2.63E−133 6.59E−85 1.60E−100 7.86E−50 27.56E+00 2.30E+00 1.94E−04 3.96E−93
Std 7.36E−133 2.07E−84 3.56E−100 1.44E−49 9.84E−01 6.33E−01 2.20E−04 8.94E−93

Map7
Best 3.14E−134 2.90E−94 7.30E−110 2.28E−53 26.15E+00 1.27E+00 5.25E−06 6.54E−95
Mean 4.24E−122 1.08E−86 8.87E−91 2.94E−49 27.35E+00 2.05E+00 1.49E−04 2.99E−88
Std 1.34E−121 2.14E−86 2.79E−90 4.69E−49 6.68E−01 5.02E−01 2.37E−04 5.66E−88

Map8
Best 6.46E−158 4.90E−89 3.86E−123 3.01E−61 28.05E+00 1.74E+00 2.06E−06 4.89E−105
Mean 1.26E−148 5.61E−84 1.13E−106 1.45E−56 28.15E+00 2.56E+00 6.35E−05 8.59E−98
Std 3.91E−148 1.15E−83 3.39E−106 2.38E−56 6.48E−02 8.92E−01 5.90E−05 2.59E−97

Map9
Best 6.39E−137 4.44E−93 7.38E−111 1.93E−52 26.22E+00 5.91E−01 9.09E−07 6.15E−98
Mean 1.06E−125 4.50E−86 2.66E−99 1.25E−47 27.89E+00 1.95E+00 1.09E−05 9.00E−91
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Table 4. Cont.

Algorithm F1 F2 F3 F4 F5 F6 F7 F8
Std 3.31E−125 1.16E−85 7.74E−99 3.52E−47 1.02E+00 7.92E−01 1.59E−05 1.63E−90

Map10
Best 1.54E−170 1.09E−92 1.61E−141 2.41E−53 26.02E+00 4.57E−01 1.74E−06 9.98E−184
Mean 1.18E−158 5.15E−84 9.76E−118 2.53E−47 26.56E+00 1.01E+00 1.48E−04 3.84E−169
Std 3.69E−158 1.61E−83 3.08E−117 5.33E−47 4.86E−01 2.39E−01 2.70E−04 0.00E+00

Map11
Best 9.73E−137 2.28E−92 7.99E−109 6.20E−56 26.16E+00 1.16E+00 7.90E−06 1.94E−95
Mean 3.64E−129 5.51E−79 2.26E−91 8.86E−51 27.99E+00 2.03E+00 3.29E−04 1.59E−89
Std 1.09E−128 1.74E−78 7.13E−91 2.20E−50 1.09E+00 6.52E−01 3.25E−04 3.48E−88

Map12
Best 1.15E−157 8.65E−84 2.90E−109 1.53E−55 26.17E+00 2.03E+00 2.69E−05 7.11E−113
Mean 1.21E−145 8.49E−79 3.41E−94 6.20E−47 28.26E+00 2.56E+00 2.70E−04 3.75E−105
Std 3.79E−145 2.52E−78 9.04E−94 1.96E−46 1.08E+00 3.22E−01 4.00E−04 1.69E−104

SE-SCSO
Best 4.83E−133 6.99E−74 2.44E−100 8.56E−52 27.08E+00 1.33E+00 1.99E−06 5.94E−99
Mean 2.02E−120 2.23E−64 3.85E−87 2.24E−42 28.07E+00 2.31E+00 1.31E−04 2.27E−95
Std 3.48E−120 7.05E−64 1.19E−86 6.86E−42 7.15E−01 3.36E−01 1.43E−04 2.76E−95

CGWO
Best 5.98E−121 1.80E−65 3.31E−87 4.44E−45 28.71E+00 5.29E+00 7.46E−05 4.45E−92
Mean 4.57E−118 1.50E−63 7.27E−80 1.70E−42 28.91E+00 5.56E+00 2.03E−04 4.73E−90
Std 7.04E−118 1.97E−63 1.59E−79 2.25E−42 7.26E−02 1.47E−01 1.44E−04 7.36E−90

CMPA
Best 1.36E−12 2.44E−08 1.38E−06 1.90E−09 26.01E+00 1.65E−04 4.96E−04 7.99E−18
Mean 3.38E−12 4.51E−07 8.88E−04 3.51E−09 27.51E+00 5.64E−02 1.13E−03 6.58E−16
Std 2.07E−12 4.20E−07 1.88E−03 1.36E−09 8.76E−01 7.41E−02 5.19E−04 4.90E−16

CWOA
Best 1.21E−80 3.06E−48 4.24E+04 1.38E+00 28.24E+00 1.75E+00 3.46E−05 3.85E−53
Mean 1.44E−74 8.48E−45 7.13E+04 3.91E+01 28.76E+00 2.15E+00 1.74E−03 4.29E−48

Std 4.16E−74 2.41E−44 2.00E+04 2.22E+01 1.87E−01 3.41E−01 1.86E−03 1.33E−47

The optimum results obtained from the algorithms are bold and highlighted.

1-Analysis of the proposed algorithm within itself and between the maps used

In order to discuss the results in more detail, each function is evaluated separately.
The optimum results obtained from the algorithms are highlighted, as shown in Table 4.
In the F1 evaluation, the CSCSO algorithm based on Map10 is in the first rank in best,
mean, and std parameters. In this study, mean and std values were taken into account
in the rankings. The second place is the scenario where Map8 is applied. According to
the results, the last ranked algorithm (Rank 12) is CSCSO-Map1. In the F2 evaluation, the
CSCSO-Map3 achieved the best performance on both the best and mean parameters. The
deviation value is also better than the results from the other 11 maps. In this function, our
Map10-based algorithm took the seventh place, and, still, Map1 took the last place. In the
F3 evaluation, Map10 performed best in all parameters. Among the 12 maps, the worst
result belongs to Map7. When other functions are evaluated similarly, the best result in F4
is from Map8, and the weakest result is from Map1. In F5, the best result is from Map8, and
the worst result is from Map5. In function F6, the best result is from Map10, and the poor
outcome belongs to Map12. In F6, the best result was nevertheless obtained from Map10,
and the weakest result from Map12. Although the results are very close to each other in
the F7 evaluation, it is understood that the best result belongs to Map9, and the weakest
result belongs to Map11, by a small margin, as a result of running the methods in many
independent runs and considering mean and std values. In the final evaluation function
(F8), it is understood that, among the maps, Map10 and Map5 have the best and worst
performances, respectively. Consequently, the proposed algorithm was analyzed within
itself and among the maps used, and it is understood that the best results are obtained
with the Tent Map (Map10). This map-based algorithm ranked first in five functions out of
eight functions.

2-Comparison and analysis of the proposed algorithm with the SE-SCSO

A general pairwise comparison was made to evaluate the advantages and contribu-
tions of the Chaotic SCSO algorithm to the best SCSO variant. In the F1 function, even
the worst performing CSCSO-Map1 and Map3 appear to be better than SE-SCSO. The F2
analysis shows that the SE-SCSO is better than only CSCSO-Map1 and lags behind 11 other
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maps. In F3, F4, F5, and F8, like in F1, the CSCSO appears to be better than the SE-SCSO
in all scenarios. In F6, the SCSO seems to work better than Map12 and Map8, but not as
well in other situations. In F7 and F8, the SE-SCSO found better results than four maps and
worse than eight maps. It is understood that the proposed algorithm is generally better
than the SE-SCSO algorithm in all maps.

3-Comparison and analysis of CSCSO algorithm with other three chaotic-based algorithms

When the results are examined in general, it is understood that the proposed algorithm
outperforms other algorithms. The recently published CMPA algorithm found the best
results in F6. According to the results, in the functions F1, F2, F3, F4, F7, and F8, the CGWO
algorithm performed better than the other three algorithms but weaker than the CSCSO. In
F5, it is concluded that although the CMPA algorithm is better than other algorithms, it is
not as good as the CSCSO.

In general, the CSCSO, which could not find the good answer in only one function,
found the best result in four functions when using Map10 and 3 functions based on Map3,
Map8, and Map9. Therefore, it is understood that the proposed algorithm is superior to
both the SE-SCSO and the other three chaos-based algorithms with different maps. This
indicates that the CSCSO is a useful method for problems such as unimodal functions with
one global optimum and no local optima.

In addition to the analysis made, Table 5 presents the statistical differences between
CSCSO-Map10 (best-performing method) and the other maps and algorithms. For this, the
popular Wilcoxon rank-sum and Friedman tests were used, inspired by the study in [5].
The p-values were generated by the Wilcoxon test, with a 0.05 significance level and over
10 independent runs. In this table, plus notation (+) demonstrates the superiority of the
Tent-based proposed algorithm, minus notation (–) indicates that the obtained solution of
the Tent-based proposed algorithm is worse than compared algorithms, and (~) notation
indicates that a pair-wise comparison over both algorithms obtains equal values. The
rank of each algorithm in each function and the average and overall ranking of each
algorithm in the total of eight unimodal functions are presented in the Avg_Rank and
Overall_Rank columns.

Table 5. Wilcoxon rank-sum test for the considered unimodal functions and the ranking of each algorithm.

Algorithms F1 F2 F3 F4 F5 F6 F7 F8 Avg_Rank Overall_Rank

Map1 13 (+) 14 (+) 7 (+) 8 (−) 2 (+) 5 (+) 2 (−) 7 (+) 7.250 7
Map2 10 (+) 7 (−) 4 (+) 6 (−) 8 (+) 8 (+) 10 (+) 8 (+) 7.625 8
Map3 12 (+) 1 (−) 8 (+) 3 (−) 10 (+) 3 (+) 6 (−) 5 (+) 6.000 2
Map4 9 (+) 4 (−) 6 (+) 4 (−) 7 (+) 4 (+) 4 (−) 10 (+) 6.000 2

Map5 7 (+) 3 (−) 11 (+) 12
(−) 6 (+) 6 (+) 5 (−) 14 (+) 8.000 10

Map6 4 (+) 6 (−) 3 (+) 5 (−) 5 (+) 12 (+) 11 (+) 4 (+) 6.250 6
Map7 8 (+) 2 (−) 12 (+) 7 (−) 3 (+) 10 (+) 8 (+) 13 (+) 7.875 9
Map8 2 (+) 9 (+) 2 (+) 1 (−) 13 (+) 15 (+) 3 (−) 3 (+) 6.000 2
Map9 6 (+) 5 (−) 5 (+) 9 (−) 9 (+) 7 (+) 1 (−) 6 (+) 6.000 2
Map10 1 8 1 10 1 2 7 1 3.875 1
Map11 5 (+) 10 (+) 10 (+) 2 (−) 11 (+) 9 (+) 14 (+) 12 (+) 9.125 11
Map12 3 (+) 11 (+) 9 (+) 11 (+) 14 (+) 14 (+) 13 (+) 2 (+) 9.625 12
SE-SCSO 11 (+) 12 (+) 13 (+) 14 (+) 12 (+) 13 (+) 9 (+) 9 (+) 11.625 13
CGWO 14 (+) 13 (+) 14 (+) 13 (+) 16 (+) 16 (+) 12 (+) 11 (+) 13.375 15
CMPA 16 (+) 16 (+) 15 (+) 15 (+) 4 (+) 1 (−) 15 (+) 16 (+) 12.250 14
CWOA 15 (+) 15 (+) 16 (+) 16 (+) 15 (+) 11 (+) 16 (+) 15 (+) 14.875 16

Our final analysis of unimodal functions is the analysis of the data distribution in
each function of each algorithm, using boxplots. In these plots, the performance of each
algorithm is presented separately for each function (Figure 4). Based on this standardized
approach, the distribution, locality, and skewness groups of numerical data are graphically
represented by their quartiles. The lowest and highest data points of the algorithm, which
are whisker edges, are the minimum and maximum. In general, a compact boxplot shows
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strong data agreement. According to the analysis of these results, the proposed algorithm
also performs well according to this perspective.
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Figure 4. Boxplots of the results obtained by all algorithms on unimodal benchmark functions.

5.3. Results and Discussion in Multimodal Test Functions

In this section, the performance of the CSCSO algorithm is evaluated on some famous
multimodal test functions, using different chaotic maps, and the obtained results are
compared with other algorithms. Details of these functions are presented in Table A2. The
results performed on these benchmark functions are presented in Table 6. The number of
populations, the number of iterations, and the number of independent runs are assumed
to be 30, 500, and 10, respectively. As in the previous section, analyses of the results are
evaluated from different perspectives.

Table 6. The simulation results with the different algorithms on the multimodal benchmark functions
(pop = 30, iter = 500, and run = 10).

Algorithm MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8

Map1
Best −8.73E+03 5.69E−04 9.23E−02 1.98E+00 1.71E−14 8.11E−305 8.72E−49 −1.00E+00
Mean −7.11E+03 1.13E−03 1.82E−01 2.12E+00 3.93E−12 1.14E−298 4.82E−13 −8.99E−01
Std 6.55E+02 8.65E−04 7.00E−02 8.99E−02 7.34E−12 0.00E+00 1.48E−12 5.16E−01

Map2
Best −8.13E+03 5.68E−04 4.42E−02 1.84E+00 9.15E−17 0.00E+00 1.54E−45 −1.00E+00
Mean −7.13E+03 1.50E−03 1.97E−01 2.28E+00 2.39E−12 1.02E−301 3.74E−09 −5.00E−01
Std 6.36E+02 1.12E−03 1.07E−01 2.47E−01 4.89E−12 0.00E+00 1.18E−08 5.27E−01

Map3
Best −7.97E+03 7.17E−04 6.04E−02 1.82E+00 8.55E−15 1.08E−312 8.06E−41 −1.00E+00
Mean −7.01E+03 1.44E−03 2.51E−01 2.18E+00 9.10E−12 9.53E−300 4.87E−11 −8.00E−01
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Table 6. Cont.

Algorithm MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8

Std 8.64E+02 5.62E−04 8.99E−02 2.18E−01 1.35E−11 0.00E+00 1.54E−10 4.22E−01

Map4
Best −7.71E+03 5.69E−04 1.42E−01 1.90E+00 8.53E−14 0.00E+00 3.77E−47 −1.00E+00
Mean −7.15E+03 1.31E−03 2.25E−01 2.19E+00 6.92E−12 4.24E−299 4.63E−07 −7.00E−01
Std 5.06E+02 8.80E−04 5.69E−02 1.76E−01 1.01E−11 0.00E+00 1.46E−06 4.83E−01

Map5
Best −7.57E+03 7.13E−04 8.39E−02 1.48E+00 4.50E−14 0.00E+00 1.46E−46 −1.00E+00
Mean −6.99E+03 1.50E−03 1.53E−01 2.07E+00 4.38E−12 0.00E+00 7.64E−13 −8.00E−01
Std 3.99E+02 1.31E−03 6.69E−02 2.73E−01 6.66E−12 0.00E+00 2.05E−12 4.22E−01

Map6
Best −8.16E+03 5.68E−04 1.27E−01 1.92E+00 2.54E−13 0.00E+00 2.51E−49 −1.00E+00
Mean −6.87E+03 1.24E−03 2.46E−01 2.22E+00 8.05E−12 1.72E−289 7.83E−23 −8.00E−01
Std 1.08E+03 7.03E−04 6.83E−02 2.05E−01 1.01E−11 0.00E+00 2.48E−22 4.22E−01

Map7
Best −7.71E+03 6.52E−04 1.08E−01 1.85E+00 4.01E−14 0.00E+00 4.59E−53 −1.00E+00
Mean −6.93E+03 1.22E−03 1.95E−01 2.11E+00 5.19E−12 5.16E−280 7.78E−19 −2.00E−01
Std 9.19E+02 3.89E−04 5.21E−02 1.66E−01 8.29E−12 0.00E+00 2.46E−18 4.22E−01

Map8
Best −7.67E+03 1.07E−03 1.79E−01 2.31E+00 4.30E−14 0.00E+00 2.53E−48 −1.00E+00
Mean −7.15E+03 1.88E−03 3.74E−01 2.57E+00 1.96E−11 4.59E−289 1.24E−15 −1.00E+00
Std 3.64E+02 7.04E−04 1.34E−02 1.32E−01 4.65E−11 0.00E+00 3.90E−15 0.00E+00

Map9
Best −7.70E+03 6.46E−04 1.14E−01 1.63E+00 5.19E−14 0.00E+00 1.21E−45 −1.00E+00
Mean −6.91E+03 1.20E−03 2.24E−01 2.10E+00 2.32E−11 4.16E−281 4.69E−13 −7.00E−01
Std 7.25E+02 4.89E−04 7.06E−02 1.32E−01 5.30E−11 0.00E+00 1.48E−12 4.83E−01

Map10
Best −8.51E+03 5.69E−04 3.45E−02 1.43E+00 1.52E−14 0.00E+00 2.49E−41 −1.00E+00
Mean −7.35E+03 1.04E−03 1.04E−01 1.84E+00 7.82E−12 0.00E+00 5.97E−19 −2.00E−01
Std 5.94E+02 4.27E−04 3.70E−02 2.60E−01 9.65E−12 0.00E+00 1.86E−18 4.22E−01

Map11
Best −8.01E+03 7.19E−04 5.53E−02 1.65E+00 2.33E−14 0.00E+00 9.91E−43 −1.00E+00
Mean −7.02E+03 1.26E−03 1.53E−01 2.16E+00 2.12E−11 8.32E−280 8.45E−07 −1.00E−01
Std 6.60E+02 4.76E−04 7.64E−02 3.39E−01 4.68E−11 0.00E+00 2.66E−06 3.16E−01

Map12
Best −8.02E+03 1.48E−03 1.31E−01 2.10E+00 2.57E−13 5.85E−299 5.65E−165 −1.00E+00
Mean −6.85E+03 3.16E−03 3.11E−01 2.21E+00 1.64E−11 1.52E−269 6.62E−63 −9.00E−01
Std 6.40E+02 1.92E−03 6.77E−02 7.76E−02 2.51E−11 0.00E+00 2.09E−62 3.16E−01

SE-SCSO
Best −7.78E+03 4.07E−04 4.60E−02 2.02E+00 3.28E−16 5.29E−241 3.53E−49 −1.00E+00
Mean −7.01E+03 2.19E−02 1.97E−01 2.29E+00 7.92E−12 3.97E−208 1.43E−16 −1.00E+00
Std 5.46E+02 1.35E−02 1.20E−01 2.66E−01 2.18E−11 0.00E+00 4.37E−16 0.00E+00

CGWO
Best −3.69E+03 2.52E−02 1.20E+00 2.90E+00 7.42E−10 2.15E−292 6.21E−133 −1.00E+00
Mean −2.53E+03 4.53E−02 1.36E+00 3.05E+00 7.15E−08 4.10E−246 1.89E−60 −9.77E−02
Std 5.26E+02 1.41E−02 6.98E−02 8.14E−02 6.77E−08 0.00E+00 5.98E−60 3.17E−01

CMPA
Best −1.02E+04 5.66E−04 1.00E−02 1.02E+00 1.97E−31 9.12E−149 1.05E−48 −9.52E−01
Mean −9.50E+03 1.50E−03 2.78E−01 2.07E+00 1.52E−25 2.70E−64 2.64E−32 −9.52E−02
Std 4.15E+02 2.19E−03 2.20E−01 5.94E−01 4.57E−25 8.54E−64 8.33E−32 3.01E−01

CWOA
Best −1.15E+04 5.66E−04 7.53E−02 1.29E+00 1.66E−12 9.01E−288 5.74E−71 −1.00E+00
Mean −9.71E+03 1.10E−03 1.29E−01 1.65E+00 1.61E−10 9.35E−09 9.66E−09 −9.98E−02
Std 1.17E+03 5.34E−04 4.47E−02 3.96E−01 1.95E−10 1.35E−08 3.00E−08 3.16E−01

The optimum results obtained from the algorithms are bold and highlighted.

1-Analysis of the proposed algorithm within itself and between the maps used.

The results obtained by applying maps to the proposed algorithm were analyzed.
Multimodal functions have more than one local optima, but they also have a single global
optimum. This type of benchmarking function is useful for the performance evaluation
of optimization algorithms in the exploration and exploitation phases. In the evaluation
of eight multimodal functions, CSCSO-Map10 found the best results in five functions,
while the other three functions, Map2, Map5, and Map8, found the best results. In the
assessment of MF1, Map10-based CSCSO is in first place, and the second place is Map2.
In this function, the most inefficient map is the number 12. It should be emphasized that,
in this function, Map1 is better than other maps in its best parameter. However, as stated
before, the evaluations in this study are based on mean and std values. In MF2 evaluation,
Map10 is better than other maps. The remaining maps ranks from best to worst as follows:
Map1, Map9, Map7, Map6, Map11, Map4, Map2, Map3, Map5, Map8, Map8, and Map12
based CSCSO. In the MF3 analysis, Map10 performs best in all parameters. Among the
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12 maps, the worst result belongs to Map3. Map10 received the best results in MF4, and
the worst was Map8. In other functions, in turn, in MF5, the best map was Map2, and the
worst was Map11. The best Map in MF6 was Map5, and the worst was Map2. The best map
in MF7 was Map12, and the worst was Map11. In MF8, the best result was Map8, while
Map11 found results as the worst map. As a result, the CSCSO was analyzed within itself
and among the maps used, and it is understood that the best results are obtained with the
Tent Map (Map10) that ranked first in five functions out of eight multimodal test functions.

2-Comparison and analysis of the proposed algorithm with the SE-SCSO

As emphasized in the previous section, the best approach for measuring the perfor-
mance of the proposed algorithm is to compare it with the SE-SCSO algorithm. The CSCSO
algorithm based on MF1, MF2, MF3, MF4, MF5, MF6, and MF7 is better than SE-SCSO.
However, it is the best in MF8, together with Map10, so it finds better results than the other
11 maps in MF8. Briefly, it is understood that the proposed algorithm is better than the
SE-SCSO algorithm in seven multimodal functions.

3-Comparison and analysis of CSCSO algorithm with other three chaos-based algorithms

The CSCSO algorithm is compared with other chaotic-based algorithms based on
the maps that give the best results in each function. Accordingly, it is understood that
the proposed algorithm is better than the other three algorithms in MF2, MF3, MF4, MF6,
and MF7. This means 62.5% success. While the CWOA algorithm in MF1 and the CMPA
algorithm in MF5 found the best results, the SE-SCSO and CSCSO-Map10 jointly took the
first place in MF8. In general, the CSCSO, which does not find good answers only in two
functions, has a 75% success rate in multimodal functions, with multiple local optimums
and one global optima.

Here, the pairwise comparison test is performed for multimodal functions in line with
similar definitions and expressions as it is performed for unimodal functions. According to
the analysis of the results, as presented in Table 7, the proposed algorithm based on the Tent
Map ranked first. In addition, the boxplots of the results by all algorithms on multimodal
benchmark functions are presented in Figure 5.

Table 7. Wilcoxon rank-sum test for the considered multimodal functions and the ranking of each algorithm.

Algorithms MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 Avg_Rank Overall_Rank

Map1 7 (+) 3 (+) 5 (+) 7 (+) 3 (−) 6 (+) 10 (+) 4 (−) 5.625 2
Map2 6 (+) 11 (+) 7 (+) 13 (+) 2 (−) 3 (+) 13 (+) 10 (−) 8.125 6
Map3 9 (+) 9 (+) 12 (+) 9 (+) 10 (+) 4 (+) 12 (+) 5 (−) 8.750 10
Map4 5 (+) 8 (+) 10 (+) 10 (+) 6 (−) 5 (+) 15 (+) 8 (−) 8.375 8
Map5 11 (+) 10 (+) 3 (+) 3 (+) 4 (−) 1 (~) 11 (+) 5 (−) 6.000 3
Map6 14 (+) 6 (+) 11 (+) 12 (+) 9 (+) 7 (+) 4 (−) 5 (−) 8.500 9
Map7 12 (+) 5 (+) 6 (+) 6 (+) 5 (−) 10 (+) 6 (+) 11 (~) 7.625 4
Map8 4 (+) 13 (+) 15 (+) 15 (+) 12 (+) 8 (+) 8 (+) 1 (−) 9.500 12
Map9 13 (+) 4 (+) 9 (+) 5 (+) 14 (+) 9 (+) 9 (+) 8 (−) 8.875 11
Map10 3 1 1 2 7 1 5 11 3.875 1
Map11 8 (+) 7 (+) 4 (+) 8 (+) 13 (+) 11 (+) 16 (+) 13 (+) 10.000 14
Map12 15 (+) 14 (+) 14 (+) 11 (+) 11 (+) 12 (+) 1 (−) 3 (−) 10.125 15
SE-SCSO 10 (+) 15 (+) 8 (+) 14 (+) 8 (+) 14 (+) 7 (+) 2 (−) 9.750 13
CGWO 16 (+) 16 (+) 16 (+) 16 (+) 16 (+) 13 (+) 2 (−) 15 (+) 13.750 16
CMPA 2 (−) 12 (+) 13 (+) 4 (+) 1 (−) 15 (+) 3 (−) 16 (+) 8.250 7
CWOA 1 (−) 2 (+) 2 (+) 1 (−) 15 (+) 16 (+) 14 (+) 14 (+) 8.125 5
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5.4. Results and Discussion in Competitive Test Functions

The latest assessment and analysis discussed in this section are made on the competi-
tive test functions of CEC2019. They are the 100−digit challenge also known as “CEC−C06
benchmark test functions” [89]. They calculate the function values of the “horizontal” slices
of the convergence graph. These test functions are used for the evaluation of optimiza-
tion algorithms in large-scale problems [97]. All functions are scalable, and their global
optimums are one. The definition and details of the functions are presented in Table A3.
The results of these functions were applied to twelve maps in the proposed algorithm and
compared to four algorithms. According to the results presented in Table 8, the suggested
algorithm found the best results in the other five functions, except the CEC03 and CEC05.
The Map10-based CSCSO algorithm performs best in five functions, and Map7 performs
best in CEC07, while the CMPA algorithm gives the best results in CEC03 and CEC05.

Table 8. The simulation results with the different algorithms on the competitive benchmark functions
(pop = 30, iter = 500, and run = 10).

Algorithm CEC01 CEC02 CEC03 CEC04 CEC05 CEC06 CEC07 CEC08

Map1
Best 3.92E+04 1.73E+01 5.39E+01 1.18E+00 5.75E+00 1.67E+02 3.92E+00 3.47E+00
Mean 4.48E+04 1.74E+01 4.50E+02 1.46E+00 8.79E+00 3.13E+02 5.09E+00 4.43E+01
Std 3.60E+03 1.06E−01 1.18E+03 3.50E−01 1.66E+00 1.51E+02 5.59E−01 7.71E−01

Map2
Best 3.92E+04 1.73E+01 6.00E+01 1.31E+00 7.86E+00 1.78E+01 4.00E+00 2.71E+00
Mean 4.38E+04 1.73E+01 4.33E+02 1.67E+00 9.61E+00 2.66E+02 5.29E+00 4.46E+01
Std 5.18E+03 6.30E−04 7.73E+02 4.16E−01 1.12E+00 1.94E+02 7.67E−01 9.30E−01
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Table 8. Cont.

Algorithm CEC01 CEC02 CEC03 CEC04 CEC05 CEC06 CEC07 CEC08

Map3
Best 3.92E+04 1.73E+01 4.49E+01 1.20E+00 6.20E+00 3.28E+01 4.56E+00 3.25E+00
Mean 4.42E+04 1.73E+01 6.11E+02 1.77E+00 8.10E+00 3.74E+02 5.31E+00 4.64E+00
Std 3.10E+03 2.43E−04 4.49E+02 5.06E−01 1.29E+00 2.36E+02 5.41E−01 1.26E+00

Map4
Best 3.80E+04 1.73E+01 6.76E+01 1.24E+00 4.82E+00 1.29E+02 4.16E+00 3.39E+00
Mean 4.21E+04 1.74E+01 1.67E+03 1.68E+00 6.28E+00 3.23E+02 5.05E+00 4.43E+00
Std 2.27E+03 1.05E−03 1.69E+03 4.06E−01 8.95E−01 1.88E+02 5.56E−01 8.46E−01

Map5
Best 3.87E+04 1.73E+01 7.46E+01 1.18E+00 8.52E+00 1.04E+02 4.41E+00 3.38E+00
Mean 4.40E+04 1.73E+01 5.55E+02 1.50E+00 1.02E+01 4.14E+02 5.29E+00 4.64E+00
Std 5.62E+03 1.05E−03 8.32E+02 2.09E−01 9.64E−01 2.52E+02 6.37E−01 8.05E−01

Map6
Best 4.11E+04 1.73E+01 3.00E+01 1.28E+00 6.03E+00 1.39E+02 4.37E+00 3.99E+00
Mean 4.38E+04 1.74E+01 4.15E+02 1.71E+00 7.87E+00 4.11E+02 5.32E+00 5.67E+00
Std 2.33E+03 1.40E−01 5.93E+02 3.27E−01 1.12E+00 2.03E+02 6.19E−01 1.04E+00

Map7
Best 3.90E+04 1.73E+01 7.06E+01 1.24E+00 7.04E+00 1.64E+01 5.09E+00 3.67E+00
Mean 4.31E+04 1.73E+01 7.47E+02 1.49E+00 9.63E+00 3.23E+02 5.58E+00 5.09E+00
Std 2.61E+03 6.01E−04 1.12E+03 1.35E−01 1.54E+00 1.80E+02 3.61E−01 7.57E−01

Map8
Best 4.07E+04 1.73E+01 4.68E+01 1.36E+00 4.20E+00 1.27E+01 2.95E+00 3.97E+00
Mean 5.00E+04 1.75E+01 1.67E+03 1.82E+00 6.86E+00 2.99E+02 4.06E+00 5.62E+00
Std 6.35E+03 3.35E−01 1.53E+03 4.83E−01 1.43E+00 1.56E+02 8.80E−01 1.47E+00

Map9
Best 3.77E+04 1.73E+01 4.37E+01 1.27E+00 6.31E+00 3.38E+01 4.20E+00 2.78E+00
Mean 4.31E+04 1.74E+01 3.99E+02 1.78E+00 8.67E+00 4.03E+02 5.25E+00 3.82E+00
Std 4.96E+03 1.05E−01 7.77E+02 5.35E−01 1.52E+00 2.21E+02 4.98E−01 1.13E+00

Map10
Best 3.94E+04 1.72E+01 4.93E+01 1.02E+00 6.01E+00 1.12E+02 2.98E+00 2.34E+00
Mean 4.19E+04 1.72E+01 5.48E+02 1.06E+00 9.92E+00 2.65E+02 4.27E+00 2.42E+00
Std 1.69E+03 7.09E−03 8.42E+02 3.72E−02 1.76E+00 1.28E+02 7.97E−01 7.24E−02

Map11
Best 3.73E+04 1.73E+01 7.47E+00 1.22E+00 8.16E+00 2.16E+01 4.86E+00 3.11E+00
Mean 5.07E+04 1.74E+01 7.04E+02 1.48E+00 9.82E+00 3.27E+02 5.79E+00 4.63E+00
Std 1.47E+04 8.86E−02 7.78E+02 2.68E−01 9.54E−01 1.43E+02 5.02E−01 1.17E+00

Map12
Best 4.00E+04 1.73E+01 2.47E+00 1.58E+00 4.24E+00 2.72E+01 4.58E+00 4.85E+00
Mean 5.26E+04 1.74E+01 2.42E+02 2.02E+00 6.24E+00 2.83E+02 5.30E+00 4.63E+00
Std 1.07E+04 1.41E−01 3.16E+02 5.10E−01 1.86E+00 1.76E+02 5.71E−01 1.17E+00

SE-SCSO
Best 4.08E+04 1.73E+01 1.43E+01 1.17E+00 5.94E+00 1.43E+02 4.49E+00 4.49E+00
Mean 4.50E+04 1.73E+01 1.19E+02 1.57E+00 8.17E+00 3.95E+02 5.43E+00 5.60E+00
Std 2.97E+03 1.64E−01 1.59E+03 3.51E−01 9.83E−01 1.74E+02 6.52E−01 5.58E−01

CGWO
Best 5.22E+04 1.82E+01 1.25E+04 4.42E+00 1.06E+01 1.11E+03 5.76E+00 6.45E+00
Mean 6.07E+04 1.84E+01 2.73E+04 5.03E+00 1.16E+01 1.47E+03 6.33E+00 9.26E+00
Std 4.65E+03 1.44E−01 6.67E+03 3.47E−01 4.87E−01 2.59E+02 4.16E−01 1.91E+00

CMPA
Best 4.77E+04 1.72E+01 9.95E+00 1.26E+00 1.32E+00 8.64E+02 4.05E+00 4.41E+00
Mean 1.11E+05 1.73E+01 1.62E+01 1.54E+00 2.36E+00 1.30E+03 5.38E+00 5.39E+00
Std 7.41E+04 8.96E−08 4.35E+01 2.59E−01 5.76E−01 2.39E+02 5.84E−01 8.52E−01

CWOA
Best 1.07E+06 1.73E+01 2.19E+03 2.29E+00 7.98E+00 3.72E+02 5.58E+00 6.87E+01
Mean 2.32E+08 1.76E+01 5.67E+03 3.22E+00 1.02E+01 6.61E+02 6.21E+00 3.85E+02

Std 6.01E+08 3.27E−01 2.48E+03 6.01E−01 1.00E+00 2.03E+02 3.53E−01 2.69E+00

The optimum results obtained from the algorithms are bold and highlighted.

When the results were discussed in terms of the overall evaluation, the best algorithm
in CEC01 is based on Map10, while the worst-performing algorithm is CWOA. In this
function, the proposed algorithm is better than the other three chaotic-based algorithms
and also found promising results from the SE-SCSO algorithm, except for Map8, Map11,
and Map12. While Map10 ranks first in CEC02 and CMPA, Map5, Map2, Map7, and Map3
are the top in SE-SCSO; and Map4, Map11, Map1, Map6, Map9, Map12, and Map8 rank as
the top in the CWOA and CGWO algorithms. Although CMPA ranked first according to
the “mean” parameter in CEC03, Map12 and Map11, respectively, found the best solutions
in the “best” parameter. In CEC04, Map10 and Map1 are at the top, indicating that the
proposed algorithm is more performant. The CMPA received the best solution in CEC05,
and the algorithm using Map12 took second place. On the other hand, the CSCSO algorithm
is better than the SE-SCSO algorithm, except for Map2, Map5, Map7, Map10, and Map11.
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In the CEC06 evaluation, Map10 is in the first rank, and the last rank belongs to the
CGWO algorithm. Based on the obtained results, the CSCSO algorithm is better than the
SE-SCSO algorithm, excluding Map5, Map6, and Map9. In the CEC07 function, the best
and worst performances belong to the CSCSO-Map8 and CGWO algorithms. The CSCSO,
which found good results in general, is better on other Maps, except for Map7 and Map11,
also compared to the SE-SCSO algorithm. In the last function (CEC08), CSCSO-Map10
found the best results, while CWOA performed the poorest. In general, the CSCSO, which
does not find good answers only in two functions, has a 75% success rate in competitive
test functions.

For our analyses of competitive functions, pairwise comparison results in the form
of p-values are presented in Table 9, and boxplots of the obtained results are presented in
Figure 6. As mentioned earlier, the boxplot analysis is a tool that shows the characteristics
of the distributions of the data. Therefore, box plots are widely used in the literature to
show quarter-based data distributions. Judging by the results, the CSCSO algorithm based
on the Tent Map failed to rank well in CEC03 and CEC05. However, it has always been
first in the rest of the other competitive functions. Piecewise− and Logistic-Maps-based
proposed algorithms are in the second and third ranks.

Table 9. Wilcoxon rank-sum test for the considered competitive functions and the ranking of each algorithm.

Algorithms CEC01 CEC02 CEC03 CEC04 CEC05 CEC06 CEC07 CEC08 Avg_Rank Overall_Rank

Map1 9 (+) 8 (+) 6 (−) 2 (+) 8 (−) 5 (+) 4 (+) 14 (+) 7.000 6
Map2 6 (+) 2 (+) 5 (−) 8 (+) 10 (−) 2 (+) 6 (+) 15 (+) 6.750 4
Map3 8 (+) 2 (+) 9 (+) 11 (+) 6 (−) 9 (+) 9 (+) 6 (+) 7.500 7
Map4 2 (+) 8 (+) 14 (+) 9 (+) 3 (−) 6 (+) 3 (+) 3 (+) 6.000 2
Map5 7 (+) 2 (+) 8 (+) 5 (+) 14 (+) 13 (+) 7 (+) 7 (+) 7.875 10
Map6 5 (+) 8 (+) 4 (−) 10 (+) 5 (−) 12 (+) 10 (+) 12 (+) 8.125 11
Map7 3 (+) 2 (+) 11 (+) 4 (+) 11 (−) 7 (+) 13 (+) 9 (+) 7.500 7
Map8 11 (+) 14 (+) 13 (+) 13 (+) 4 (−) 4 (+) 1 (−) 11 (+) 8.875 13
Map9 4 (+) 8 (+) 3 (−) 12 (+) 7 (−) 11 (+) 5 (+) 2 (+) 6.500 3
Map10 1 1 7 1 13 1 2 1 3.375 1
Map11 12 (+) 8 (+) 10 (+) 3 (+) 12 (−) 8 (+) 14 (+) 4 (+) 8.875 13
Map12 13 (+) 8 (+) 2 (−) 14 (+) 2 (−) 3 (+) 8 (+) 5 (+) 6.875 5
SE-SCSO 10 (+) 2 (+) 12 (+) 7 (+) 9 (−) 10 (+) 12 (+) 8 (+) 8.750 12
CGWO 14 (+) 16 (+) 16 (+) 16 (+) 16 (+) 16 (+) 16 (+) 13 (+) 15.375 16
CMPA 15 (+) 2 (+) 1 (−) 6 (+) 1 (−) 15 (+) 11 (+) 10 (+) 7.625 9
CWOA 16 (+) 15 (+) 15 (+) 15 (+) 15 (+) 14 (+) 15 (+) 16 (+) 15.125 15

5.5. Results and Discussion in Numerical Real-World Optimization Problems

In this section, the performance of the CSCSO algorithm is studied on the CEC 2020
test suite consisting of eight numerically constrained functions, as detailed in Table A4.
The benchmarks in this intriguing suite are selected from multimodal, new hybrid, and
composite functions. For a fair comparison, the results of the state-of-the-art CGWO, CMPA,
and CWOA algorithms are compared with those of the CSCSO, as in the other sections.
Table 10 presents the statistical results of the CSCSO algorithm with different chaotic maps
in eight CEC2020 numerical optimization functions versus other metaheuristics. The results
indicate that the proposed algorithm based on the Tent Map (Map10) finds the best answers
when compared to the other algorithms in six functions (75% success rate). According
to these results, the best performance in R5 and R6 belongs to the CMPA algorithm. In
these functions, Map5 took the second place in R5, and Map10 took second place in R6.
According to the results, the CGWO, CWOA, and SE-SCSO algorithms failed to find the
optimal solution for CEC 2020 numerical problems. As a result, our Tent-based algorithm
found the best results for the problems covered in this category.
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Table 10. The simulation results with the different algorithms on the numerical real-world problems
(pop = 40, iter = 1000, and run = 10).

Algorithm R1 R2 R3 R4 R5 R6 R7 R8

Map1
Best 8.18E+02 5.24E+02 3.10E+02 6.16E+02 5.09E+03 7.08E+02 2.94E+03 1.31E+03
Mean 9.77E+02 6.46E+02 3.51E+02 6.36E+02 6.58E+03 8.38E+02 3.84E+03 3.47E+03
Std 1.85E+02 8.11E+01 3.17E+01 2.13E+01 9.73E+02 9.52E+01 7.34E+02 1.16E+03

Map2
Best 7.47E+02 5.17E+02 3.45E+02 6.14E+02 4.59E+03 7.37E+02 2.93E+03 1.13E+03
Mean 9.49E+02 6.49E+02 3.71E+02 6.40E+02 7.14E+03 7.93E+02 4.67E+03 2.89E+03
Std 2.17E+02 1.23E+02 1.91E+01 2.81E+01 1.60E+03 7.32E+01 9.96E+02 9.62E+02

Map3
Best 7.09E+02 5.30E+02 3.08E+02 6.04E+02 5.33E+03 7.70E+02 2.96E+03 1.86E+03
Mean 8.61E+02 6.53E+02 3.36E+02 6.20E+02 6.60E+03 8.48E+02 4.20E+03 3.66E+03
Std 1.75E+02 1.22E+02 2.57E+01 1.17E+01 1.15E+03 7.97E+01 6.96E+02 1.13E+03

Map4
Best 7.22E+02 5.38E+02 3.24E+02 6.09E+02 5.02E+03 7.38E+02 1.81E+03 2.32E+03
Mean 9.31E+02 6.16E+02 3.55E+02 6.31E+02 5.99E+03 8.18E+02 2.51E+03 3.98E+03
Std 1.73E+02 4.32E+01 2.19E+01 2.41E+01 9.77E+02 5.33E+01 7.34E+02 1.47E+03

Map5
Best 7.14E+02 5.09E+02 3.03E+02 6.04E+02 3.88E+03 7.12E+02 2.63E+03 1.30E+03
Mean 9.22E+02 6.00E+02 3.32E+02 6.16E+02 5.14E+03 8.69E+02 3.12E+03 2.68E+03
Std 1.83E+02 9.83E+01 1.95E+01 9.12E+00 1.25E+03 1.50E+02 4.00E+02 1.12E+03

Map6
Best 7.65E+02 5.19E+02 3.04E+02 6.08E+02 3.66E+03 7.41E+02 2.60E+03 2.29E+03
Mean 1.07E+03 6.35E+02 3.48E+02 6.27E+02 7.54E+03 8.47E+02 4.16E+03 3.20E+03
Std 3.37E+02 8.31E+01 2.95E+01 1.09E+01 2.60E+03 8.55E+01 6.37E+02 5.33E+02

Map7
Best 7.47E+02 5.15E+02 3.04E+02 6.03E+02 5.07E+03 7.18E+02 2.39E+03 1.54E+03
Mean 9.07E+02 6.86E+02 3.57E+02 6.24E+02 7.13E+03 7.79E+02 3.27E+03 2.90E+03
Std 1.24E+02 9.97E+01 3.19E+01 1.25E+01 1.65E+03 6.29E+01 7.21E+02 1.48E+02
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Table 10. Cont.

Algorithm R1 R2 R3 R4 R5 R6 R7 R8

Map8
Best 7.88E+02 5.09E+02 3.10E+02 6.07E+02 5.01E+03 7.07E+02 2.03E+03 2.30E+03
Mean 1.00E+03 5.87E+02 3.34E+02 6.16E+02 6.79E+03 1.02E+03 3.20E+03 3.00E+03
Std 1.54E+02 6.15E+01 1.49E+01 8.28E+00 1.09E+03 1.27E+02 7.09E+02 7.81E+02

Map9
Best 7.33E+02 5.48E+02 3.22E+02 6.12E+02 5.03E+03 7.11E+02 1.74E+03 1.22E+03
Mean 9.23E+02 6.35E+02 3.51E+02 6.37E+02 7.23E+03 8.09E+02 2.50E+03 2.58E+03
Std 1.57E+02 6.18E+01 2.18E+01 2.63E+01 1.69E+03 9.12E+01 4.51E+02 8.50E+03

Map10
Best 7.28E+02 5.03E+02 3.03E+02 6.00E+02 3.95E+03 7.08E+02 1.13E+03 1.00E+03
Mean 8.38E+02 5.79E+02 3.25E+02 6.14E+02 5.32E+03 7.39E+02 1.61E+03 2.46E+03
Std 9.37E+01 7.65E+01 1.44E+01 1.26E+01 1.08E+03 2.49E+01 4.19E+02 3.50E+03

Map11
Best 8.23E+02 5.25E+02 3.25E+02 6.17E+02 4.79E+03 7.38E+02 2.03E+03 1.56E+03
Mean 9.49E+02 6.03E+02 3.57E+02 6.49E+02 6.55E+03 7.78E+02 2.63E+03 4.70E+03
Std 1.29E+02 5.98E+01 3.07E+01 2.99E+01 1.34E+03 3.43E+01 5.46E+02 4.41E+03

Map12
Best 1.67E+03 7.10E+02 3.38E+02 6.20E+02 1.05E+04 1.21E+03 2.65E+03 4.09E+03
Mean 2.23E+03 8.26E+02 3.89E+02 6.51E+02 1.94E+04 1.31E+03 2.97E+03 4.74E+03
Std 2.91E+02 5.20E+01 2.54E+01 3.02E+01 3.35E+03 5.53E+01 2.04E+02 5.81E+02

SE-SCSO
Best 8.02E+02 5.62E+02 3.21E+02 6.21E+02 6.86E+03 7.42E+02 2.05E+04 1.37E+03
Mean 1.68E+03 6.56E+02 3.82E+02 6.42E+02 1.03E+04 9.08E+02 2.82E+04 3.95E+03
Std 5.73E+02 5.05E+01 3.96E+01 1.54E+01 3.73E+03 1.59E+02 7.16E+03 1.01E+03

CGWO
Best 8.47E+02 5.98E+02 3.26E+02 6.09E+02 2.97E+03 8.45E+02 1.09E+04 1.25E+03
Mean 1.35E+03 1.07E+03 3.73E+02 6.50E+02 9.01E+03 1.08E+03 2.32E+04 4.36E+03
Std 4.70E+02 4.46E+02 3.28E+01 3.15E+01 2.81E+03 2.52E+02 7.03E+03 2.45E+03

CMPA
Best 7.73E+02 5.12E+02 3.02E+02 6.08E+02 2.85E+03 7.04E+02 2.44E+03 1.70E+03
Mean 9.71E+02 6.17E+02 3.34E+02 6.37E+02 4.41E+03 7.34E+02 2.96E+03 2.50E+03
Std 2.04E+02 7.50E+01 2.38E+01 1.68E+01 1.25E+03 3.01E+01 4.34E+02 5.28E+02

CWOA
Best 8.68E+02 5.42E+02 3.44E+02 6.54E+02 1.94E+04 8.10E+02 8.87E+03 2.01E+03
Mean 1.25E+03 6.04E+02 3.95E+02 6.82E+02 2.77E+04 9.76E+02 1.68E+04 2.97E+03
Std 4.03E+02 5.27E+01 2.34E+01 1.44E+01 5.82E+03 9.38E+01 5.94E+03 7.21E+02

The optimum results obtained from the algorithms are bold and highlighted.

Our algorithm based on the Tent Map showed the best performance in numerical
real-world problems. Based on this, the CSCSO-Map10 algorithm and the other 15 methods
were compared with each other for the pairwise comparison test (Table 11). It is understood
that the algorithm based on the Tent Map offers a very successful performance in these
problems. It is understood that Map5, CMPA, Map8, and Map4 take place in the top
five ranks, and the worst performance belongs to the SE-SCSO algorithm. This means
that the proposed algorithm is better than the SE-SCSO and, in general, other chaos-based
metaheuristic algorithms. In addition, the performance of each algorithm on these problems
is shown in Figure 7, with a standard boxplot.

5.6. Local Optima and Convergence Curve

The CSCSO algorithm was developed to find more accurate candidate solutions in the
exploration and exploitation processes of the SE-SCSO. In this regard, this section analyzes
the diversity and convergence curves. The convergence behavior is an important tool in
the analysis and evaluation of the results. The convergence behaviors of each algorithm
on all functions are handled in 500 and 1000 iterations, and the movements and behaviors
of each algorithm in two phases are examined. As presented in Figure 8, the convergence
model and velocity of each algorithm are illustrated in a single run as the best-case sample.
According to [98,99], unexpected changes in the movement of search agents are normal in
the initial steps of optimization algorithms. As the results are analyzed, this change has
a greater impact on the search space of the exploration process. However, these changes
are normally reduced in final iterations for good use. As shown in Figure 8, the concept of
chaos tries to balance the excess fluctuations in a way. In addition, these sudden changes
cause agents to discover a possible solution and take advantage of it. At the same time, the
exploitation of the discovered areas is expected. In this regard, a good algorithm is expected
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to do well in this phase (exploitation). Therefore, a convergence analysis of algorithms
is considered an important tool to show how well each performs. While examining the
convergence behavior of the algorithms, it is understood that the CSCSO algorithm has a
good performance in the convergence behavior. This is because search agents can explore
space in certain iterations and exploit them properly.

Table 11. Wilcoxon rank-sum test for the considered numerical real-world problems and the ranking
of each algorithm.

Algorithms R1 R2 R3 R4 R5 R6 R7 R8 Avg_Rank Overall_Rank

Map1 10 (+) 10 (+) 8 (+) 8 (+) 6 (+) 8 (+) 10 (+) 10 (+) 8.750 10
Map2 7 (+) 11 (+) 12 (+) 11 (+) 10 (+) 5 (+) 13 (+) 5 (+) 9.250 11
Map3 2 (+) 12 (+) 5 (+) 4 (+) 7 (+) 10 (+) 12 (+) 11 (+) 7.875 8
Map4 6 (+) 6 (+) 9 (+) 7 (+) 4 (+) 7 (+) 3 (+) 13 (+) 7.000 5
Map5 4 (+) 3 (+) 2 (+) 3 (+) 2 (−) 11 (+) 7 (+) 4 (+) 4.500 2
Map6 12 (+) 9 (+) 6 (+) 6 (+) 12 (+) 9 (+) 11 (+) 9 (+) 9.250 11
Map7 3 (+) 14 (+) 10 (+) 5 (+) 9 (+) 4 (+) 9 (+) 6 (+) 7.375 7
Map8 11 (+) 2 (+) 3 (+) 2 (+) 8 (+) 14 (+) 8 (+) 8 (+) 7.000 5
Map9 5 (+) 8 (+) 7 (+) 10 (+) 11 (+) 6 (+) 2 (+) 3 (+) 6.500 4
Map10 1 1 1 1 3 2 1 1 1.375 1
Map11 8 (+) 4 (+) 11 (+) 13 (+) 5 (+) 3 (+) 4 (+) 15 (+) 7.875 8
Map12 16 (+) 15 (+) 15 (+) 15 (+) 12 (+) 16 (+) 6 (+) 16 (+) 13.875 15
SE-SCSO 15 (+) 13 (+) 14 (+) 12 (+) 15 (+) 12 (+) 16 (+) 12 (+) 13.625 14
CGWO 14 (+) 16 (+) 13 (+) 14 (+) 14 (+) 15 (+) 15 (+) 14 (+) 14.375 16
CMPA 9 (+) 7 (+) 4 (+) 9 (+) 1 (−) 1 (−) 5 (+) 2 (+) 4.750 3
CWOA 13 (+) 5 (+) 16 (+) 16 (+) 16 (+) 13 (+) 14 (+) 7 (+) 12.500 13
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Besides that, the analyzes are also performed with Function Evaluations (FEs), and
the results for some functions are presented in Figure 9. In this regard, there are two
other parameters: population size and the number of iterations. This figure illustrates the
fitness values of all calls, providing insight into the behavior of chaotic functions when
making decisions between exploitation and exploration. The transition between phases
occurs rapidly, resulting in varying fitness values for the agent during the exploration
phase compared to the best fitness. The fluctuations in agent performance across calls
demonstrate the evaluation of algorithms and their efforts to explore the search space for
robust global optima.

5.7. Diversity Analysis

In general, the algorithm that prioritizes the exploitation phase will have a high
convergence rate, but there is a risk of falling into the local optimum trap. On the other
hand, since the algorithm that concentrates more on the exploration phase navigates
the search space more, the probability of finding the global answer increases. However,
the convergence speed may be low. Therefore, a reasonably working algorithm tries to
be balanced between these two phases. One of the techniques used for balance analysis
between these two phases is the diversity metric. The average distance between all solutions
during iterations is shown by the diversity curves, as shown in Figure 10 for some functions.
The diversity calculation was inspired by some studies [100,101]. The diversity is obtained
according to Equation (11), inspired by these studies.
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∀ i ∈ I → Diversityi =
1
D ∑D

d=1
1
A

√
∑A

a=1(xi.d,a − xi,d)
2 (11)

where I, D, and A are sets of iterations, dimensions, and agents, respectively; xda is the
position of the dth dimension of the ath search agent; and xd defines for the mean of
dimension d in the total popluation.

Thanks to the chaos strategies, the population’s diversity level is preserved. Thus,
the probability of bias for local optimal solutions during the search is reduced. The
CSCSO algorithm based on the chaos approach focuses on the population’s diversity level,
reducing the probability of falling into the local optima trap during the search. During
the initial iterations, there is a significant average distance between the search agents,
which progressively decreases as the number of iterations increases. The ratio between
exploitation and exploration significantly impacts the diversity of agents across iterations.
Exploration disperses agents to explore the global search space in swarm optimization
algorithms, while exploitation converges agents towards local optima to enhance fitness.
The observed fluctuations in diversity, as shown in Figure 10, stem from the swift phase
changes occurring during the process. Figure 10 illustrates that, across most test functions,
the CSCSO algorithm consistently exhibits higher average distances per iteration than the
SCSO. This observation indicates that the proposed algorithm possesses superior search
capabilities within the search space, particularly when exploring novel search regions
compared to SCSO.



Mathematics 2023, 11, 2340 28 of 47

Mathematics 2023, 11, x FOR PEER REVIEW 28 of 48 
 

 

where I, D, and A are sets of iterations, dimensions, and agents, respectively; xda is the 
position of the dth dimension of the ath search agent; and ̅ݔௗ  defines for the mean of di-
mension d in the total popluation. 

Thanks to the chaos strategies, the population’s diversity level is preserved. Thus, the 
probability of bias for local optimal solutions during the search is reduced. The CSCSO 
algorithm based on the chaos approach focuses on the population’s diversity level, reduc-
ing the probability of falling into the local optima trap during the search. During the initial 
iterations, there is a significant average distance between the search agents, which pro-
gressively decreases as the number of iterations increases. The ratio between exploitation 
and exploration significantly impacts the diversity of agents across iterations. Exploration 
disperses agents to explore the global search space in swarm optimization algorithms, 
while exploitation converges agents towards local optima to enhance fitness. The ob-
served fluctuations in diversity, as shown in Figure 10, stem from the swift phase changes 
occurring during the process. Figure 10 illustrates that, across most test functions, the 
CSCSO algorithm consistently exhibits higher average distances per iteration than the 
SCSO. This observation indicates that the proposed algorithm possesses superior search 
capabilities within the search space, particularly when exploring novel search regions 
compared to SCSO. 

   

   
 

Figure 10. Diversity analysis of each method on some benchmark functions 

5.8. Exploration and Exploitation Analysis 
As described in the introduction and analysis sections of the work, exploration and 

exploitation behaviors are illustrated in Figure 11 concerning the numbers of FEs, as these 
are two important aspects of an effective algorithm. Here, analyses were made from two 
different perspectives. Here, the effect of each map implemented in CSCSO is discussed in 
relation to an example function in exploration and exploitation phases. While other algo-
rithms focus more on the exploitation process after a while, the proposed algorithm contin-
ues a certain and stable trend. Indeed, while some maps give weight to the exploration 
phase, it is possible to follow the opposite results in some cases. Considering that the algo-
rithm behaves in a balanced manner due to its nature, those whose ratios in the two phases 
are close to each other (in all functions considered) were able to find better results in general. 

Figure 10. Diversity analysis of each method on some benchmark functions.

5.8. Exploration and Exploitation Analysis

As described in the introduction and analysis sections of the work, exploration and
exploitation behaviors are illustrated in Figure 11 concerning the numbers of FEs, as
these are two important aspects of an effective algorithm. Here, analyses were made
from two different perspectives. Here, the effect of each map implemented in CSCSO
is discussed in relation to an example function in exploration and exploitation phases.
While other algorithms focus more on the exploitation process after a while, the proposed
algorithm continues a certain and stable trend. Indeed, while some maps give weight to the
exploration phase, it is possible to follow the opposite results in some cases. Considering
that the algorithm behaves in a balanced manner due to its nature, those whose ratios in
the two phases are close to each other (in all functions considered) were able to find better
results in general. In this subsection, the test result on the R7 function is presented for all
maps. While the proposed algorithm (e.g., Map10) focuses on exploration in the initial
stages, exploitation is becoming more and more important. On some maps, the situation is
reversed. However, in general, their close ratio shows that the proposed algorithm behaves
in a balanced way. Accordingly, the results based on Map10, emphasizing exploration and
exploitation in two phases, were also better than the others. It is worth noting that only
one is presented in a relevant way since the behavior and rate of the exploitation phase is
the opposite of exploration.
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6. CSCSO in Constrained Engineering Problems

In this study, in the performance analysis of the proposed algorithm, in addition to
various complex test functions in the previous section, constrained engineering problems
are used in this section. In this section, empirical evaluations are made by considering
five of these real-world applications. These problems are limited and difficult in pressure
vessel design [102], gear train design [103], compression spring design [104], speed reducer
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design [105], and three-bar truss design [106] applications. Simulations and analyses of all
problems were carried out under the same conditions.

6.1. Results and Discussion in Pressure Vessel Design Problem

The first example studied in this section is the pressure vessel design problem. It
is a mixed−integer problem, and its primary objective is minimizing the total cost of a
cylindrical pressure vessel, including welding, material, and forming [2,102]. For this
purpose, the optimum values of four variables defined in the problem should be found.
These variables are the thickness of the head (Th), the thickness of the shell (Ts), the inner
radius (R), and the length of the cylindrical section without considering the head (L). The
visual representation of the problems is given in Figure 12a. The explanation of the problem
by using with mathematical equations is given in Table A5. The proposed algorithm was
tested separately with 12 maps, and the results were compared with four other algorithms.
The results are presented in Table 12, and the convergence curve is in Figure 12b.
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Table 12. Experimental results of the pressure vessel design problem (pop = 30; iter = 2000).

Algorithms
Optimum Variables

Optimum Cost Overall_Rank
Ts Th R L

Map1 0.8840296 0.4376542 45.72797 136.3239 6103.5354 14
Map2 0.8645994 0.4272778 44.76719 146.2359 6055.5355 13
Map3 0.7786206 0.3862715 40.3372 200 5896.1887 6
Map4 0.8578314 0.4246596 44.41697 149.9077 6042.4655 12
Map5 0.7791666 0.385388 40.3693 199.3147 5888.1342 2
Map6 0.778796 0.3889989 40.32789 199.8965 5901.5966 7
Map7 0.7784384 0.3892492 40.33261 200 5902.7252 8
Map8 0.7795517 0.3854967 40.38957 199.2261 5892.6565 5
Map9 0.7803899 0.3866241 40.4314 198.4661 5892.4868 4
Map10 0.7781687 0.3846492 40.31962 200 5885.3328 1
Map11 0.7801906 0.3894495 40.41601 198.8482 5904.9624 10
Map12 1.18462 0.587487 61.3585 27.8221 7023.4302 15
SE-SCSO 0.8292 0.43172 42.9236 168.8026 5986.1419 11
CGWO 0.7887976 0.3900441 40.86958 192.4996 5904.6293 9
CMPA 0.7807125 0.3863639 40.45044 198.2424 5892.3573 3
CWOA 1.209648 0.6385708 47.10937 123.0912 8823.5514 16

The best algorithm is shown in bold and highlight.
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According to the results, the proposed algorithm based on the Tent Map achieved the
best performance compared to other maps and other algorithms. The sinusoidal-based
CSCSO took second place. The point that draws attention here is that the CMPA based on
the Guass/Mouse Map is better than our other 10 maps and ranks third.

6.2. Gear Train Design Problem

The widely researched gear design problem [103] is the second problem addressed in
this section. This problem aims to minimize the cost of the gear ratio. In this problem, there
are four variables, matching the number of teeth of the gearwheels. These are called na, nb,
nf, and nd. They are denoted here as x1, x2, x3, and x4 [107]. Their range of all is limited to
between 12 and 60. A two− and three−dimensional illustration of this problem is shown
in Figure 13a. This problem is formulated mathematically in Table A5. The proposed
algorithm was tested separately with 12 maps, and, also, the results were compared with
four other algorithms. The results are presented in Table 13, and the convergence curve is
shown in Figure 13b.
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Table 13. Experimental results of the gear train design problem (pop = 30; iter = 2000).

Algorithms
Optimum Variables

Optimum Cost Overall_Rank
X1 X2 X3 X4

Map1 60 12 12 16.63 1.189053441454946E−17 13
Map2 48.02 21.59 17.76 55.34 4.517400503839139E−23 3
Map3 43.73 12.08 29.86 57.17 4.218489743140509E−19 9
Map4 60 42.02 12 58.25 7.167907310992734E−21 5
Map5 50.74 35.36 12.42 60 5.037306687704821E−23 4
Map6 16.90 12 12.02 59.14 7.526271461486777E−21 6
Map7 49.40 13.46 12 22.66 1.526716660992023E−19 8
Map8 30.44 17.77 12 48.57 2.230916200498150E−20 7
Map9 35.80 12 12.28 28.53 2.866133049573352E−18 12
Map10 52.96 19.86 16.31 42.40 1.122944971843512E−23 2
Map11 28.58 12.18 13.50 39.88 2.528126808979344E−18 10
Map12 48.97 17.13 20.54 49.81 2.689792357227320E−18 11
SE-SCSO 60 12.08 12.86 32.77 5. 204244123165204E−16 14
CGWO 60 13.62 14.69 23.10 5.925901619563185E−16 15
CMPA 45.60 12.23 12.85 23.88 8.725285232783098E−24 1
CWOA 35.28 12 12 28.29 2.226642147367809E−11 16

The best algorithm is shown in bold and highlight.
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When the results are analyzed, it is understood that the most optimal values for the
solution of this problem belong to the Chebyshev-based CMPA algorithm. In second place
was the CSCSO algorithm based on the Tent Map. It was observed that the Circle-based
CSCSO algorithm took third place. The weakest performance, like the previous problem,
belongs to the CWOA algorithm.

6.3. Tension/Compression Spring Design Problem

The third problem examined in this section is the tension/compression spring design
problem. Its primary objective is reducing the spring’s mass based on four constraints and
three variables [104]. Its variables are wiring diameter (d), mean coil diameter (D), and the
number of active coils (N). Moreover, the constraints of the problem are surge frequency,
minimum deflection, and shear stress. The two− and three−dimensional representations
of the problems are given in Figure 14a. Its mathematical equations are given in Table A5.
The proposed algorithm was tested separately with 12 maps, and, also, the results were
compared with four other algorithms. The results are presented in Table 14, and the
convergence behavior of each algorithm is in Figure 14b.
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Table 14. Experimental results of the tension/compression spring design problem (pop = 30;
iter = 2000).

Algorithms
Optimum Variables

Optimum Cost Overall_Rank
d D N

Map1 0.05 0.348873 10.5678 0.010961 2
Map2 0.05 0.348495 10.6104 0.010987 14
Map3 0.05 0.348725 10.5801 0.010967 11
Map4 0.05 0.348818 10.5786 0.010969 13
Map5 0.0500054 0.349008 10.56 0.010961 2
Map6 0.05 0.348878 10.5698 0.010963 9
Map7 0.053962 0.44723 6.8114 0.011475 15
Map8 0.05 0.348771 10.5794 0.010968 12
Map9 0.05 0.348881 10.5656 0.010961 2
Map10 0.05 0.348908 10.5634 0.010957 1
Map11 0.05 0.348894 10.5676 0.010962 7
Map12 0.05 0.348881 10.5661 0.010961 2
SE-SCSO 0.05 0.356471 10.5809 0.010962 7
CGWO 0.05 0.348853 10.5683 0.010961 2
CMPA 0.05 0.348915 10.5622 0.010964 10
CWOA 0.057215 0.54039 4.8765 0.012165 16

The best algorithm is shown in bold and highlight.
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According to the results, the CSCSO-Map10 found the best solution than others. The
SE-SCSO algorithm took second place. In this problem, Chebyshev, Sinusoidal, Logistic,
and Quadratic maps found similar results in CSCSO. Therefore, Map1, Map5, Map9, and
Map12 jointly took third place. The weakest performance appears to belong to the CWOA
algorithm. It should also be emphasized that the Singer Map and the CSCSO algorithm
found the weakest results.

6.4. Speed-Reducer Design Problem

The speed-reducer problem is the fourth problem considered in this section. The
main goal of this mechanical engineering problem is minimizing the total weight of a
speed reducer under 11 constraints [105]. Four of these constraints are linear inequality
constraints, and the other seven are nonlinear. The linear constraints are the bending stress
of the gear teeth, transverse deflections of the shafts, surface stress, and stresses in the
shafts. In addition, this problem has seven variables, the face width b(x1), the module of
teeth m(x2), the number of teeth in the pinion z(x3), the length of the first shaft between
bearings l1(x4), the length of the second shaft between bearings l2(x5), the diameter of first
shafts d1(x6), and the diameter of second shafts d2(x7). The 3D and 2D models of this
problem are presented in Figure 15a. Moreover, the mathematical equations of the problem
are given in Table A5. The experimental results are presented in Table 15. The convergence
behavior of each algorithm is also exhibited in Figure 15b.
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According to the results, CSCSO-Map5 (Sinusoidal Map) and CSCSO-Map10 (Tent
Map) ranked first and second. The worst performance of the proposed algorithm was
obtained with the Chebyshev Map. When comparing all algorithms, we found that the
weakest performance belongs to the CWOA algorithm. The proposed algorithm in this
problem is understood to be better than other chaotic-based metaheuristic algorithms and
SE-SCSO, like the previous three problems.

6.5. Three-Bar Truss Design Problem

The last constrained engineering problem addressed is the three-bar truss problem.
The main objective of this two−dimensional problem is to minimize relevant weights
subjected to three non−linear constraints. In this problem, two design variables, A1 and A2,
are defined. These restraints are stress, deflection, and buckling. This problem is reported
in [106] as a highly constrained search space. This test problem is described mathematically
in Table A5. The structure of the three-bar truss is presented in two dimensions in Figure 16a.
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Four algorithms from the literature were used for the performance analysis of the CSCSO
algorithm. In addition, the famous 12 maps are applied separately to the problem to clearly
understand the effect of the proposed algorithm, like other problems. The experimental
results are presented in Table 16. In this particular problem, convergence behaviors similar
to those in other problems are presented (Figure 16b).

Table 15. Experimental results of the speed-reducer design problem (pop = 30; iter = 2000).

Algorithms
Optimum Variables

Optimum Cost Overall_Rank
X1 X2 X3 X4 X5 X6 X7

Map1 3.50 0.70 17 7.39 8.11 3.35 5.29 3.002499198459249E+03 14
Map2 3.50 0.70 17 7.55 7.76 3.36 5.29 2.999239924699496E+03 11
Map3 3.50 0.70 17 7.30 7.73 3.35 5.29 2.995209823639083E+03 5
Map4 3.50 0.70 17 7.32 7.82 3.36 5.29 2.997467922122005E+03 9
Map5 3.50 0.70 17 7.30 7.721 3.35 5.29 2.994471067842177E+03 1
Map6 3.50 0.70 17 7.30 7.76 3.35 5.29 2.995138822665665E+03 4
Map7 3.50 0.70 17 7.30 7.94 3.35 5.29 2.999340737545768E+03 12
Map8 3.50 0.70 17 7.30 7.83 3.36 5.29 2.996572732895894E+03 7
Map9 3.50 0.70 17 7.30 7.76 3.36 5.29 2.996861016039304E+03 8
Map10 3.50 0.70 17 7.30 7.723 3.35 5.29 2.994508089032852E+03 2
Map11 3.50 0.70 17 7.38 7.72 3.38 5.29 2.999630362959565E+03 6
Map12 3.51 0.70 17 7.30 8.30 3.37 5.29 2.999788897881505E+03 13
SE-SCSO 3.49 0.70 17 8.29 7.84 3.36 5.29 2.996944440275123E+03 10
CGWO 3.50 0.70 17 8.28 8.27 3.89 5.34 3.016583145706655E+03 15
CMPA 3.50 0.70 17 7.30 7.722 3.35 5.29 2.994516229441376E+03 3
CWOA 3.58 0.70 17 8.05 7.99 3.79 5.29 3.162932713322597E+03 16

The best algorithm is shown in bold and highlight.

Table 16. Experimental results of the three-bar truss design problem (pop = 30; iter = 2000).

Algorithms
Optimum Variables

Optimum Cost Overall_Rank
X1 X2

Map1 0.788196392484220 0.409924295610334 2.639280351739794E+02 3
Map2 0.791395442262100 0.402027178648411 2.640431513943041E+02 12
Map3 0.781140214144988 0.430879816857226 2.640277986774958E+02 11
Map4 0.786386913515764 0.416828890667142 2.641066967400567E+02 14
Map5 0.779970952119523 0.433641291581441 2.639732289070413E+02 8
Map6 0.784899761302183 0.420208383161735 2.640240158235639E+02 10
Map7 0.786634196693848 0.414409164378916 2.639346663560726E+02 4
Map8 0.799339104565123 0.379137312273734 2.640009717496060E+02 9
Map9 0.801186907090069 0.374945296375728 2.641044076380784E+02 13
Map10 0.789803744838697 0.405067253792508 2.638969588920399E+02 1
Map11 0.785834430117980 0.416708708381071 2.639384126086230E+02 5
Map12 0.768942064885116 0.467384746170158 2.642281339849564E+02 15
SE-SCSO 0.792810428422592 0.397186898447411 2.639593418979518E+02 7
CGWO 0.797839392122505 0.384069666300697 2.64904295142864E+02 16
CMPA 0.788757980922057 0.408038963897476 2.638983431997460E+02 2
CWOA 0.781157281506678 0.430088660802161 2.639535104508645E+02 6

The best algorithm is shown in bold and highlight.
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The results presented in Table 16 illustrate that the CSCSO algorithm is more dominant
than the others. This algorithm achieved the best results with the least number of Function
Evaluations. The CSCSO achieved more successful results with Tent and Chebyshev maps.
It was noted that the CMPA algorithm, which ranks second, is based on the Chebyshev
Map. In this problem, the weakest performer (Rank 16) was CSCSO based on the Quadratic
Map. This result indicates that this map is not suitable for this problem. However, it should
be emphasized that the results obtained are very close to each other.

7. CSCSO in Constrained Social Sciences-Based Problems

In the last section of this study, firstly, the performance of the proposed algorithm is
analyzed on the p-median problem in the field of management and business in social science.
The p-median problem is one of the most well-known NP-hard problems in the category of
facility location problems and focuses on a facility layout and assignment model [93,108].
Many studies have been carried out in the literature to solve this problem [109]. The
p-median problem falls under the category of minimum sum facility location problems.
In [110], a formulation of the problem focusing on the nodes of optimum placement in a
network with triangular inequality was made. The most basic version of the p-median
problem, also called the 1-median problem, is the model that aims to determine the location
of a median facility that will serve all demand points on the network. In this problem where
only one establishment location is selected, the aim is to minimize the total cost. Problems
with more than one median point are called p-median problems. The p-median problem is
concerned with placing p facilities, which will serve n-demand points, on the network in a
way that minimizes the weighted cost of the entire system [111,112]. In this problem, the
said cost may be the distance, time, or monetary amount between the demand points and
the service points. The assumptions of the p-median problem are to find the number of
facilities to be opened without a time limit based on a linear relationship between cost and
distance. In the definition of this problem, there is no capacity limit and facility opening
cost for the facilities serving. In addition, all facilities have equal features, and customer
demands are constant. This problem, which has certain points where facilities can be
opened, is of the discrete type. In the p-median problem assumed in the discrete structure,

the n nodes and p facilities to be opened consist of a combination situation
(

p
n

)
, and its

mathematical model is given in Equation (12):

min ∑n
i=1 ∑n

j=1 aidi,jzi,j (12)
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This fitness function aims to minimize the weighted total cost between the facilities
and demand points. Here, n represents the total number of demand points, ai is the demand
at point (node) i, and dij is the shortest distance between point i and point j. The variable p
represents the number of facilities (median) to be placed. In this problem, there are four (4)
constraints that are presented in Equation (13):

∑n
j=1 zi,j = 1 ∀i i, j = 1, 2, . . . , n (13)

zi,j ≤ yj ∀i, j i, j = 1, 2, . . . , n
n
∑

j=1
yj = p

zi,j, yj ∈ {0, 1} i, j = 1, 2, . . . , n

The total z (first constrained) expresses the condition that all demands of the demand
point are met from only one facility. Indeed, each demand point is assigned to only one
facility. The second constraint indicates the condition of not assigning a demand point to a
facility that is not open. In other words, an attempt is made to ensure consistency here. The
third constraint limits the number of facilities to be opened and serviced to the p. The z and
y can take values between zero and one for all i and j values. In addition, in this problem,
the decision variables are defined as follows (Equation (14)). An exemplary model network
representing this problem is presented in Figure 17.

zi,j =

{
1 i f customer i is assigned to f acility j

0 otherwise
; yj =

{
1 i f a f acility is opened at point j

0 otherwise
(14)Mathematics 2023, 11, x FOR PEER REVIEW 37 of 48 
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lem that directly triggers people’s lives, although it is considered an engineering subject 
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of a sustainable water management perspective. It is worth emphasizing that climate 
change is the result of extreme humanitarian interventions [117]. At this point, it is espe-
cially important that natural resources are used through a circular economy, not a linear 

Figure 17. (a) A sample of p-median problem when n = 8. (b) Selected nodes for sample median
facilities and demand points assigned to facilities when n = 8 and p = 2 (A4 and A5).

The number of points and the distances between them are inspired by [113,114]. In this
study, the results of the proposed algorithm on this problem represented by the matrix are
presented in Table 17. According to the results of the comparisons with other metaheuristic
algorithms, it is understood that the CSCSO algorithm performs better. As the value of p
increases and, naturally, the number of nodes, it is understood that the proposed algorithm
finds significantly better results in all maps. Based on this, it appears that it will perform
even better in larger and more complex scenarios.

The other problem addressed in this study is based on water resources management.
This problem, especially the management and allocation of groundwater, is a social problem
that directly triggers people’s lives, although it is considered an engineering subject in
the literature [115,116]. This problem is largely related to climate change and the lack of a
sustainable water management perspective. It is worth emphasizing that climate change
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is the result of extreme humanitarian interventions [117]. At this point, it is especially
important that natural resources are used through a circular economy, not a linear economy
(Figure 18a). In this regard, the United Nations Development Agency draws attention to
this problem in its universally accepted sustainable development goals [118]. This agency
states that it is essential to consider 17 goals together in order to create a holistic sustainable
development and valid until 2030 (Figure 18b). Internationally, schemes such as the Green
New Deal and the European Union Green Deal are promising initiatives so that people
can live equally in a cleaner and greener world [119]. Here, we evaluate the role of the
metaheuristic approach in solving various constrained problems, as well as examine the
impact from the social sciences dimension. Therefore, by addressing this general problem,
we analyze and discuss it from a multidisciplinary perspective.

Table 17. Experimental results of the p-median problem (n = 200, pop = 100, and iter = 500).

Algorithms
Optimum Cost for Various p-Values

Overall_Rank
5 10 15 20

Map1 9999.89 7909.88 6418.91 5718.66 2
Map2 10,377.46 8609.39 7755.74 6959.55 10
Map3 10,107.83 8449.07 7705.16 6902.51 8
Map4 10,227.71 8556.44 7742.02 6928.42 9
Map5 10,088.39 8247.83 7371.97 6624.27 4
Map6 10,103.42 8437.41 7655.79 6821.93 7
Map7 10,074.11 8369.32 7607.65 6801.49 5
Map8 10,017.78 8011.54 7326.14 6401.74 3
Map9 10,101.22 8409.63 7645.08 6807.37 6
Map10 9834.16 7482.01 6184.11 5426.14 1
Map11 10,155.11 8594.75 7755.82 6960.04 11
Map12 10,159.77 8604.81 7757.96 6961.19 12
SE-SCSO 10,159.11 8597.37 7759.44 6969.44 13
CGWO 11,622.41 10,222.45 9086.83 8372.57 15
CMPA 10,101.77 8456.48 7769.66 7241.28 14
CWOA 12,205.65 10,926.93 9888.89 9174.29 16

The best algorithm is shown in bold and highlight.
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Water resource management becomes a complex problem due to the stochastic nature
of the inflow, as well as various demands, such as domestic use, agriculture, farming,
and downstream environmental flow. Considering that the human body consists of an
average of 60% water and that there is an essential need for drinking water, this problem
becomes even more imperative. As this problem continues, it causes local and global water
shortages, which will affect people’s normal lives such as forced migration [117]. As such,
it is appropriate to consider it as a national and even an international issue. Unconscious
agricultural irrigation, pollution, and population growth are among the main causes of
water scarcity. While 70 percent of the world’s accessible fresh water is used in agriculture,
60 percent of the water used is wasted due to inefficiency and wrong farming methods [121].
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Therefore, water scarcity is also defined as the greatest danger of the future. On the other
hand, if this problem is managed efficiently, it promises a sustainable life.

In this study, this problem was addressed from a multidisciplinary perspective, not
from a purely social sciences perspective. Recently, an increasing number of studies have
been carried out focusing on the engineering approach that positively affects people’s
social life [116]. In addition to or alternatively to traditional water transfer and manage-
ment, technological and algorithmic-based solutions are vital in conserving water and
preventing future water shortages. Therefore, artificial intelligence, machine learning, and
various heuristic-based methods have come to the fore. In this study, we focused on the
heuristic-based approach, as these optimization techniques can play an important role in
managing and delivering better solutions. Based on this, the problem was addressed from
an appropriate side, and therefore optimizations of proposed and developed projects are
important for planning, designing, operational, and implementation activities. There are
also some studies in the literature on this subject, albeit a few [122,123].

The water resources management problem can be addressed from many different
dimensions, such as the water distribution network problem [124], the river-basin plan-
ning [125], the ground surface and underground management problem [126], the agricul-
tural land allocation [115], and the irrigation problem [11,127]. Regarding water resource
management, in addition to climate change, the amount and quality of water resources,
especially in arid geographies, and their impact on hydrological processes, including
groundwater, raise concerns. Therefore, it is important to use water in a balanced way and
to manage resources correctly. In this study, we focused on the reservoir operation to the
efficient use of water resources to reduce water and energy scarcity. The aim of this problem
is to maximize the energy production of the multi-reservoir system and is formulated as
follows (Equation (15)):

Max
T

∑
i=1

P

∑
j=1

Si,j∆i ; Si,j = rjqi,jhi,j (15)

Important parameters are the water level, which represents the change in output,
and the power output, which is related to turbine oscillation and hydraulic head. Based
on this, the aim is to find optimum solutions for outflow, hydraulic head, and power of
output. The fitness function is the total energy production (kWh) of all facilities over the
entire operating period, and as mentioned, the goal is to maximize it. T is the number of
operation intervals, and P is the number of hydro plants. Si,j is the power output of the
jth plant in the ith operating interval and is in MW; ∆i is the operating range and is on
an hourly basis; rj is the power coefficient for jth plant; and qi,j is the emissive turbine,
and hi,j is the hydraulic head in the ith operating range of the jth plant, and their outputs
are m3/s and m, respectively. Furthermore, this problem has five constraints (Equation
(16)). These constraints are power output, water level, continuity equation, boundary, and
outflow constraints, which are presented below, respectively:

bSj,ic ≤ Sj,i ≤ dSj,ie ; bSic ≤
P

∑
j=1
dSj,ie ≤ dSie (16)

⌊
Zj,i
⌋
≤ Zj,i ≤

⌈
Zj,i
⌉

Vj, i+1 = Vj, i + α
(
Yj,i −Wj,i

)
; Vj+1, i+1 = Vj+1, i + α

(
Yj+1,i −Wj+1,i

)
; Yj+1, i

= Y(Wj+1,i + Wj,i−γi )
Zj,1 = Zj,b , Zj,T+1 = Zj,e

⌊
Wi,j

⌋
≤Wi,j ≤

⌈
Wi,j

⌉
In this study, a famous real structure representing this problem was considered as a

case study, and the results were evaluated. This structure is represented in two dimensions
in Figure 19. Here, four hydropower reservoirs were considered. Details regarding this
multi-reservoir were presented in [128].
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Considering the assumptions in the [128] study, the results are presented in Table 18.
According to the results, our proposed Tent-based algorithm demonstrates the best perfor-
mance. Based on this analysis, a more efficient system design will be achieved in the system
of multiple reservoirs if the relevant algorithm is used, and, therefore, the water resource
will be able to be managed in the best way. As a result, efficient water consumption will
be achieved by finding efficient solutions for optimization problems such as the design of
improved systems and well placement. Therefore, local and global risks will be reduced, a
better future will be left for future generations, and problems such as forced migration due
to thirst will be eliminated.

Table 18. Experimental results of the multi-reservoirs design problem (period = 10, pop = 100, and
iter = 500).

Algor-
ithms

Optimum Cost for Outflow Optimum Cost for Hydraulic Head Optimum Cost for Power of Output Optimal
COST

Overall_
RankHJD DF SFY WJD HJD DF SFY WJD HJD DF SFY WJD

Map1 116.9 367.9 469.1 408.8 136.4 128.3 69.0 132.9 113.9 447.9 377.1 479.1 1887.9 2
Map2 143.5 339.4 328.7 476.9 138.1 128.7 69.0 132.8 268.7 347.8 227.7 400.9 1849.5 6
Map3 189.8 327.9 313.9 456.5 138.5 128.8 69.0 132.8 218.5 387.3 287.9 398.5 1845.1 7
Map4 174.8 251.5 328.3 612.8 131.8 128.0 69.0 129.8 112.9 299.4 193.8 796.8 1329.8 10
Map5 127.9 353.1 357.2 506.8 138.2 129.1 69.0 133.0 186.4 365.2 259.9 431.2 1852.8 5
Map6 327.3 321.4 316.5 301.7 129.8 128.9 69.0 132.2 299.3 337.2 194.6 399.8 1279.8 12
Map7 355.2 328.3 337.9 322.9 129.1 128.6 69.0 132.5 307.9 345.6 213.4 386.8 1283.3 11
Map8 119.5 377.4 363.8 526.5 138.1 128.1 69.0 132.1 218.5 387.3 287.9 408.7 1874.3 3
Map9 223.8 398.7 427.9 501.9 155.5 128.9 69.0 133.0 266.2 405.7 258.1 494.3 1509.3 8
Map10 97.7 386.3 496.5 888.6 149.8 127.6 69.0 132.6 83.5 652.6 407.7 939.8 2087.3 1
Map11 317.2 328.8 326.1 341.3 129.6 128.7 69.0 132.8 317.4 355.7 194.8 376.6 1276.9 13
Map12 214.8 338.3 339.8 381.1 151.4 128.8 69.0 133.2 298.6 394.9 237.3 405.5 1269.7 14
SE-
SCSO 247.9 281.8 290.8 324.6 139.4 129.1 69.0 132.9 293.8 303.9 170.6 352.4 1120.6 15

CGWO 218.2 289.4 288.5 296.1 142.4 129.1 69.0 133.0 290.2 290.1 168.4 389.7 1117.4 16
CMPA 100.3 276.3 501.7 786.3 147.9 128.8 69.0 132.5 299.6 603.8 313.9 834.9 1854.5 4
CWOA 102.5 263.9 324.7 807.2 120.1 127.2 70.6 125.5 72.3 277.8 168.5 801.4 1329.8 9

The best algorithm is shown in bold and highlight.

8. Conclusions

This study proposed a novel hybrid Chaotic Sand Cat Swarm Optimization (CSCSO)
algorithm and investigated its performance in relation to various real-world optimization
problems. The concept of chaos is a suitable solution to resolve problems such as possible
early convergence, low search consistency, local optimum problem, inefficient search, and
low population diversity of commodity. The SCSO has the possibility of not finding an
effective global optimum. In addition, it is likely that agents will be blind due to the random
operating mechanism and therefore offer a limited rate of exploitation in the search space.
Therefore, chaotic maps are integrated into the fundamental SCSO algorithm that results in
a hybrid algorithm. In this way, CSCSO uses chaotic sequences mapped from chaotic maps
to generate design variables instead of random sequences. Moreover, it will also benefit
from the randomness characteristics of SCSO. In order to manage this hybrid structure,
a criterion was determined in the algorithm, and a random variable was defined in this
context. This variable can be greater than/equal to or less than 0.5. Therefore, the CSCSO
algorithm introduces two alternative solutions for position updating in the exploration
and exploitation phases: one of them is the normal position update mechanism, and the
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other is based on the chaotic model. Twelve different chaotic maps are used in the new
algorithm that uses the concept of chaos. The CSCSO algorithm based on maps has the
same complexity though slightly more runtime compared to the standard version and
SE-SCSO. In this study, the focus of the performance evaluation was the behavior of the
proposed hybrid algorithm in real-world problems. In this regard, current and well-known
problems in numerical and engineering optimization were discussed. In addition to these,
eight unimodal, eight multimodal, and eight comparative test functions are also used.
For this, functions and problems were selected from CEC2015, 2016, 2019, and 2020. In
general, the results exhibit the superiority of the chaotic SCSO algorithm over standard
and current variants of SCSO and other tested chaotic-based metaheuristics (CGWO,
CMPA, and CWOA) on various complex and constrained multidisciplinary problems in
terms of convergence behavior and global optimum solution. In a computational analysis,
the CSCSO algorithm with a set of maps, which is proposed to solve multi-constrained
and nonlinear real-world optimization problems, was successful, like any other complex
problem considered. In the analysis of the results, the proposed algorithm found the best
solutions with a Tent-based map in unimodal functions. This behavior and consequence are
similarly valid in multimodal competitive functions and numerical real-world problems.
Moreover, seven different constrained multidisciplinary problems were also discussed in
the analysis section. In these applications, the proposed algorithm was used to solve certain
problems. According to the results obtained, Tent-based CSCSO, Chebyshev-based CMPA,
Tent-based CSCSO, Sinusoidal-based CSCSO, and Tent-based CSCSO performed better
than other maps and algorithms in these problems, respectively. Moreover, in the p-median
and water resource management problems, Tent-based CSCSO found the best result. Briefly,
it achieved the best solution for a total of six problems based on different maps in seven
constrained optimization problems. It is worth emphasizing that the proposed algorithm
can work well with different maps for various types of problems. According to the results,
the proposed algorithm found the best answer at a total rate of 87.5% in the unimodal test
functions considered. This ratio resulted in 62.5% superiority in multimodal benchmark
functions, 75% in competitive modern functions, and 75% in CEC2020 real-world problems.
In conclusion, these extensive experiments indicate that the CSCSO algorithm excels in
providing acceptable results for a wide variety of problems.

As for future works, researchers can focus on multi-objective and multidimensional
design optimization problems. In addition, binary classification and multiclassification may
be other focal issues. On the other hand, the proposed algorithm can be used on different
real applications (e.g., image processing, feature selection, smart traffic management,
sustainable agriculture, logistics, etc.). Blended with the chaos feature, this method can also
be used in mobile ad hoc systems and IoT architectures for problems such as extending
coverage and optimizing node localization. Moreover, it can be tested by adapting to other
competition functions, such as CEC2022. Furthermore, a broader perspective can be gained
under the concept of hyper-heuristic. In addition, interested researchers can further analyze
its performance by improving this method.
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Appendix A

Table A1. Unimodal benchmark functions.

Formula Dim Range Global Minimum

f1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

f2(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−10, 10] 0

f3(x) =
n
∑

i=1
(

i
∑

i=j−1
xj)

2
30 [−100, 100] 0

f4(x) = maxi{|xi, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) =
n−1
∑

i=1
[100

(
xi+1 − x2

i
)2

+

(xi − 1)2]

30 [−30, 30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

f7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30 [−1.28, 1.28] 0

f8(x) =
n
∑

i=1
|xi|+

n
∏
i=1
|xi| 30 [−100, 100] 0

Table A2. Multimodal benchmark functions.

Formula Dim Range Global Minimum

M f1(x) =
n
∑

i=1
−xi sin

(√
|xi|
)

30 [−500, 500] −418.9829 × dim

MF2(x) = (∑n
i=1|xi|) exp

(
−

n
∑

i=1
Sin
(

xi
2)) 50 [−100, 100] 0
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Table A3. Modern benchmark competitive test functions from CEC2019 (CEC−C06).

Function Benchmark Function Dim Range fmin

CEC01 Storn’s Chebyshev Polynomial Fitting Problem 9 [−8192, 8192] 1
CEC02 Inverse Hilbert Matrix Problem 16 [−16,384, 16,384] 1
CEC03 Rastrigin’s Function 10 [−100, 100] 1
CEC04 Grıenwank’s Function 10 [−100, 100] 1
CEC05 Weiersrass Function 10 [−100, 100] 1
CEC06 Modified Schwefel’s Function 10 [−100, 100] 1
CEC07 Expanded Schaffer’s F6 Function 10 [−100, 100] 1
CEC08 Ackley Function 10 [−100, 100] 1

Table A4. Numerical real-world functions from CEC2020.

Function Benchmark Function Dim Range fmin

R1 Shifted and Rotated Griewank’s Function without Bounds 50 [−600, 600] 700
R2 Shifted and Rotated Rastrigin’s Function 50 [−5, 5] 500
R3 Shifted and Rotated Weierstrass Function 50 [−0.5, 0.5] 300
R4 Shifted and Rotated Expanded Scaffer’s 50 [−100, 100] 600
R5 Shifted and Rotated Schwefel’s function 10 [−100, 100] 1100
R6 Shifted and Rotated Lunacek bi−Rastrigin function 10 [−100, 100] 700
R7 Hybrid function 2 (N = 4) 10 [−100, 100] 1600
R8 Composition function 2 (N = 4) 10 [−100, 100] 2400

Table A5. Mathematical equations of constrained engineering problems.

The mathematical equations of pressure vessel design problem
→
x = [x1 x2 x3 x4] = [Ts Th R L],
Minx f (

→
x ) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3,

g1

(→
x
)
= −x1 + 0.0193x3 ≤ 0, g2(

→
x ) = −x2 + 0.00954x3 ≤ 0, g3(

→
x ) = −πx2

3x4 − 4
3 πx3

3 + 1296000 ≤ 0, g4(
→
x ) = x4 − 240 ≤ 0,

0 ≤ x1, x2 ≤ 99, 10 ≤ x3, , x4 ≤ 200
The mathematical equations of gear train design problem
GearRatio = nbnd

nan f

Minx f (x) =
(

1
6.931 −

x3x2
x1x4

)2
12 ≤ xi ≤ 60; i = 1, 2, 3, 4

The mathematical equations of tension/compression spring design problem
→
x = [x1 x2 x3] = [d D N],
Minx f (

→
x ) = (x3 + 2)x2x2

1,

g1(
→
x ) = 1− x3

2 x3

71785x4
1
≤ 0, g2(

→
x ) = 4x2

2−x1x2

12566 (x2x3
1−x4

1)
+ 1

5108x2
1
− 1 ≤ 0, g3(

→
x ) = 1− 140.45x1

x2
2 x3

≤ 0, g4(
→
x ) = x1+x2

1.5 − 1 ≤ 0

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.0
The mathematical equations of speed reducer design problem
Min f (b, m, z, l1, l2, d1, d2 ) =
0.7854x1x2

2(3.3333x2
3 + 14.9334x3 − 43.0934

)
− 1.508x1

(
x2

6 + x2
7
)
+ 7.4777

(
x3

6 + x3
7
)
+ 0.7854

(
x4x2

6 + x5x2
7
)

G1 = 27
x1x2

2 x3
− 1 ≤ 0; G2 = 397.5

x1x2
2 x3

2 − 1 ≤ 0; G3 =
1.93x3

4
x2x4

6 x3
− 1 ≤ 0; G4 =

1.93x3
5

x2x4
7 x3
− 1 ≤ 0; G5 =

√(
745x4
x2 x3

)2
+16.9×106

110x3
6

− 1 ≤ 0;

G6 =

√(
745x5
x2 x3

)2
+157.5×106

85x3
7

− 1 ≤ 0; G7 = x2x3
40 − 1 ≤ 0; G8 = 5x2

x1
− 1 ≤ 0; G9 = x1

12x2
− 1 ≤ 0; G10 = 1.5x6+1.9

x4
− 1 ≤ 0;

G11 = 1.1x7+1.9
x5

− 1 ≤ 0;
2.6 ≤ x1 ≤ 3.6; 0.7 ≤ x2 ≤ 0.8; 17 ≤ x3 ≤ 28; 7.3 ≤ x4; x5 ≤ 8.3; 2.9 ≤ x6 ≤ 3.9; 5 ≤ x7 ≤ 5.5
The mathematical equations of three-bar truss design problem
Min f (A1, A2) = l ×

(
2
√

2x1 + x2

)
G1 =

√
2x1+x2√

2x1
2+2x1x2

P− σ ≤ 0; G2 = x2√
2x1

2+2x1x2
P− σ ≤ 0; G3 = 1√

2x2+x1
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cm2 ; σ = 2kN
cm2

0 ≤ x1, x2 ≤ 1
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