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Abstract: In this work, we find analytical solutions to the Chavy-Waddy–Kolokolnikov equation, a
continuum approximation for modeling aggregate formation in bacteria moving toward the light, also
known as phototaxis. We used three methods to obtain the solutions, the generalized Kudryashov
method, the e−R(ξ)-expansion, and exponential function methods, all of them being very efficient for
finding traveling wave-like solutions. Findings can be classified into the case where the nonlinear
term can be considered a small perturbation of the linear case and the regime of instability and pattern
formation. Standing waves and traveling fronts were also found among the physically interesting
cases, in addition to recovering stationary spike-like solutions.
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1. Introduction

Bacteria have evolved various mechanisms to adapt and survive in their environments,
such as migrating towards regions with higher nutrient concentrations or better living
conditions. Chemotaxis is a common adaptation where bacteria sense and respond to
chemical gradients, moving towards a region with a higher concentration of a particular
substance. Another adaptation is phototaxis, which involves the movement of photosyn-
thetic, motile organisms towards light. Both chemotaxis and phototaxis play important
roles in evolutionary and ecological processes. Chemotaxis has been extensively studied in
biology and mathematics, with the Keller–Segel equation being one of the earliest and most
well-known models [1]. This equation consists of a reaction–diffusion–advection-like equa-
tion for bacterial density containing a function for chemotactic sensitivity, another function
for the production and death of individuals, and a cross-diffusion term that couples with
the concentration of the chemical signal that has its kinetics [2]. On the other hand, from a
biological perspective, it has been verified that for the successful realization of phototaxia,
the presence of both photoreceptors and pili is crucial, as they play a key role in facilitating
its progression [3], which proved to be fundamental in agent model simulations [4]. From
mathematical modeling, there is a series of papers, where D. Levy et al. [5–10] proposed
some models to describe how phototaxis bacteria behave based on some basic features
extracted from observations and experiments. The tools range from stochastic equations,
particle models, kinetic models, to master equations in terms of probabilities and partial
differential equations (PDEs). Group dynamics is a crucial feature in this system and was
encoded through an internal degree of freedom called excitation [6,9]. Some models show
additional internal variables involved with excitation, such as rotation; it was found that the
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sensitivity to perform phototaxis decreases if there is no rotation of the colony [11]. Among
Levy’s papers, there are two relevant PDE models, the first being a reaction–diffusion
equation system for bacterial concentration, excitation, and substrate memory derived
as a continuous limit of a stochastic model [5,6]. This resembles the chemotactic model,
which has also been adapted to analyze phototaxis [12,13]. The second model involves
local interactions by means of a proposed system of master equations for the probability
of finding bacteria in a particular state. Such a system includes reaction–diffusion, persis-
tence, and sticking terms [9,10]. From the latter, Chavy-Waddy and Kolokolnikov (CWK)
proposed a simplified system of equations for the probability that the bacteria move and
obtained a fourth-order nonlinear partial differential equation, only depending on one
parameter that combines the probabilities of moving to either side, staying, or changing
direction according to the sensing distance [14]. The resulting model is of swarming type
for bacterial aggregation, like the Cahn–Hillard equation [15]. The stationary solution
coincides with a state of particle aggregation, for which Taranets and Chugunova [16]
studied the rate of convergence and the existence of non-negative solutions. Recently, the
physical characteristics of the bacteria, such as their shape and the way the flaps work, are
also being explored for increasingly accurate models of phototaxis [17]. The CWK equation
includes a reverse diffusion term, a fourth-order term related to a long-range effect term,
and a nonlinear term with a unique parameter that considers the aggregate extent and
whose value determines the instability region for structure formation.

In this paper, we solve the CWK equation for propagating non-deformable pulses,
employing three generalizations of Kudryashov’s method. The Kudryashov method is
highly efficient for finding exact solutions to nonlinear differential equations. It has a wide
range of applications, from physics, engineering, mathematics, and biology. Particularly
in biology, it was used to delve into nonlinear phenomena, such as the study of HIV-1
infection [18], population dynamics [19], etc. These methods are suitable for describing
soliton-like traveling wave solutions that have a clear biophysical interpretation in the
present model.

The article’s structure is the following. We present the CWK phototaxis model that will
be solved in Section 2. Section 3 provides an overview of the methods employed, including
the solutions found in each case and some graphical representations of important cases.
In Section 4, we highlight the importance of our solutions and discuss the overall results.
We also present five appendices with the largest expressions and additional results. Our
findings provide a collection of exact solutions for studying phototaxis from the reduced
CWK one-dimensional model.

2. Mathematical 1D Model of Aggregation in Bacterial Colonies

As mentioned previously, Chavy-Waddy and Kolokolnikov proposed in [14] a non-
linear parabolic fourth-order partial differential equation for modeling the movement of
phototaxic bacterial aggregates using the random models proposed by Levy et al. The
CWK formula is as follows:

ut = −uxx − uxxxx + α
(uxuxx

u

)
x
. (1)

The first two right-hand terms are similar to reverse diffusion and a long-range
term. Reverse diffusion occurs when transport is towards zones where the concentration
gradient is high, opposite to what happens in diffusion. This is the case, for instance, in
the Cahn–Hilliard equation for the phase separation process [15,20]. The fourth-order term
is sometimes associated with long-range terms where the influence of distant neighbors
on the concentration at a given point is considered [21,22]. Both terms balance each other;
while the inverse diffusion destabilizes the system, the fourth-order term stabilizes the
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higher Fourier modes. The third term is the one containing the nonlinearity and the only
parameter of the model, α, which controls the size of the aggregate and is given by

α =
c(2d + 1)(d + 1)2(

c[1 + d(d2 + 2d + 3)]− 2a
) , (2)

where the constants are given in terms of the simplified Levy’s master equation [9]. a is the
jump rate at which the bacterium moves, preserving its orientation, c is the rate at which it
moves after switching to a new orientation, and d is the bacterium’s sensing radius. The
model given by Equation (1) is similar to the swarming models of biological aggregation
based on attraction–repulsion forces [23,24]. However, it is a way simpler since it only
involves a single equation with stationary finger-like solutions, as found in the experiments.
The stationary finger-like solution found in [14] is as follows:

u(x, t) = A
[
sech

(√α− 1
2

x
)] 2

α−1
, (3)

where A is a real normalization constant, and only depends on the value of α. We note that
α = 1 is a particular value; indeed, in [14], it is shown that α > 1 is necessary to obtain
the steady state since it is obtained in the unstable regime when c > 2a/d, where patterns
can occur; see Appendix A. Some extreme cases satisfy this condition when the motion
rate after changing orientation becomes very large c→ ∞. If the bacterium stops without
changing orientation a = 0, one obtains α ≥ [(1 + d)2(1 + 2d)]/[1 + d(3 + 2d + d2)]. From
this, three cases follow depending on the value of the sensitivity distance. If d = 1, then
α ≥ 12/7; if d → ∞, then α ≥ 2; if d = 0, then α ≥ 1. In all these cases, the unstable
threshold is fulfilled in general when α > 1.

The simplest case is when α = 0, where Equation (1) reduces to ut = −uxx − uxxxx,
which only has a contribution to the flux due to inverse diffusion and long-range terms.
It is a linear equation that conventional methods can solve; nonetheless, the methods
used in this paper also give additional solutions, so we will present them for the sake
of completeness. Appendix B presents the solutions of the case α = 0 by the method of
separation of variables and comparison with some of the solutions obtained here. The
nonlinear equation is not straightforward to solve by the usual methods, so for non-zero
α cases, solutions are obtained by the methods explored herein and include two regimes,
0 < α < 1 and α > 1, being the most relevant cases.

Finding the stationary solution of Equation (1) is accomplished in [14] by reducing
the order of the equation and then studying the orbits of the system, which involves the
following transformation u(x, t) = ev(x,t), and Equation (1) becomes

vt = −v2
x − vxx − vxxxx + (4α− 6)v2

xvxx + (α− 4)vxvxxx + (α− 3)v2
xx + (α− 1)v4

x. (4)

In this equation, there seem to be four particular values of α. However, when changing
to z = vx, the corresponding equation has only two characteristic values for α = 1, 3.
Indeed, for α = 3, the equation for z can be easily integrated, as found in [16], where
they also analyze the stability of some stationary state families of the CWK equation.
Moreover, time-dependent solutions were presented, giving their convergence rate to the
stationary case.

In the next section, we will present some stationary and time-dependent solution
families, each obtained with the so-called Kudryashov method. Since Equation (1) is of the
parabolic type, and it is well known that parabolic equations admit traveling wave-like
solutions as in [25,26], we expect that the CWK equation also admits soliton-like solutions
suitable to be found with the Kudryashov method. To do so, we use Equation (4) and make
the following variable change ξ = x− ωt, under the assumption of traveling-wave-like
solutions, resulting in the following:

ωvξ − v2
ξ − vξξ − vξξξξ + (4α− 6)v2

ξ vξξ + (α− 4)vξvξξξ + (α− 3)v2
ξξ + (α− 1)v4

ξ = 0, (5)
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where ω is the constant wave velocity. Lastly, we substitute φ(ξ) = vξ to obtain a simplified
version of Equation (5):

ωφ− φ2 − φξ − φξξξ + (4α− 6)φ2φξ + (α− 4)φφξξ + (α− 3)(φξ)
2 + (α− 1)φ4 = 0. (6)

We will present in the next section the methods used to solve Equation (6), and hence
Equation (1), and the collection of families that each technique will produce.

3. Methods and Solutions

In this section, we will describe briefly each of the proposed methods, their application,
and the families of solutions obtained by means of them.

3.1. Brief Description of the Generalized Kudryashov Method

The purpose of this section is to present the algorithm of the generalized Kudryashov
method for finding exact solutions of nonlinear evolution equations, such as Equation (6),
consisting of the following steps:

Step 1: We assume the exact solutions to Equation (6) can be formulated as follows:

φ(ξ) =
∑N

i=0 aiQi(ξ)

∑M
j=0 biQj(ξ)

, (7)

where ai and bj are arbitrary constants with aN 6= 0, bM 6= 0, and the function
Q(ξ) satisfies the next differential equation [27]:

Qξ = Q2 −Q. (8)

The relation between integers N and M can be established by considering the
homogeneous balance between the higher-order derivatives and the nonlinear
factors in Equation (6). In our case, N = 2 and M = 1.

Step 2: Next we substitute both φ, given in Equation (7), and its derivatives φξ , φξξ , . . . , in
Equation (6) to obtain the polynomial equation:

P(Q(ξ)) = 0. (9)

Step 3: We select all the terms having the same algebraic power in Q from the polynomial
Equation (9), setting them equal to zero, and obtain a system of algebraic equations
with the following set of unknowns, {a0, a1, a2, b0, b1, ω} depending on the value
of α. We use algebraic manipulation software such as Mathematica to solve
the system with the model constraints, considering that a2 6= 0 and b1 6= 0 are
also required.

Step 4: Using the previous results and considering Equation (7) together with Equation (8),
we obtain the possible exact solutions of Equation (6) and consequently those of
Equation (1).
Due to the fact that the generalized Kudryashov method is defined by the rational
form of finite series given by Equation (7), it provides a greater number of exact
and more general solutions in an identical manner as the classical Kudryashov
method, which is a significant advantage [28].

Solutions Obtained by the Generalized Kudryashov Technique

The system of nonlinear algebraic equations resulting from this method is shown in
Appendix C in Equation (A27). Next, we present the solutions obtained for different values
of the parameters. The first set of solutions is for α = 0.
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Solution 1. If α = 0, we have a0 = a0, a1 = −a2 − b0, a2 = a2, b0 = a0, b1 = −a2, and ω = 2,
from which we obtain the solution

u1(x, t) = cosh(2t− x)− sinh(2t− x) + 1. (10)

Solution 2. If α = 0, we have a0 = 0, a1 = −b0, a2 = a2, b0 = b0, b1 = −a2, and ω = −2,
from which we obtain the solution

u2(x, t) = − sinh(2t + x) + cosh(2t + x) + 1. (11)

Solution 3. If α = 0, we have a0 = 0, a1 = 0, a2 = 2b0, b0 = b0, b1 = −a2, and ω = −10,
from which we obtain the solution

u3(x, t) = − sinh(20t + 2x) + cosh(20t + 2x)− 1. (12)

Solution 4. If α = 0, we have a0 = 2b0, a1 = −4b0, a2 = 2b0, b0 = b0, b1 = −a2, and ω = 10,
from which we obtain the solution

u4(x, t) = sinh(20t− 2x)− cosh(20t− 2x) + 1. (13)

In all cases, non-stationary waves propagating in different directions were obtained.
To illustrate, let us consider Solution 4. In Figure 1, we show the plot of traveling wave
solution u4(x, t).

Figure 1. Solution 4 for α = 1. Although no aggregate is produced, the wavefront propagates to the
right with velocity ω = 10.

Next we present the solutions for α 6= 0.

Solution 5. If α = 1, we have a0 = b0(a1b1−a2b0)

b2
1

, a1 = a1, a2 = a2, b0 = b0, b1 = b1, and

ω = 0, from which we obtain the solution

u5(x) = cosh
(

1
4

x(β + x)
)
− sinh

(
1
4

x(β + x)
)

, β =
4a2b0 − 4b1(2a2 + a1)

b2
1

. (14)

Solution 6. If α > 1, we have a0 = 1
4 (−2a1 − a2), a1 = a1, a2 = a2, b0 = −a1 − 1

2 a2,
b1 = −a2, and ω = 0, from which we obtain the solutions

u6(x) = C cosh(γx), C 6= 0 and γ = ± 1√
α− 1

. (15)
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Solution 7. If α > 1, we have a0 = 1
2 a2, a1 = −a2, a2 = a2, b0 = −a1 − 1

2 a2, b1 = −a2, and
ω = 0, from which we obtain the solutions

u7(x) = C sinh(γx), C 6= 0 and γ = ± 1√
α− 1

. (16)

Solution 8. If α > 1, we have a0 = 1
4 (−2a1 − a2), a1 = a1, a2 = a2, b0 = 1

4 (α− 1)(2a1 + a2),
b1 = 1

2 (α− 1)a2, and ω = 0, from which we obtain the solutions

u8(x) = Csechm(γx), C 6= 0, m =
2

α− 1
and γ =

√
α− 1
2

. (17)

Here only stationary solutions with ω = 0 were obtained, recovering especially the
finger-like distribution from [14] in Solution 8. Figure 2 shows that the bell-shaped curve’s
distribution becomes progressively wider as the value of alpha increases. This suggests
that the bacteria exhibit a preference for being farther away. In other words, as alpha
increases, the bacteria tend to distribute themselves over a larger area, indicating a lower
degree of clustering.

α = 1.1

α = 3.1

α = 6.1

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

x

u
8
(x
)

Figure 2. Solution 8 reproduces the stationary finger-like distribution obtained in [14]. Values of
α = 1.1, 3.1, 6.1 are presented. As α grows, the distribution becomes increasingly wider.

Earlier, we mentioned that when α = 3, Equation (4) for vx can be directly integrated.
For this special case, the following solutions were found.

Solution 9. If α = 3, we have a0 = a2
12−6

√
3
, a1 = − 1

3 (
√

3 + 3)a2, a2 = a2, b0 = −a1 − 1
2 a2,

b1 = −a2, and ω = 1
3
√

3
, from which we obtain the solution

u9(x, t) = −
e

x√
3
− t

9

(
e

t
3
√

3 + ex
)

(
2
√

3− 3
)

e
t

3
√

3 +
(

2
√

3 + 3
)

ex
(18)

Solution 10. If α = 3, we have a0 = a2
6(
√

3+2)
, a1 = 1

3 (
√

3− 3)a2, a2 = a2, b0 = −a1 − 1
2 a2,

b1 = −a2, β ∈ R, h = ±1, and ω = − 1
3
√

3
, from which we obtain the solution
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u10(x, t) = β

[
sinh

(
t

3
√

3
+ hx

)
+ cosh

(
t

3
√

3
+ hx

)
+ 1
][√

3 sinh
(

t
3
√

3
+ hx

)
+
√

3 cosh
(

t
3
√

3
+ hx

)
+ 7
√

3 + 12
] 1

2
√

3
− 1

2
[(

2
√

3 + 3
)(

sinh
(

t
3
√

3
+ hx

)
(19)

+ cosh
(

t
3
√

3
+ hx

))
+ 26
√

3 + 45
]− 1

2−
1

2
√

3
[

cosh
(

t
9
+

hx√
3

)
− sinh

(
t
9
+

hx√
3

)]
Solution 11. If α = 3, we have a0 = ± 1

6 (
√

3 ± 2)a2, a1 = ∓ 1
3 (
√

3 ± 3)a2, a2 = a2,
b0 = 1

4 (α− 1)(2a1 + a2), b1 = 1
2 (α− 1)a2, and ω = ∓ 1

3
√

3
, from which we obtain the solution

u11∓(x, t) = ∓
(

3 tanh
(

1
18

(√
3t± 9x

))
+ 2
√

3
)

e∓
x√
3
− t

9 . (20)

The above solutions exhibit similar behaviors at different scales. Although they have
exponential growth, near zero, there is a small propagating pulse. To illustrate this, we
consider the solution u11−(x, t). In Figure 3, we present the graph of the traveling pulse of
Solution 11; notice how it moves to the right.

Figure 3. Solution 11 where a small pulse propagates to the right with velocity ω = 1
3
√

3
.

Since the method allows specific solutions for particular values of the parameters, here
we present the stationary solution for α = 5, being a particular case for α > 1.

Solution 12. If α = 5, we have a0 = 1
2 a2, a1 = −a2, a2 = a2, b0 = 1

4 (α − 1)(2a1 + a2),
b1 = 1

2 (α− 1)a2, and ω = 0, from which we obtain the solution

u12(x) =
sinh

( x
2
)
+ cosh

( x
2
)√

−2 sinh2(x)− 2 sinh(x) cosh(x)
. (21)

3.2. Brief Description of the e−R(ξ)-Expansion Method

Among the methods for finding analytical solutions to nonlinear equations is the
so-called e−R(ξ)-expansion, which has been used to find solitary wave-like solutions in
some fluid problems [29,30].



Mathematics 2023, 11, 2352 8 of 24

Step 1: The e−R(ξ)-expansion method assumes that the solution of Equation (6) is ex-
pressed as

φ(ξ) =
N

∑
i=0

ai(e−R(ξ))i (22)

where ai is an arbitrary constant with aN 6= 0, and the function R satisfies the
following differential equation [31]:

Rξ = λ + µeR(ξ) + e−R(ξ). (23)

Consequently, the function R can be given by

R(ξ) =



ln

(
−
√

λ2−4µ tanh
(

1
2 (ξ+A)

√
λ2−4µ

)
2µ − λ

2µ

)
if λ2 − 4µ > 0, µ 6= 0

ln

(
−
√

λ2−4µ coth
(

1
2 (ξ+A)

√
λ2−4µ

)
2µ − λ

2µ

)
if λ2 − 4µ > 0, µ 6= 0

ln

(√
4µ−λ2 tan

(
1
2 (ξ+A)

√
4µ−λ2

)
2µ − λ

2µ

)
if λ2 − 4µ < 0, µ 6= 0

ln

(√
4µ−λ2 cot

(
1
2 (ξ+A)

√
4µ−λ2

)
2µ − λ

2µ

)
if λ2 − 4µ < 0, µ 6= 0

− ln
(

λ
eλ(ξ+A)−1

)
if µ = 0, λ > 0

ln
(
− 2(λ(ξ+A)+2)

λ2(ξ+A)

)
if λ 6= 0, λ2 − 4µ = 0

ln(ξ + A) if µ = 0, λ = 0.

(24)

As previously said, to compute the positive integer N, consider the homoge-
neous balance between the higher-order derivatives and the nonlinear parts in
Equation (6). In this case, N = 1.

Step 2: In this method we consider φ given in Equation (22) and the necessary derivatives
φξ , φξξ , . . . , then we substitute them into Equation (6) to obtain the following
polynomial equation:

P
(

e−R(ξ)
)
= 0. (25)

Step 3: We select from the polynomial Equation (25) all terms having the same algebraic
power of e−R(ξ), set them equal to zero, and obtain a system of algebraic equa-
tions with the set of unknowns {a0, a1, ω} depending on α. In the same way as
the previous method, we use Mathematica to solve the system with its natural
constraints, assuming a1 6= 0.

Step 4: With the results obtained in the previous step and taking Equation (22) along with
Equation (23), we obtain the possible exact solutions of Equation (6), and hence
those of Equation (1).

Solutions Found by the e−R(ξ)-Expansion Method

The resulting nonlinear algebraic system of equations resulting from this method is
presented in Equation (A28) of Appendix D; here we present the solutions obtained by this
method. First for the case α = 0:

Solution 13. If α = 0, we have a0 = 0, a1 = 1, λ > 0, µ = 0, and ω = −λ3 − λ, from which
we obtain the solution

u13(x, t) = e−λ((λ3+λ)t+x) − eAλ, A ∈ R. (26)
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Solution 14. If α = 0, we have a0 > 0, a1 = 1, λ = a0, µ = a0(λ− a0), and ω = 6a0λ2 −
12a2

0λ + 8a3
0 + 2a0 − λ3 − λ, from which we obtain the solution

u14(x, t) = − sinh
(

a0(x + A)− a2
0t(a2

0 + 1)
)
− cosh

(
a0(x + A)− a2

0t(a2
0 + 1)

)
+ 1, A ∈ R. (27)

The first two solutions are similar to u4(x, t), with wavefronts propagating to one side.
Figure 4 shows, with fixed values of the parameters, a constant unit density over time.

Figure 4. Solution 14 for A = 1 and a0 = 1. Propagating wave front behavior is observed.

Solution 15. If α = 0, we have a0 = a0, a1 = 2, λ = a0, µ = 1
4
(
a2

0 + 1
)
, and ω = 0, from which

we obtain the solution

u15(x) =
(

sin
(

x + A
2

)
− a0 cos

(
x + A

2

))2
, A ∈ R. (28)

The solution u15(x) is an oscillatory function; evidently, the constants A and a0 are
the phase and amplitude of a standing wave. Notably, this solution arises only from the
reverse diffusion and the fourth-order term. Thus, although each maximum represents the
bacterial concentration, this distribution is preserved from the beginning of the process.

This method made it possible to find two stationary solutions for α < 1. While this
clearly does not correspond to the region of instability, and therefore we cannot expect the
formation of aggregates, we can think of α as a perturbation parameter in an intermediate
region between reverse diffusion alone and pattern formation.

Solution 16. If α = 1− 2
a1

, we have a0 = a0, a1 > 0, λ = 2a0
a1

, µ =
2a2

0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u16(x) =

(
√

2 sin
(

x + A√
2a1

)
− 2a0

√
1
a1

cos
(

x + A√
2a1

))a1

, A ∈ R. (29)

Particularly, it makes sense for a1 ≥ 2, which implies α < 1.
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Solution 17. If α = 1
3 , we have a0 = a0, a1 = 3, λ = 2a0

3 , µ = 1
18
(
2a2

0 + 3
)
, and ω = 0, from

which we obtain the solution

u17(x) =
(√

6 sin
(

x + A√
6

)
− 2a0 cos

(
x + A√

6

))3
, A ∈ R. (30)

Interestingly, the solutions in this regime are also oscillatory, with Solution 16 having
the same structure as u17 for even values of a1. However, for odd a1, negative values occur,
and the parity of a1 must be considered to interpret u16 as a distribution.

Figure 5 illustrates the solution with different values of a1, which represents stationary
distributions of bacteria aggregates. As the value of a1 increases, the number of bacterial
aggregates decreases while the amplitude of each curve increases. This leads to a higher
density of bacteria within each curve.

a1 = 2

a1 = 4

a1 = 6

0 5 10 15 20 25 30

0

20

40

60

80

100

x

u
1
6
(x
)

Figure 5. Solution 16 for fixed A = 0, a0 = 2, and a1 = 2, 4, 6, where increasing the value of a1

increases the amplitude of each curve.

Finally, in the region of structure formation, when α > 1, we obtain five stationary
solutions, which also depend on method parameters.

Solution 18. If α > 1, we have a0 = a0, a1 = − 2
α−1 ,λ = 2a0

a1
, µ =

2a2
0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u18(x) =

[
e−
√

α−1 − e
√

α−1
√

α− 1
+ a0 e−

1
2
√

α−1(A+x)
(

1 + e
√

α−1(A+x)
)]− 2

α−1

, A ∈ R. (31)

Solution 19. If α > 1, we have a0 = a0, a1 = 1, λ = 2a0, µ = a2
0−

1
1−α , and ω = 0, from which

we obtain the solution

u19(x) =
1√

α− 1
sinh

( x + A√
α− 1

)
∓ a0 cosh

( x + A√
α− 1

)
, A ∈ R. (32)

Solution 20. If α = 1 + 1
a2

0
> 1, we have a0 > 0, a1 = 1, λ = 2a0, µ = a2

0 −
1

1−α , and ω = 0,

from which we obtain the solution

u20(x) = e−a0x
(

1− e2a0(A+x)
)

, A ∈ R. (33)
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Solution 21. If α = 1− 2
a1

, we have a0 < 0, a1 = −2a2
0, λ = 2a0

a1
, µ =

2a2
0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u21(x) = e−a0x(1− e−
x+A

a0
)2a0 , A ∈ R. (34)

Note that given the restriction for a1, α = 1 + 1
a2

1
> 1.

Solution 22. If α = 1− 2
a1

, we have a0 = a0, a1 < 0, λ = 2a0
a1

, µ =
2a2

0+a1
2a2

1
, and ω = 0, from

which we obtain the solution

u22(x) =

(√
− 2

a1
a1 cosh

(
x + A√
−2a1

)
+ 2a0 sinh

(
x + A√
−2a1

))a1

, A ∈ R. (35)

Note that α > 1, given that a1 < 0.

Some of the solutions are exponential, but there are also spike solutions, as in Solution 18.
Figure 6 illustrates, for α = 5, that the distribution of the bacterial population takes a

bell-shaped curve in the steady state. In this scenario, the bacteria form an aggregate, and
the density of the aggregate is determined by the value of a0. When this value increases,
the distance required for the bacteria to join and form an aggregate also increases. As a
result, the bacteria are farther apart from each other, leading to a lower overall density
of aggregates.

a0 = 1.85

a0 = 2.3

a0 = 4.0

-6 -4 -2 0 2 4 6
0

1

2

3

4

x

u
18
(x
)

Figure 6. Solution 18 for fixed A = 0 and α = 5. We show tree cases for a0 = 1.85, 2.3, 4, as a0

increases the amplitude of the spike decreases.

3.3. Brief Description of the Modified Exponential Function Method

The Exp-method was introduced to find solitary, compact, and periodic solutions of
nonlinear wave-like equations [32]. It has been applied, for instance, to obtain soliton-type
solutions for the Allen–Cahn equation, a reaction–diffusion equation describing phase
separation in multi-alloy systems, and plasma dynamics [33]. The algorithm of the method
is given below.

Step 1: We assume the exact solutions to Equation (6) can also be formulated as follows:

φ(ξ) =
∑N

i=0 ai(e−Q(ξ))i

∑M
j=0 bi(e−Q(ξ))j

, (36)
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where the ai and bj are arbitrary constants with aN 6= 0, bM 6= 0, and the function Q
satisfies the differential equation [32,33]:

Qξ = λ + µeQ(ξ) + e−Q(ξ). (37)

Consequently, the function Q satisfies the same differential equation given in Equation (24).
The integers N and M that appear in this method can be determined in the same way as
before by considering the homogeneous balance between the higher-order derivatives and
the nonlinear factors in Equation (6). In this case, N = 2 and M = 1.
The second, third, and fourth steps of the current procedure are identical to those outlined
in Section 3.2.

Solutions Found by the Modified Exponential Function Method

The nonlinear algebraic system of equations necessary to obtain solutions according
to the exponential function method can be seen in Equation (A29) of Appendix E. Next we
show the solutions we obtain by this method. For α = 0, we find three stationary and three
traveling solutions below.

Solution 23. If α = 0, a0 = 0, a1 = a1, a2 = 2b1, b0 = 0, b1 6= 0, λ = a1
b1

, µ =
a2

1+b2
1

4b2
1

and

ω = 0, from which we obtain the solution

u23(x) =
(

a1 cos
(

x + A
2

)
− b1 sin

(
x + A

2

))2
, A ∈ R. (38)

Solution 24. If α = 0, a0 6= 0, a1 = 0, a2 = − a0
µ , b0 = 0, b1 = − a0

µ , λ = ∓
√

4µ− 1, µ 6= 0
and ω = 0, from which we obtain the solution

u24(x) =
1
2

(√
4µ− 1 cos(x + A)± sin(x + A) +

√
4µ− 1

)
, A ∈ R. (39)

Solution 25. If α = 0, a0 6= 0, a1 = 0, a2 = − a0
µ , b0 = 0, b1 = − a0

µ , λ =
√

4µ− 1, µ 6= 0 and
ω = 0, from which we obtain the solution

u25(x) =
1
2

(√
4µ− 1 cos(x + A)− sin(x + A) +

√
4µ− 1

)
, A ∈ R. (40)

Solution 26. If α = 0, a0 = 0, a1 = a1, a2 = b1, b0 = a1, b1 6= 0, λ 6= 0, µ = 0 and
ω = −λ3 − λ, from which we obtain the solution

u26(x, t) = sinh(Aλ) + cosh(Aλ) + sinh
(

λ4t + λ2t + λx
)
− cosh

(
λ4t + λ2t + λx

)
, A ∈ R. (41)

Solution 27. If α = 0, a0 = 0, a1 = 0, a2 = b1, b0 = b1λ
2 , b1 6= 0, λ 6= 0, µ = 0 and

ω = −2
(
4λ3 + λ

)
, from which we obtain the solution

u27(x, t) = sinh(2Aλ) + cosh(2Aλ) + sinh
(

16λ4t + 4λ2t + 2λx
)
− cosh

(
16λ4t + 4λ2t + 2λx

)
, A ∈ R. (42)

Solution 28. If α = 0, a0 = 0, a1 6= 0, a2 = b1, b0 = 0, b1 6= 0, λ = a1
b1

, µ = 0 and

ω =
a1(a2

1+b2
1)

b3
1

, from which we obtain the solution

u28(x, t) = sinh
(
−λA + λ2(λ2 + 1)t− λx

)
− cosh

(
−λA + λ2(λ2 + 1)t− λx

)
+ 1, A ∈ R. (43)

In this case, we have three standing wave-like solutions and three traveling wavefront-like solutions,
close to those obtained with previous methods. Additionally, these solutions also depend on the
parameters of the method.
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Seven stationary solutions were found for the pre-pattern formation region, α < 1, all
oscillatory functions, which are presented next.

Solution 29. If α < 1, a0 = − b1
8 , a1 = 0, a2 = b1, b0 = 0, b1 6= 0, λ = 0, µ = 1

8 and ω = 0,
from which we obtain the solution

u29(x) = C sin
(

x + B√
1− α

)
, C 6= 0, B ∈ R. (44)

Solution 30. If α < 1, a0 = 0, a1 = a1, a2 = b1, b0 = 0, b1 6= 0, λ = 2a1
b1

, µ =
αa2

1−a2
1−b2

1
(α−1)b2

1
and

ω = 0, from which we obtain the solution

u30(x) = a1 cos

(√
1

1− α
(x + A)

)
−
√

1
1− α

b1 sin

(√
1

1− α
(x + A)

)
, A ∈ R. (45)

Solution 31. If α < 1, a0 = 0, a1 = a1, a2 = − 2b1
α−1 , b0 = 0, b1 6= 0,

λ = a1−αa1
b1

, µ = − (α−1)(−αa2
1+a2

1+b2
1)

4b2
1

and ω = 0, from which we obtain the solution

u31(x) =
(
−(1− α)a1 cos

(
1
2

√
1− α(A + x)

)
+ b1
√

1− α sin
(

1
2

√
1− α(A + x)

))
2

1−α , A ∈ R. (46)

Solution 32. If α < 1, a0 6= 0, a1 = 0, a2 = − a0
µ , b0 = 0, b1 = − a0

µ , λ = 0, µ = − 1
4(α−1) and

ω = 0, from which we obtain the solution

u32(x) =
1
2

sin

(√
1

1− α
(x + A)

)
, A ∈ R. (47)

Solution 33. If α = 1
3 , a0 = 0, a1 = a1, a2 = 3b1, b0 = 0, b1 6= 0, λ = 2a1

3b1
, µ =

2a2
1+3b2

1
18b2

1
and

ω = 0, from which we obtain the solution

u33(x) =
(

2a1 cos
(

x + A√
6

)
−
√

6b1 sin
(

x + A√
6

))3
, A ∈ R. (48)

Solution 34. If α = 1
2 , a0 6= 0, a1 = 0, a2 = − 3a0

µ , b0 = 0, b1 = − a0
µ , λ = 0, µ = 1

8 and ω = 0,
from which we obtain the solution

u34(x) = sin3
(

x + A
2
√

2

)
cos
(

x + A
2
√

2

)
, A ∈ R. (49)

Solution 35. If α = 1
2 , a0 6= 0, a1 = 0, a2 = − a0

3µ , b0 = 0, b1 = − a0
3µ , λ = 0, µ = 1

8 and ω = 0,
from which we obtain the solution

u35(x) =
1
8

(
sin
(√

2(A + x)
)
+ 2 sin

(
x + A√

2

))
, A ∈ R. (50)

Three of the five solutions in the instability region are time-independent, and two are
time-dependent. With these solutions, one of the difficulties is that they involve increas-
ingly more parameters external to the model.
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Solution 36. If α > 1, a0 = 0, a1 = − b1√
α−1

, a2 = − 2b1
α−1 , b0 = 0, b1 6= 0, λ =

√
α− 1, µ = 0

and ω = 0, from which we obtain the solution

u36(x) = e
x√
α−1
(

1− e
√

α−1(A+x)
) 2

1−α , A ∈ R. (51)

Solution 37. If α =
a2

1+b2
1

a2
1

, a0 = 0, a1 6= 0, a2 = b1, b0 = 0, b1 6= 0, λ = 2a1
b1

, µ = 0 and ω = 0,

from which we obtain the solution

u37(x) = e−
λx
2

(
1− eλ(x+A)

)
, A ∈ R. (52)

Solution 38. If α =
a2

1+b2
1

a2
1

, a0 = 0, a1 6= 0, a2 = 2b1
1−α , b0 = 0, b1 6= 0, λ = a1−αa1

b1
,

µ = − (α−1)(−αa2
1+a2

1+b2
1)

4b2
1

and ω = 0, from which we obtain the solution

u38(x) =
e

a1
b1

x

(
1− e

a1
b1
(x+A)

) 2a2
1

b2
1

, A ∈ R. (53)

Solution 39. If α = 3, we have a0 = b1
6 , a1 = ∓ b1√

6
, a2 = b1, b0 = 0, b1 6= 0, λ = ∓

√
2
3 ,

µ = 1
6 , and ω = ± 1

3

√
2b1
3 , from which we obtain the solution

u39(x, t) =
3e±(

A√
6
− t

9+
x√
6
)
(

3
√

6A∓ 2t + 3
√

6x∓ 18
)

9A∓
√

6t + 9x
, A ∈ R. (54)

Solution 40. If α 6= 1, a0 = a0, a1 6= 0, b0 = 0, b1 = 0, a2 = b2, λ = a1
α−1 , µ = (α−1)

2 and
ω = a3

0(α− 1) + a0, from which we obtain the solution

u40(x, t) = Ae
(

a0x+a2
0t(a2

0(α−1)−1)
)

, A ∈ R. (55)

These solutions are combinations of exponentials; however, for several parameter
values, no spike or wavelet patterns occur, and as a result, these combinations cannot be
considered as a distribution.

4. Summary and Conclusions

In this work, we find several families of analytical solutions to the CWK equation for
different values of the parameters, not only in the instability region. For this purpose, we
use the generalized Kudryashov method, the e−R(ξ)-expansion, and exponential function
methods, which allows us to find exact solutions of nonlinear differential equations, includ-
ing those with variable coefficients, non-integer powers, singular perturbation problems,
and non-polynomial nonlinearities. These methods allow us to find analytical solutions
to the CWK equation that have not been previously reported in the literature. Specifically,
when α 6= 0, the nonlinearity in the CWK equation cannot be analyzed with conventional
methods. Our solutions are important because they provide insights into the behavior of
the system and can be used in numerical simulations or experiments. Moreover, they can
be used to develop new mathematical tools and techniques for analyzing and solving other
nonlinear differential equations in fluid mechanics and related fields.

We found twenty-seven analytical solutions in the case α 6= 0 by using the three
methods. In the α < 1 case, the nonlinear term can be considered a perturbation of the linear
behavior where inverse diffusion and fourth-order terms drive the dynamics. Although
structure formation is not expected here, we find several wave-like stationary solutions.
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Thus, this region can be considered a pre-pattern formation region, and the solutions are
budding patterns. The instability region α > 1 is where this model’s aggregate formation
is expected. We first recover the stationary solution found in [14] and a pulse propagating
without deformation by the generalized Kudryashov method. Some similar spike-like
solutions were found by the e−R-expansion method. The exponential function method did
not yield any new physical solutions beyond those obtained by previous methods. This is
not surprising, given that N.A. Kudryashov observed this in [27].

It is worth emphasizing that these methods allow us to obtain a wide range of be-
haviors, some previously obtained and that qualitatively resemble what was seen in the
experiments. Furthermore, reverse diffusion and fourth-order terms still need to be ex-
plored since the traveling solutions were mainly found in this regime. The pattern formation
and pulse motion mechanism could be better understood by studying each case in depth.
On the other hand, the shortcoming of these methods is the large number of free parameters
that appear in the solutions. One only way to fix them is to consider initial and boundary
value problems, making the solutions more realistic and closer to the experimental pho-
totaxis conditions, even in simple models like the one-dimensional CWK equation. We
strongly believe the collection of physically meaningful solutions can guide the study of
bacterial aggregate formation in phototaxis.
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Appendix A. Stability Analysis

In [14], the authors derive Equation (1) from the continuum limit of the system of
differential equations over a lattice formed by n bins, which is given by

dRj

dt
= aRj−1 − (a + c)Rj + cUj−1η+

j−1

dLj

dt
= aLj+1 − (a + c)Lj + cUj+1η−j+1;

(A1)

where

η±j =
∑d

k=1 Uj±k

∑d
k=1(Uj+k + Uj−k)

and Uj = Lj + Rj. (A2)

Here, Rj(t) and Lj(t) represent the density of right- and left-moving bacteria in the bin
j = 1, ..., n at time t; a represents the rate at which the bacterium moves one bin according
to its orientation; and c represents the rate at which the bacterium moves after transitioning
to a new orientation. The parameter d is the sensing radius of the bacterium.

Considering that Uj = Lj + Rj and adding the two equalities of the system (A1),
we obtain

dUj

dt
= a(Rj−1 + Lj+1)− (a + c)Uj + c(Uj−1η+

j−1 + Uj+1η−j+1). (A3)

A closed system can be constructed by defining

Vj = Rj+1 + Lj−1. (A4)
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Observe that immediately from system (A1) and (A2) we have
dRj+1

dt
= aRj − (a + c)Rj+1 + cUjη

+
j

dLj−1

dt
= aLj − (a + c)Lj−1 + cUjη

−
j .

(A5)

Now, adding the two equations in (A5), we obtain

dVj

dt
= (a + c)(Uj −Vj). (A6)

Now, rewriting
Rj−1 + Lj+1 = Uj−1 + Uj+1 −Vj, (A7)

we conclude that the system (A1) is equivalent to
dUj

dt
= a(Uj−1 + Uj+1 −Vj)− (a + c)Uj + c(Uj−1η+

j−1 + Uj+1η−j+1)

dVj

dt
= (a + c)(Uj −Vj).

(A8)

Model (A1) clearly allows for a homogeneous equilibrium Lj = Rj = C for any constant
C. Now, we will analyze the stability of this equilibrium. It is easier and more practical to
conduct the analysis for the system (A8) whose steady state is given by Uj = Vj = V.
Consider the following perturbations:

Uj = V + ξ j(t); Vj = V + ρj(t), j = 1, 2, . . . , n (A9)

where |ξ j|, |ρj| � 1. We now obtain the linearized system from the system (A8):

dξk
dt

= (a + c/2)(ξk−1 + ξ j+1)− aρj − (a + c)ξ j

+
c

2d
(2ξ j + ξ j−1 + ξ j+1 − ξ j+d − ξ j−d − ξ j+d+1 − ξ j−d−1) (A10)

dρj

dt
= (a + c)(ξ j − ρj). (A11)

This (2n)× (2n) linear problem can be divided down into n subproblems of 2× 2. Make
an ansatz

ξ j = ξeλte
2πmji

n ; ρj = ρeλte
2πmji

n , m = 0, 1, . . . , n− 1 (A12)

to obtain

λξ = (2a + c)ξ cos(θ)− aρ− (a + c)ξ

+
c

2d
ξ
(
1 + cos(θ)− cos(dθ)− cos((d + 1)θ)

)
(A13)

λρ = (a + c)(ξ − ρ) (A14)

Here, θ = 2πm
n with m = 0, 1, . . . , n− 1.

There are two eigenvalues for each possible value of m, for a total of 2n eigenvalues.
The quadratic equation

λ2 − (g(θ)− c)λ− (a + c)g(θ) = 0 (A15)
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gives the solution to the 2× 2 eigenvalue Problems (A13) and (A14), where function g is
defined as

g(θ) = (2a + c)
(

cos(θ)− 1
)
+

c
2d
(
1 + cos(θ)− cos(dθ)− cos((d + 1)θ)

)
. (A16)

Note that g(θ)− c ≤ 0 for all θ so that a sufficient and necessary condition for stability is
that g(θ) < 0 for all θ.

Computations reveal that the instability occurs for the first time at θ = 0. Because
g(0) = g′(0) = 0, the value of the threshold can be determined by setting
g′′(0) = dc − 2a = 0. Consequently, we conclude that the critical value of the thresh-
old is c0 = 2a

d . The homogeneous steady state is therefore stable when c < c0 and unstable
when c > c0, i.e., it is unstable if c > 2a

d . The conclusion is obtained by spectral equivalence.

Appendix B. Separation of Variables Method for the Linear Case α = 0

Here, we discuss the case α = 0 occurring when, after changing orientation, the
bacterium stops c = 0, or when the rate of motion without changing orientation is very
large a → ∞, both for all finite d. In this case, Equation (1) reduces to the linear differ-
ential equation ut = −uxx − uxxxx, i.e., only the reverse diffusion and long-range terms.
The aggregate size is controlled by α, so we cannot refer here to finger-like solutions.
This equation can be solved by the well-known method of separation of variables where
u(x, t) = f (x)g(t) leads to the following:

g′

g
= − ( f ′′ + f ′′′′)

f
= γ2, (A17)

where the solutions can be directly obtained by considering the three possible cases for the
separation parameter γ2:

Case A1. γ2 = 0

g′ = 0 and f ′′′′ + f ′′ = 0. (A18)

solving two linear differential equations gives

g(t) = c1 and f (x) = k1 + k2x + k3 cos(x) + k4 sin(x) (A19)

from which we obtain the family of solutions

uA(x, t) = C1 + C2x + C3 cos(x) + C4 sin(x), C1, C2, C3, C4 ∈ R. (A20)

Case A2. γ2 > 0

g′ − γ2g = 0 and f ′′′′ + f ′′ + γ2 f = 0. (A21)

solving two linear differential equations gives

g(t) = c1eγ2t and f (x) = k1e
(
−1−β

2

)
x
+ k2e

(
−1+β

2

)
x
+ k3xe

(
−1−β

2

)
x
+ k4xe

(
−1+β

2

)
x (A22)

from which, considering β =
√

1− 4γ2, we obtain the family of solutions

uB(x, t) = eγ2t
(

C1e
(
−1−β

2

)
x
+ C2e

(
−1+β

2

)
x
+ C3xe

(
−1−β

2

)
x
+ C4xe

(
−1+β

2

)
x
)

, C1, C2, C3, C4 ∈ R. (A23)

Case A3. γ2 < 0

g′ + γ2g = 0 and f ′′′′ + f ′′ − γ2 f = 0. (A24)
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solving two linear differential equations gives

g(t) = c1e−γ2t and f (x) = k1e(
−1−δ

2 )x + k2e(
−1+δ

2 )x + k3xe(
−1−δ

2 )x + k4xe(
−1+δ

2 )x (A25)

from which, considering δ =
√

1 + 4γ2, we obtain the family of solutions

uC(x, t) = e−γ2t
(

C1e(
−1−δ

2 )x + C2e(
−1+δ

2 )x + C3xe(
−1−δ

2 )x + C4xe(
−1+δ

2 )x
)

, C1, C2, C3, C4 ∈ R. (A26)

All five constants in each case can be fixed through the corresponding initial and
boundary conditions. We generally observe that, according to the sign of γ2, we can have
oscillatory solutions or increasing and decreasing exponential solutions. Consider also that
the principle of superposition of solutions is valid for the present linear case. We have
one family of standing wave-like solutions and two families of traveling wavefront-like
solutions, similar to those obtained with the previous methods. Moreover, these solutions
coincide with those obtained with the proposed methods. We show some examples of
this below.

Example A1. If we consider the family of solutions u1:

u1(x, t) = cosh(2t− x)− sinh(2t− x) = e−(2t−x) + 1,

this is derived from the present method using uC and considering C1 = 0, C2 = 1, δ− 1 = 2,
γ2 = 4, C3 = C4 = 0.

Example A2. If we consider the family of solutions u3:

u3(x, t) = cosh(20t + 2x)− sinh(20t + 2x) = e−(2x+20t) − 1,

this is derived from the present method using uC and considering C1 = 0, C2 = 1, δ− 1 = −4,
γ2 = 20, C3 = C4 = 0.

Example A3. If we consider the family of solutions u13:

u13(x) = e−λ
(
(λ3+λ)t+x

)
− eλA,

this is derived from the present method using uC and considering C1 = 1, C2 = 0, δ + 1 = 2λ,
γ2 = λ4 + λ2, C3 = C4 = 0; moreover, eλA is a constant.

Example A4. If we consider the family of solutions u28:

u28(x, t) = sinh
(
− λA + λ2(λ2 + 1)t− λx

)
− cosh

(
− λA + λ2(λ2 + 1)t− λx

)
+ 1,

this is derived from the present method using uC and considering C1 = 0, C2 = −eλA, δ− 1 = 2λ,
γ2 = λ2(λ2 + 1), C3 = C4 = 0.

The other families for α = 0 are obtained similarly and consider the superposition
principle. In the present case of α = 0, aggregate formation is not expected when the
nonlinear term does not appear in the CWK equation. However, among the solutions found
are time-propagating wavefront solutions and some standing wave solutions that could
be interpreted as finger-shaped distributions. Such solutions are interesting but cannot be
considered a final steady state; they must start with that form.

Unfortunately, for α 6= 0, Equation (1) is nonlinear. Note that when the derivative is
expanded, the nonlinearity becomes more involved:

ut = −uxx − uxxxx + α
[uuxuxxx + uu2

xx − u2
xuxx

u2

]
.
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This equation cannot always be solved by the method of separation of variables, nor can all
the families of solutions found in this work be obtained.

Appendix C. Algebraic System for Kudryashov Method

The Kudryashov method algorithm requires solving the following system of equations
for the unknowns {a0, a1, a2, b0, b1, ω}.

Q0 : αa4
0 + a0b3

0ω− a2
0b2

0 − a4
0 = 0,

Q1 : 4αa1a3
0 + 4αa3

0b1 − 4αa1a2
0b0 − αa2

0b0b1 + αa1a0b2
0 + 3a0b2

0b1ω + a1b3
0ω− 6a3

0b1

+ 6a1a2
0b0 + 2a2

0b0b1 − 6a1a0b2
0 − 2a0b2

0b1 + 2a1b3
0 − 4a1a3

0 = 0,

Q2 : 4αa2a3
0 + 6αa2

1a2
0 − 4αa3

0b1 + 2αa2
0b2

1 + 4αa1a2
0b0 − 8αa2a2

0b0 + 8αa1a2
0b1 + 3αa2

0b0b1

− 3αa1a0b2
0 + 4αa2a0b2

0 − 8αa2
1a0b0 − 4αa1a0b0b1 + 2αa2

1b2
0 + 3a0b0b2

1ω

+ a2b3
0ω + 3a1b2

0b1ω + 6a3
0b1 − 8a2

0b2
1 − 6a1a2

0b0 + 12a2a2
0b0 − 12a1a2

0b1

− 12a2
0b0b1 + 12a1a0b2

0 − 18a2a0b2
0 + 2a0b0b2

1 + 12a2
1a0b0 + 8a0b2

0b1 (A27)

+ 10a1a0b0b1 − 8a1b3
0 + 10a2b3

0 − 8a2
1b2

0 − 2a1b2
0b1 − 4a2a3

0 − 6a2
1a2

0 = 0,

Q3 : 4αa0a3
1 + 12αa2

0a2a1 − 4αa3
1b0 − 5αa2

1b2
0 + 8αa0a2

1b0 + 4αa0a2
1b1 − αa2

1b0b1

+ 2αa0a1b2
0 + 9αa2a1b2

0 + αa0a1b2
1 − 24αa0a2a1b0 − 8αa2

0a1b1 + 8αa0a1b0b1

− 10αa0a2b2
0 − 3αa2

0b2
1 + 8αa2

0a2b0 + 4αa2
0a2b1 − 2αa2

0b0b1 − 2αa0a2b0b1

+ 3a1b0b2
1ω + a0b3

1ω + 3a2b2
0b1ω + 6a3

1b0 + 18a2
1b2

0 − 12a0a2
1b0 − 6a0a2

1b1

+ 2a2
1b0b1 + 12a1b3

0 − 8a0a1b2
0 − 34a2a1b2

0 − 6a0a1b2
1 + 2a1b0b2

1 + 36a0a2a1b0

+ 12a2
0a1b1 + 8a1b2

0b1 − 28a0a1b0b1 − 40a2b3
0 − 2a0b3

1 + 40a0a2b2
0 + 10a2

0b2
1 − 8a0b0b2

1

− 12a2
0a2b0 − 12a0b2

0b1 + 10a2b2
0b1 − 6a2

0a2b1 + 8a2
0b0b1 − 4a0a3

1 − 12a2
0a2a1 = 0,

Q4 : αa4
1 + 12αa0a2a2

1 + 6αa2
0a2

2 + 4αa3
1b0 + 3αa2

1b2
0 − 16αa2a2

1b0 − 4αa0a2
1b1

+ αa2
1b0b1 − 21αa2a1b2

0 − αa0a1b2
1 + 24αa0a2a1b0 − 4αa0a1b0b1 − 18a2a1b0b1

− 4a2
1b0b1 + 4αa2a1b0b1 + 8αa2

2b2
0 + 6αa0a2b2

0 + αa2
0b2

1 − 16αa0a2
2b0 − 4αa2

0a2b1

+ 2αa0a2b0b1 + a1b3
1ω + 3a2b0b2

1ω− 6a3
1b0 − 11a2

1b2
0 − a2

1b2
1 + 24a2a2

1b0 + 6a0a2
1b1

− 6a1b3
0 + 76a2a1b2

0 + 4a0a1b2
1 − 2a1b0b2

1 − 36a0a2a1b0 − 6a1b2
0b1 + 14a0a1b0b1

+ 54a2b3
0 + 2a0b3

1 − 29a2
2b2

0 − 24a0a2b2
0 − 3a2

0b2
1 − 4a0a2b2

1 + 6a0b0b2
1 + 8a2b0b2

1

+ 24a0a2
2b0 + 6a0b2

0b1 − 46a2b2
0b1 + 6a2

0a2b1 − a4
1 − 12a0a2a2

1 − 6a2
0a2

2 = 0,

Q5 : 4αa2a3
1 + 12αa0a2

2a1 + 16αa2a2
1b0 − 4αa2a2

1b1 + 12αa2a1b2
0 + αa2a1b2

1

+ 44a2a1b0b1 − 20αa2
2a1b0 − 12αa2a1b0b1 − 18αa2

2b2
0 + 16αa0a2

2b0 − 4αa0a2
2b1

+ 7αa2
2b0b1 + a2b3

1ω− 24a2a2
1b0 + 6a2a2

1b1 − 44a2a1b2
0 − 6a2a1b2

1 + 30a2
2a1b0

− 24a2b3
0 + 2a2b3

1 + 64a2
2b2

0 + 4a0a2b2
1 − 32a2b0b2

1 − 24a0a2
2b0 + 6a0a2

2b1

+ 72a2b2
0b1 − 26a2

2b0b1 − 4a0a2b0b1 − 4a2a3
1 − 12a0a2

2a1 = 0,
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Q6 : 4αa0a3
2 + 6αa2

1a2
2 − 8αa3

2b0 + 10αa2
2b2

0 + 2αa2
2b2

1 + 20αa1a2
2b0 + 12a3

2b0

+ 4αa0a2
2b1 − 8αa1a2

2b1 − 17αa2
2b0b1 − 3αa1a2b2

1 + 4αa2
1a2b1 + 8αa1a2b0b1

− 36a2
2b2

0 − 8a2
2b2

1 − 30a1a2
2b0 − 6a0a2

2b1 + 12a1a2
2b1 + 60a2

2b0b1 − 8a2b3
1 − 2a0a2b2

1

+ 12a1a2b2
1 + 48a2b0b2

1 − 6a2
1a2b1 − 36a2b2

0b1 − 30a1a2b0b1 − 4a0a3
2 − 6a2

1a2
2 = 0,

Q7 : 4αa1a3
2 + 8αa3

2b0 − 4αa3
2b1 − 5αa2

2b2
1 + 8αa1a2

2b1 + 10αa2
2b0b1 + 2αa1a2b2

1 − 12a3
2b0

+ 6a3
2b1 + 18a2

2b2
1 − 12a1a2

2b1 − 36a2
2b0b1 + 12a2b3

1 − 8a1a2b2
1 − 24a2b0b2

1 − 4a1a3
2 = 0,

Q8 : αa4
2 + 4αa3

2b1 + 3αa2
2b2

1 − 6a3
2b1 − 11a2

2b2
1 − 6a2b3

1 − a4
2 = 0.

Appendix D. Algebraic System for the e−R(ξ)-Expansion Method

In the algorithm of the e−R(ξ)-expansion method, the algorithm needs to solve the
following system of equations for the a0, a1, and ω; here we present the system for each
power of e−R(ξ) from 0 to 4.

e0 : a1µ
(
(α− 3)a1µ + λ2 + 2µ + 1

)
+ a0((α− 4)a1λµ + ω)

+ a2
0((6− 4α)a1µ− 1) + (α− 1)a4

0 = 0,

e−R(z) : αa0a1λ2 + 3αa2
1λµ− 4αa2

0a1λ− 8αa0a2
1µ + 2αa0a1µ

+ 4αa3
0a1 + a1λ3 − 4a0a1λ2 − 10a2

1λµ + 8a1λµ + 6a2
0a1λ

+ a1λ + 12a0a2
1µ− 8a0a1µ + a1ω− 4a3

0a1 − 2a0a1 = 0,

e−2R(z) : 2αa2
1λ2 − 8αa0a2

1λ + 3αa0a1λ− 4αa3
1µ + 4αa2

1µ

+ 6αa2
0a2

1 − 4αa2
0a1 − 7a2

1λ2 + 7a1λ2 + 12a0a2
1λ− 12a0a1λ (A28)

+ 6a3
1µ− 14a2

1µ + 8a1µ− 6a2
0a2

1 − a2
1 + 6a2

0a1 + a1 = 0,

e−3R(z) : − 4αa3
1λ + 5αa2

1λ + 4αa0a3
1 − 8αa0a2

1 + 2αa0a1

+ 6a3
1λ− 18a2

1λ + 12a1λ− 4a0a3
1 + 12a0a2

1 − 8a0a1 = 0,

e−4R(z) : αa4
1 − 4αa3

1 + 3αa2
1 − a4

1 + 6a3
1 − 11a2

1 + 6a1 = 0.

Appendix E. System of Equations for Exponential Function Method

To obtain solution through the exponential function method, the following nonlinear
algebraic system needs to be solved:

e0 : a2

(
−4a2b1 + a2

2 + 3b2
1

)
((α− 1)a2 + 2b1) = 0,

eQ(z) : 4αa1a3
2 − 4αa3

2b1λ + 5αa2
2b2

1λ− 8αa3
2b0 − 8αa1a2

2b1 + 10αa2
2b0b1 + 2αa1a2b2

1 + 6a3
2b1λ

− 18a2
2b2

1λ + 12a2b3
1λ + 12a3

2b0 + 12a1a2
2b1 − 36a2

2b0b1 − 8a1a2b2
1 + 24a2b0b2

1 − 4a1a3
2 = 0,
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e2Q(z) : 4αa0a3
2 + 6αa2

1a2
2 + 2αa2

2b2
1λ2 − 8αa3

2b0λ− 8αa1a2
2b1λ + 17αa2

2b0b1λ + 3αa1a2b2
1λ

− 4αa3
2b1µ + 4αa2

2b2
1µ + 10αa2

2b2
0 − 20αa1a2

2b0 − 4αa0a2
2b1 − 4αa2

1a2b1 + 8αa1a2b0b1

− 7a2
2b2

1λ2 + 7a2b3
1λ2 + 12a3

2b0λ + 12a1a2
2b1λ− 60a2

2b0b1λ− 12a1a2b2
1λ + 48a2b0b2

1λ

+ 6a3
2b1µ− 14a2

2b2
1µ + 8a2b3

1µ− 36a2
2b2

0 − a2
2b2

1 + 30a1a2
2b0 + 6a0a2

2b1 + a2b3
1 − 2a0a2b2

1

+ 6a2
1a2b1 + 36a2b2

0b1 − 30a1a2b0b1 − 4a0a3
2 − 6a2

1a2
2 = 0,

e3Q(z) : 4αa2a3
1 + 12αa0a2

2a1 + αa2a1b2
1λ2 + 7αa2

2b0b1λ2 + 3αa2
2b2

1λµ− 4αa2a2
1b1λ

− 20αa2
2a1b0λ + 12αa2a1b0b1λ + 18αa2

2b2
0λ− 4αa0a2

2b1λ + 2αa2a1b2
1µ

− 8αa2
2a1b1µ− 8αa3

2b0µ + 14αa2
2b0b1µ− 16αa2a2

1b0 + 12αa2a1b2
0 − 16αa0a2

2b0

+ a2b3
1λ3 − 4a2a1b2

1λ2 + 28a2b0b2
1λ2 − 24a2

2b0b1λ2 + 8a2b3
1λµ− 10a2

2b2
1λµ

+ 6a2a2
1b1λ + 30a2

2a1b0λ− 44a2a1b0b1λ + a2b3
1λ− 64a2

2b2
0λ− 4a0a2b2

1λ + 6a0a2
2b1λ

+ 72a2b2
0b1λ− 8a2a1b2

1µ + 12a2
2a1b1µ + 32a2b0b2

1µ + 12a3
2b0µ− 48a2

2b0b1µ

+ a2b3
1ω + 24a2a2

1b0 − 44a2a1b2
0 − 2a2a1b2

1 + 24a2b3
0 + 4a2b0b2

1

+ 24a0a2
2b0 − 2a2

2b0b1 − 4a0a2b0b1 − 4a2a3
1 − 12a0a2

2a1 = 0,

e4Q(z) : αa4
1 − a4

1 − 4αb0a3
1 + 6b0a3

1 + 3αb2
0a2

1 − 11b2
0a2

1 − b2
1a2

1 + 12αa0a2a2
1 − 12a0a2a2

1

− 16αλa2b0a2
1 + 24λa2b0a2

1 + 4αa0b1a2
1 − 6a0b1a2

1 − 4αµa2b1a2
1 + 6µa2b1a2

1

− αλb0b1a2
1 + 4λb0b1a2

1 + 6b3
0a1 + ωb3

1a1 + 21αλa2b2
0a1 − 76λa2b2

0a1

+ αλa0b2
1a1 − 4λa0b2

1a1 + αλµa2b2
1a1 − 4λµa2b2

1a1 + λ2b0b2
1a1 + 2µb0b2

1a1

+ b0b2
1a1 − 20αµa2

2b0a1 + 30µa2
2b0a1 − 24αa0a2b0a1 + 36a0a2b0a1 − 6λb2

0b1a1

− 4αa0b0b1a1 + 14a0b0b1a1 + 4αλ2a2b0b1a1 − 14λ2a2b0b1a1 + 8αµa2b0b1a1

− 28µa2b0b1a1 − 4a2b0b1a1 + 54λa2b3
0 − λ2a0b3

1 − 2µa0b3
1 − a0b3

1 + 2µ2a2b3
1

+ λ2µa2b3
1 + µa2b3

1 + 6αa2
0a2

2 − 6a2
0a2

2 + 8αλ2a2
2b2

0 − 28λ2a2
2b2

0 + 16αµa2
2b2

0

− 56µa2
2b2

0 − a2
2b2

0 + 6αa0a2b2
0 − 24a0a2b2

0 + αa2
0b2

1 − 3a2
0b2

1 + αµ2a2
2b2

1

− 3µ2a2
2b2

1 − 2λ2a0a2b2
1 − 4µa0a2b2

1 − 2a0a2b2
1 + 6λa0b0b2

1 + 4λ3a2b0b2
1

+ 4λa2b0b2
1 + 32λµa2b0b2

1 + 3ωa2b0b2
1 − 16αλa0a2

2b0 + 24λa0a2
2b0

− 4αµa0a2
2b1 + 6µa0a2

2b1 − 6a0b2
0b1 + 41λ2a2b2

0b1 + 46µa2b2
0b1 + 5a2b2

0b1

+ 4αa2
0a2b1 − 6a2

0a2b1 + 11αλµa2
2b0b1 − 36λµa2

2b0b1 − 2αλa0a2b0b1 = 0,



Mathematics 2023, 11, 2352 22 of 24

e5Q(z) : − a0b3
1λ3 + a1b0b2

1λ3 + 5a2b2
0b1λ3 + 38a2b3

0λ2 + 9αa1a2b2
0λ2 − 32a1a2b2

0λ2

+ αa0a1b2
1λ2 − 4a0a1b2

1λ2 + 10a0b0b2
1λ2 + 4µa2b0b2

1λ2 − 10a1b2
0b1λ2

− αa2
1b0b1λ2 + 4a2

1b0b1λ2 − 2αa0a2b0b1λ2 + 4a0a2b0b1λ2 + 12a1b3
0λ

− 8µa0b3
1λ− a0b3

1λ + 5αa2
1b2

0λ− 18a2
1b2

0λ + 14αµa2
2b2

0λ− 48µa2
2b2

0λ

+ 10αa0a2b2
0λ− 40a0a2b2

0λ + 3αa2
0b2

1λ− 10a2
0b2

1λ− 4µa0a2b2
1λ + 8µa1b0b2

1λ

+ a1b0b2
1λ− 4αa3

1b0λ + 6a3
1b0λ− 24αa0a1a2b0λ + 36a0a1a2b0λ + 4αa0a2

1b1λ

− 6a0a2
1b1λ− 12a0b2

0b1λ + 40µa2b2
0b1λ + 5a2b2

0b1λ + 4αa2
0a2b1λ− 6a2

0a2b1λ

− 8αa0a1b0b1λ + 28a0a1b0b1λ + 4αµa1a2b0b1λ− 12µa1a2b0b1λ + 4αa0a3
1

− 4a0a3
1 + 40µa2b3

0 + 2a2b3
0 + ωa0b3

1 + 2αa0a1b2
0 − 8a0a1b2

0 + 18αµa1a2b2
0

− 64µa1a2b2
0 − 2a1a2b2

0 + 2αµa0a1b2
1 − 8µa0a1b2

1 − 2a0a1b2
1 + 8µa0b0b2

1 − 2a0b0b2
1

+ 3ωa1b0b2
1 + 8µ2a2b0b2

1 + 4µa2b0b2
1 + 12αa2

0a1a2 − 12a2
0a1a2 − 8αa0a2

1b0

+ 12a0a2
1b0 − 16αµa0a2

2b0 + 24µa0a2
2b0 − 8αa2

0a2b0 + 12a2
0a2b0 − 16αµa2

1a2b0

+ 24µa2
1a2b0 − 8µa1b2

0b1 + 2a1b2
0b1 + 3ωa2b2

0b1 + 8αa2
0a1b1 − 12a2

0a1b1

− 2αa2
0b0b1 + 8a2

0b0b1 − 2αµa2
1b0b1 + 8µa2

1b0b1 − 2a2
1b0b1 + 4αµ2a2

2b0b1

− 12µ2a2
2b0b1 − 4αµa0a2b0b1 + 8µa0a2b0b1 − 4a0a2b0b1 = 0, (A29)

e6Q(z) : 8a2b3
0λ3 + 4a0b0b2

1λ3 − 4a1b2
0b1λ3 + 7a1b3

0λ2 − 7µa0b3
1λ2 + 2αa2

1b2
0λ2 − 7a2

1b2
0λ2

+ 4αa0a2b2
0λ2 − 16a0a2b2

0λ2 + 2αa2
0b2

1λ2 − 7a2
0b2

1λ2 + 7µa1b0b2
1λ2 − 7a0b2

0b1λ2

− µa2b2
0b1λ2 − 4αa0a1b0b1λ2 + 14a0a1b0b1λ2 + 52µa2b3

0λ + 2a2b3
0λ + 3αa0a1b2

0λ

− 12a0a1b2
0λ + 15αµa1a2b2

0λ− 52µa1a2b2
0λ + 3αµa0a1b2

1λ− 12µa0a1b2
1λ

+ 20µa0b0b2
1λ− 2a0b0b2

1λ− 8αa0a2
1b0λ + 12a0a2

1b0λ− 8αa2
0a2b0λ + 12a2

0a2b0λ

− 20µa1b2
0b1λ + 2a1b2

0b1λ + 8αa2
0a1b1λ− 12a2

0a1b1λ− 3αa2
0b0b1λ + 12a2

0b0b1λ

− 3αµa2
1b0b1λ + 12µa2

1b0b1λ− 6αµa0a2b0b1λ + 16µa0a2b0b1λ + 8µa1b3
0 + a1b3

0

+ ωa2b3
0 − 8µ2a0b3

1 − µa0b3
1 + 6αa2

0a2
1 − 6a2

0a2
1 + 4αµa2

1b2
0 − 14µa2

1b2
0 − a2

1b2
0

+ 6αµ2a2
2b2

0 − 20µ2a2
2b2

0 + 8αµa0a2b2
0 − 32µa0a2b2

0 − 2a0a2b2
0 + 4αµa2

0b2
1 − 14µa2

0b2
1

− a2
0b2

1 − 2µ2a0a2b2
1 + 3ωa0b0b2

1 + 8µ2a1b0b2
1 + µa1b0b2

1 + 4αa3
0a2 − 4a3

0a2 − 4αµa3
1b0

+ 6µa3
1b0 − 4αa2

0a1b0 + 6a2
0a1b0 − 24αµa0a1a2b0 + 36µa0a1a2b0 + 4αa3

0b1 − 6a3
0b1

+ 4αµa0a2
1b1 − 6µa0a2

1b1 − 8µa0b2
0b1 − a0b2

0b1 + 3ωa1b2
0b1 + 4µ2a2b2

0b1

+ 5µa2b2
0b1 + 4αµa2

0a2b1 − 6µa2
0a2b1 − 8αµa0a1b0b1

+ 28µa0a1b0b1 − 4a0a1b0b1 + 2µ2a1a2b0b1 = 0,
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e7Q(z) : a1b3
0λ3 − a0b2

0b1λ3 + 14µa2b3
0λ2 + αa0a1b2

0λ2 − 4a0a1b2
0λ2 + 10µa0b0b2

1λ2

− 10µa1b2
0b1λ2 − αa2

0b0b1λ2 + 4a2
0b0b1λ2 + 8µa1b3

0λ + a1b3
0λ− 12µ2a0b3

1λ

+ 3αµa2
1b2

0λ− 10µa2
1b2

0λ + 6αµa0a2b2
0λ− 24µa0a2b2

0λ + 5αµa2
0b2

1λ

− 18µa2
0b2

1λ + 12µ2a1b0b2
1λ− 4αa2

0a1b0λ + 6a2
0a1b0λ + 4αa3

0b1λ− 6a3
0b1λ

− 8µa0b2
0b1λ− a0b2

0b1λ− 12µ2a2b2
0b1λ− 8αµa0a1b0b1λ + 28µa0a1b0b1λ

+ ωa1b3
0 + 16µ2a2b3

0 + 2µa2b3
0 + 2αµa0a1b2

0 − 8µa0a1b2
0 − 2a0a1b2

0 + 6αµ2a1a2b2
0

− 20µ2a1a2b2
0 + 2αµ2a0a1b2

1 − 8µ2a0a1b2
1 + 8µ2a0b0b2

1 − 2µa0b0b2
1 + 4αa3

0a1

− 4a3
0a1 − 8αµa0a2

1b0 + 12µa0a2
1b0 − 8αµa2

0a2b0 + 12µa2
0a2b0 + 3ωa0b2

0b1

− 8µ2a1b2
0b1 + 2µa1b2

0b1 + 8αµa2
0a1b1 − 12µa2

0a1b1 − 2αµa2
0b0b1 + 8µa2

0b0b1

− 2a2
0b0b1 − 2αµ2a2

1b0b1 + 8µ2a2
1b0b1 − 4αµ2a0a2b0b1 + 12µ2a0a2b0b1 = 0,

e8Q(z) : αa4
0 − αa2

0b0b1λµ + αa1a0b2
0λµ + 3αa2

0b2
1µ2 + 2αa2a0b2

0µ2 − 4αa1a0b0b1µ2

+ αa2
1b2

0µ2 + 4αa3
0b1µ− 4αa1a2

0b0µ− a0b2
0b1λ2µ + a1b3

0λ2µ + 6a0b0b2
1λµ2

+ 6a2b3
0λµ2 − 6a1b2

0b1λµ2 + 4a2
0b0b1λµ− 4a1a0b2

0λµ− 6a0b3
1µ3 + 6a1b0b2

1µ3

− 6a2b2
0b1µ3 − 11a2

0b2
1µ2 − 8a2a0b2

0µ2 − 2a0b2
0b1µ2 + 14a1a0b0b1µ2 + 2a1b3

0µ2

− 3a2
1b2

0µ2 − 6a3
0b1µ + 6a1a2

0b0µ− a0b2
0b1µ + a1b3

0µ + a0b3
0ω− a2

0b2
0 − a4

0 = 0.
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