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Abstract: Accurate segmentation of the lesion area from MRI images is essential for diagnosing
bladder cancer. However, the precise segmentation of bladder tumors remains a massive challenge
due to their similar intensity distributions, various tumor morphologies, and blurred boundaries.
While some seminal studies, such as those using CNNs combined with transformer segmentation
methods, have made significant progress, (1) how to reduce the computational complexity of the
self-attention mechanism in the transformer while maintaining performance and (2) how to build
a better global feature fusion process to improve segmentation performance still require further
exploration. Considering the complexity of bladder MRI images, we developed a lightweight context-
aware network (LCANet) to automatically segment bladder lesions from MRI images. Specifically,
the local detail encoder generates local-level details of the lesion, the lightweight transformer encoder
models the global-level features with different resolutions, the pyramid scene parsing module extracts
high-level and multiscale semantic features, and the decoder provides high-resolution segmentation
results by fusing local-level details with global-level cues at the channel level. A series of empirical
studies on T2-weighted MRI images from 86 patients show that LCANet achieves an overall Jaccard
index of 89.39%, a Dice similarity coefficient of 94.08%, and a Class pixel accuracy of 94.10%. These
advantages show that our method is an efficient tool that can assist in reducing the heavy workload
of radiologists.

Keywords: bladder tumor segmentation; MRI images; transformer; multiscale; intelligent modeling

MSC: 68T02; 68U02

1. Introduction

Bladder cancer originates in the cells of the bladder [1]. According to statistics, bladder
cancer is the tenth most prevalent cancer globally, with approximately 573,000 new cases
and 213,000 deaths in 2020, placing a heavy burden on patients, families, and society [2].
Achieving early diagnosis and treatment is essential for eliminating the incidence and
mortality of bladder cancer. In current clinical practice, the gold standard for diagnosing
bladder cancer is the transurethral resection of tumors and optical cystoscopy [3]. However,
these methods are invasive and insensitive to minute tumors, which may delay diagnosis.
As a noninvasive method with superior contrast, MRI plays an increasingly important
role in the clinical diagnosis of bladder cancer [4]. In particular, T2-weighted imaging
can provide structural images, which is advantageous in tumor segmentation [5]. The
accurate segmentation of tumor areas from MRI images is essential for grading and staging
bladder cancer. However, as shown in Figure 1, due to their similar intensity distribution,
complex and variable tumor morphology, and blurred borders, it is difficult for radiologists
to segment bladder cancer based only on this. Moreover, the manual segmentation process
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is susceptible to the subjective experience of the physician, resulting in inconsistent seg-
mentation results. Thus, developing an accurate image analysis method to assist physicians
in accurately segmenting bladder cancer has become increasingly critical [6].

The use of bladder tumor segmentation algorithm has made some progress. Early algo-
rithms resorted to traditional computer vision methods, such as Markov Random Fields [7],
level-sets-based methods [8], or region growing [9]. For example, Duan et al. [10] proposed
an adaptive window-setting scheme for segmenting bladder tumors in T1-weighted MRI
images. However, the direct application of these techniques to segment bladder cancer is
hardly satisfactory due to the complex distribution of tissues around the bladder.

Figure 1. MRI images of various bladder tumors: The white arrow points to the tumor lesion. As
seen in these images, the blurred borders, morphology of the tumor, and similar surrounding tissues
severely affect the segmentation accuracy, especially for minute tumors.

Powerful nonlinear learning capability allows for full convolutional networks, such as
UNet [11], to achieve extremely successful results in the field of medical image
segmentation [12,13]. Inspired by this finding, many deep learning methods have been
reported to segment bladder tumors from MRI images in recent years [14–17]. To continu-
ously improve the segmentation results, researchers have proposed various optimization
strategies, such as leveraging prior knowledge [18], enlarging the receptive field [19], mul-
tiscale feature utilization [20], and fusing global features [21]. For example, Dong et al. [22]
proposed a deep network based on an attention UNet consisting of content and shape
attention modules, which introduces a shape prior to ensuring closed segmentation results.
The model was evaluated on T2-weighted images with a Dice similarity coefficient of 84%.
In addition, prior information, such as tumor size and location, may help to improve the
segmentation accuracy of bladder tumors. Huang et al. [18] proposed a semantic cancer
segmentation network, fusing tumor size and location as the prior information, and the
experimental results verify the effectiveness of combining prior knowledge. Li et al. [23]
proposed a position-guided deformable UNet (PGD-UNet), which used deformable con-
volution to guide tumor segmentation. The above methods mostly use prior information
as a constraint to optimize the network parameters. However, the segmentation results of
such methods still differ significantly from those of manually annotated images due to the
network’s single receptive field.

Theoretically, dilated convolution provides a larger field of perception that can utilize
more semantic features. The increased dilation rate allows for the use of multiscale features
to better meet the segmentation requirements of small and large objects [24]. Dolz et al. [25]
added dilated convolution to the UNet model, and the expansion rate of the dilated con-
volution gradually increased. The experimental results on T2-weighted MRI images show
the effectiveness of introducing dilated convolution and achieving segmentation results that
outperform traditional methods. Liu et al. [26] proposed the pyramid-in-pyramid network
(PiPNet), which is composed of a pyramid backbone and atrous spatial pyramid pooling of
four parallel atrous convolutions with increasing dilation rates. The model was evaluated
on MRI images with a Dice similarity coefficient of 95%. Xu et al. [27] proposed a multiscale
network based on dilated convolution (DMC-UNet), using dilated convolutions with different
dilation rates to obtain different receptive fields. Pan et al. [28] used a stacked dilated UNet
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with focal loss to accurately segment the bladder wall and tumor regions, with a mean Dice
similarity coefficient of 66% for tumor region segmentation. However, the use of dilated
convolution to obtain a larger field of perception does not fully deal with the perturbations
caused by the surrounding tissue and blurred boundaries [29].

In terms of multiscale feature utilization, a more classical network is the PylNet net-
work proposed by Zhang et al. [20]. The PylNet designs a novel pyramidal convolution
block, which can extract images’ multiscale feature information, resolve the loss of de-
tail information in tumor regions of different shapes and sizes, and is more beneficial to
the extraction of minute tumor regions. Simultaneously, the decoding structure of the
algorithm is optimized, the complex upsampling convolution operation is not introduced
in the decoding process, and the designed multiscale feature fusion module improves
the decoding efficiency and effectively reduces the number of parameters. Unlike the
above work, Yu et al. [5] proposed a cascade path-augmentation UNet (CPA-UNet) to
mine multiscale features for segmenting tumor areas in T2-weighted images. The CPA-
UNet achieves superior segmentation results regarding the Dice similarity coefficient of
87.40%. In addition, Wang et al. [30] proposed a dual-attention Vnet triple plus (DAVnet3+)
network to accurately segment tumor regions. They used full-scale skip connections to
fully utilize the information of multiscale feature maps. Then, they introduced spatial
and channel attention to adaptively suppress irrelevant background regions in high-level
semantic features. These methods further mitigate the interference of different factors
and improve the accuracy of tumor lesion segmentation. However, as they are limited by
the perceptual field of the convolutional kernel, the above works fail to establish explicit
global dependency. In recent years, transformers and self-attention mechanisms have re-
formed the fields of computer vision and natural language processing [31]. SETR [32] is
one of the earlier semantic segmentation networks that uses pure transformer encoders.
However, pure transformer segmentation networks cannot satisfactorily extract detailed
feature information [33]. Hence, to obtain segmentation results that are closer to the real
situation, some segmentation networks that integrate CNNs and transformers have been
proposed [34,35]. For example, He et al. [36] proposed a hybrid CNN-transformer network
(HCTNet) to boost breast lesion segmentation in ultrasound images. He et al. [37] proposed
an efficient hierarchical hybrid vision transformer (H2Former) for medical image segmenta-
tion. We proposed an auxiliary segmentation algorithm named MSEDTNet that integrates a
multiscale encoder and decoder with a transformer [21]. Specifically, the multiscale encoder
generates feature maps containing detailed local features. The transformer models the
long-range dependency among high-level tumor semantics from a global space. A decoder
with a spatial context fusion module fuses the contextual information and progressively
produces high-resolution segmentation results. Experimental results from T2-weighted
MRI scans show an overall Jaccard index of 83.46% and a Dice similarity coefficient of
92.35% for MSEDTNet. Although the segmentation performance of the network can be
optimized via integrating CNNs and transformers, there are still some issues that need to be
overcome. These are (1) how to reduce the computational complexity of the self-attention
mechanism in the transformer while maintaining performance and (2) how to build a better
means of global feature fusion to improve segmentation performance.

To alleviate the above challenge, we propose a lightweight context-aware (LCANet)
framework for bladder tumor segmentation. The LCANet mainly consists of four parts:
a local detail encoder, a lightweight transformer encoder, pyramid scene parsing, and a
decoder. First, we use a local detail encoder to capture the local details of the tumor areas.
Second, the lightweight transformer encoder is adapted to global model features with
different resolutions, which can reduce the computational complexity of the self-attention
mechanism while maintaining performance (question 1). Then, a special fusion manner
was designed to integrate local detail features with global features (question 2). We also
adopted the pyramid scene parsing to extract high-level and multiscale semantic features.
Last, we used the decoder to obtain high-resolution segmentation results. Context-aware
means that multiscale information is extracted, including coarse and fine-grained semantic
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and long-range feature information, using a contextual fusion of both features. Extensive
experiments demonstrate that LCANet leads to significant and consistent improvements in
bladder tumor segmentation.

The main contributions are presented as follows:

• Differing from previous studies, we design a novel lightweight transformer encoder
that models interpixel correlations at a fine-grained scale while reducing the computa-
tional complexity of the self-attention mechanism.

• A lightweight context-aware U-shaped network was developed to segment bladder tu-
mors from MRI images. The network designs use special fusion to integrate local detail
features with global features, which improves the segmentation accuracy of bladder
lesions by learning multiscale global representations from bladder MRI images.

• Extensive experiments have shown that our method consistently improves the seg-
mentation accuracy of bladder cancer lesions, which surpasses the robust baseline and
state-of-the-art medical image segmentation methods.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed
method in detail. In Section 3, we present the datasets and experimental settings. The
abundant experimental results are shown in Section 4. Finally, a discussion and conclusions
are given in Sections 5 and 6, respectively.

2. Methods

Figure 2 illustrates our proposed lightweight context-aware (LCANet) framework for
bladder tumor segmentation. Our LCANet shares the same basic design as UNet, mainly
including downsampling, upsampling, and skip connections. The difference is that we
use ResUNet as the backbone to better capture the local-level details of the tumor (in
Section 2.1). Then, we propose a lightweight transformer encoder to model global-level
features with different resolutions (in Section 2.2). The pyramid scene parsing module
is also utilized to extract high-level and multiscale semantic features (in Section 2.3). We
provide high-resolution segmentation results by fusing local-level details with global-level
cues at the channel level and using layer-by-layer upsampling convolution (in Section 2.4).
The above modules are described in detail below.
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Figure 2. The description of the lightweight context-aware (LCANet) framework. The network is a
U-shaped network that includes downsampling, skip connections, and upsampling operations.

2.1. Local Detail Encoder

Medical image segmentation is the division of medical images into separate parts based
on the various attributes of pixels in computer vision tasks. As a low-level or pixel-level
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vision task, in contrast to classification and object detection, the spatial information of the
medical image is crucial when semantically segmenting various regions. Here, a local detail
encoder is designed to segment MRI images of bladder cancer to better extract detailed
semantic features in the tumor region. As shown in Figure 2, the local detail encoder consists
of five ResUNet convolution blocks that extract fine-grained image feature information at
various stages. The resolution of the feature map gradually decreases as the network depth
increases, as does the number of channels in the feature map. Figure 2 depicts the network
structure of the ResUNet convolution block, which includes the convolution layer, batch
normalization layer, nonlinear activation function, and residual structure.

Specifically, given the layer l − 1 output feature of the local detail encoder
xl−1

cnn ∈ Rh×w×c, where c is the number of channels in the feature map and h and w are its
dimensions, the layer l special feature map xl−1

cnn is expressed as follows:

CFM1 = ReLU(BN(Conv3×3(xl−1
cnn )) + bl) (1)

CFM2 = ReLU(BN(Conv3×3(CFM1)) + bl) (2)

CFM3 = BN(Conv1×1(CFM2)) + bl) (3)

xl
cnn = ReLU(CFM1 + CFM3) (4)

where the convolution kernel size is 3× 3 for Formulas (1) and (2) and 1× 1 for Formula (3).
bl is the bias term of the l th layer. CFMi ∈ Rh×w×c

′
is the feature map generated after

convolution. ReLU(·) and BN(·) denote the nonlinear activation function and batch
regularization operation, respectively.

2.2. Lightweight Transformer Encoder

Although the local detail encoder can extract detailed feature information from an
image, its field of perception is still limited, and it cannot extract information from the
entire image at once. Even though different convolutions can be cascaded to expand the
field, the effective field occupies only a small fraction of the theoretical field, making the
direct extraction of long-distance-dependent information impossible [38]. The feature
vectors extracted by transformers usually contain more global contextual information [39].
Thus, the lightweight transformer encoder is designed to model the different scale spatial
information of the local detail encoder output, as well as long-range correlation. Figure 2
depicts the structure of the lightweight transformer encoder, which is composed of three
layers of transformer blocks. The transformer block of the first layer receives only the local
detail encoder branch inputs from the same stage, whereas the transformer blocks of other
layers not only receive the local detail encoder branch inputs from the current layer but
also fuse the global information from the previous transformer blocks to better aggregate
the coarse and fine-grained semantic information at different scales.

Here, let i indices represent the lightweight transformer encoder branch, and Nt
represents the total number of layers for a lightweight transformer encoder. The stack of
feature map xi

trans is expressed as

xi
trans =

{
Trans(xi

cnn), i = 1
Trans([xi

cnn, PE(xi−1
trans)]), i = 2, . . . , Nt

(5)

where PE(·) denotes the slice reassembly operation, which is implemented by a convolution
operation with a step of 2, followed by batch regularization and the ReLU activation func-
tion. [·] and Trans(·) represent the cascading operation and transformer block, respectively.
Each standard transformer block consists primarily of a dual-axis multihead self-attention
(dual-axis MHSA) and a feed-forward network (FFN). Its structure is depicted in Figure 3a.
The term multihead in dual-axis MHSA refers to the multiple independent self-attention
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mechanism calculations, in which the input sequence is calculated in segments to obtain
the segmented subspace representation, and then the segmented subspace representation is
connected. Dual-axis MHSA improves calculation efficiency, serves an integrated function,
keeps the model from overfitting, and prevents the model from paying too much attention
to its position when encoding current position information [40].
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Figure 3. (a) An illustration of the transformer structure and (b) the dual-axis multihead attention
mechanism.

As shown in Figure 3b, the input feature map X ∈ RH×W×C is converted to Q, K,
and V matrices to calculate the self-attention. The computational complexity of the self-
attention in the original MHSA is O(H2W2C). To reduce the computational complexity,
we calculate relationships at the row and column level, rather than between pixels over
the entire image size (HW × HW) [41]. First, to adaptively learn the representation of
row-level and column-level relations, the Q and K matrices are divided into row-level
matrices Qr and Kr, and column-level matrices Qc and Kc. Second, the feature map is
transferred to the average pool operation in both directions. The relationship between the
two directions is calculated so that the self-attention mechanism can be calculated for the
whole feature map. The above process is expressed as follows:

A(Q, K, V) = (So f tr(
QrpKT

rp√
dk

))V(So f tc(
QcpKT

cp√
dk

)) (6)

where So f tr and So f tc are row-level self-attention and column-level self-attention, respec-
tively. When calculating the row-level self-attention, the matrix V is reshaped into H×WC.
While using column-level self-attention, the matrix V is reshaped into HC×W. In this way,
the complexity of the algorithm is reduced to O(H2WC + HW2C), which is less than the
original MHSA computation complexity.

Formulaically, in the l layer transformer layer, given the input Zl−1
cnn and Zl−1

trans, the
output Zl is expressed as

Zh = Conv1×1([Zl−1
cnn , Zl−1

trans]) (7)

Z
′
h = MHSA(Norm(Zh)) + Zh (8)

Zl = FFN(Norm(Z
′
h)) + Z

′
h (9)

where [·] is the cascade operation. Conv1×1 is the 1 × 1 convolution operation. Norm(·),
MHSA(·), and FFN(·) represent the normalization of the layer, dual-axis multihead atten-
tion mechanism, and feed-forward network, respectively.

2.3. Pyramid Scene Parsing

A large receptive field is necessary for the segmentation task, as a small receptive field
is incapable of performing multiclass segmentation, and the segmented mask boundary
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may be very rough [42]. After integrating the semantic information output by the local
detail encoder and the lightweight transformer encoder, we also add the pyramid scene
parsing module, which is composed of four different scale pooling functions. Please refer
to [43] for the architecture of the pyramid scene parsing module. The application of pyramid
scene parsing has the following two advantages: (1) It avoids the problem that the size of
the CNN input image must be fixed, so the aspect ratio and size of the input image can
be arbitrary. (2) Feature extraction and the reaggregation of features from different angles
increase the accuracy of semantic segmentation tasks. Based on the original coarse-grained
semantic feature information, four different scales of spatial feature information are fused
to further strengthen the coding ability of multiscale features.

2.4. Decoder

As shown in Figure 2, to obtain high-quality segmentation results for bladder cancer
MRI images in the original (H ×W × C) space, a decoder with a multilayer upsampling
structure was designed to gradually recover the multiscale feature map output from the
pyramid scene parsing module to the original input dimensions via a series of successive
convolution and upsampling structures.

Lower-level features in the semantic segmentation task have more spatial information
(segmentation localization features) and less semantic information (category judgment
features), while higher-level features have less spatial information and more semantic infor-
mation. As a result, when the decoder recovers bladder cancer MRI segmentation images,
adding as much high-resolution information and low-resolution information as possible to
the recovered features, i.e., combining low-resolution information in downsampling (to
provide the basis for the tumor foreground and background category identification) and
high-resolution information in upsampling (to provide the basis for accurate segmentation
localization), and then complementing the undistributed information high-quality tumor
segmentation results is critical. Thus, to increase the spatial resolution of the semantic
information, we add several additional skip-connection structures to the encoder. Note
that we add a spatial attention mechanism to the skip-connection structures corresponding
to the local detail encoder and the lightweight transformer encoder, which can weigh the
important feature maps to further highlight tumor feature information. The above process
is expressed as follows:

xl
combind = [xl

cnn, zl
trans] (10)

value = FC2(FC1(GAP(xl
combind))) (11)

xl
combind = xl

combind × Sigmoid(value) (12)

where xl
cnn and zl

trans are the convolution result and the transformer operation result of the
l layer, respectively. GAP(·) is the global average pooling operation function. FC1(·) and
FC2(·) are two full connection layers.

The skip-connection structure is only used to aggregate the features extracted by the
local detail encoder in the branch that does not use the lightweight transformer encoder.
After the five-layer upsampling structure, the image is restored to the same size as the
input image, the pixel values are compressed to the range [0, 1] using the sigmoid function,
and the segmentation result of the bladder cancer lesion region is obtained using 0.5 as
the threshold.

2.5. Loss Function

The LCANet is end-to-end-optimized using the binary cross-entropy function. In
two-class segmentation tasks, the cross-entropy function is frequently utilized because
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of its capacity to accurately reflect the distinction between the predicted mask and the
ground-truth labels. The loss function is calculated as follows:

Loss = − ∑
(a,b)

Y(a, b)logŶ(a, b) + (1−Y(a, b))log(1− Ŷ(a, b)) (13)

where Y(a, b) ∈ [0, 1] denotes the ground-truth label, and Ŷ(a, b) ∈ [0, 1] denotes the
predicted mask.

3. Datasets and Experimental Settings

In this section, we first describe the dataset used for the experiments (in Section 3.1).
Then, to verify the effectiveness of the modules and methods, we describe the experimental
setup and implementation in detail (in Section 3.2). Finally, we introduce the experimental
evaluation metrics (in Section 3.3).

3.1. Dataset

The data for this study were derived from the Affiliated Hospital of Shandong Uni-
versity of Traditional Chinese Medicine and include 86 patients and 1320 MRI images of
bladder cancer. A GE Discovery MR 750 3.0T MRI was used to scan all patients, with slices
having a 1 mm thickness and slice interval and a repetition time and echo time of 2500 ms
and 135 ms, respectively. The image size was uniform at 224× 224, and three experienced
clinicians marked the tumor areas on each image using the labelme toolkit.

3.2. Experimental Settings

To verify the effectiveness of different components, we first conducted ablation experi-
ments in three aspects: network architecture, position, and parameter. For architecture, we
investigated the efficacy of different modules, such as lightweight transformer encoders,
pyramid scene parsing, and fusion skip connections in the semantic segmentation task
of bladder tumors with the specific experimental configurations shown in Table 1. The
position aspect investigated the impact of different light transformer encoder positions on
the segmentation performance, i.e., the lightweight transformer encoder was placed at EF1,
EF2, and EF3 or EF2, EF3, and EF4, and discussed the effect of various configurations on
the results. Finally, the parameter aspect investigated the impact of different numbers of
transformer layers in the lightweight transformer encoder on the segmentation results.

Table 1. Ablation models.

Model Description

BaseNet Vanilla ResUNet baseline
BaseTNet baseline + LTE

BaseTPSPNet baseline + LTE + PSP
LCANet baseline + LTE + PSP + FSK

LTE: lightweight transformer encoder; PSP: pyramid scene parsing; FSK: fusion skip connection.

To demonstrate the effectiveness of LCANet, we first compare it with five state-of-
the-art bladder tumor segmentation methods, including PylNet [20], Res-UNet [44], MD-
UNet [19], Dolz et al. [25], and MSEDTNet [21]. MSEDTNet is our preproposed bladder
tumor segmentation algorithm. Second, LCANet is compared with the current general
semantic segmentation algorithms, including UNet [11], Swin-UNet [33], DeepLabv3+ [45],
and TransUNet [46]. UNet includes a batch normalization layer as well as a complementary
zero operation at convolution to ensure that the output is the same size as the input. Swin-
UNet is a U-shaped semantic segmentation algorithm with a Swin transformer structure
for both the encoder and decoder, which can better learn an image’s global and long-term
semantic information and has a strong segmentation performance on COVID-19 lesions in
CT Images [47]. DeepLabv3+ introduces atrous spatial pyramid pooling (ASPP) to integrate
the bottom features with the top features to improve the segmentation boundary accuracy.
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Here, we employed ResNet101 as the backbone network to extract features. TransUNet,
with the advantages of both transformers and UNet, is a powerful alternative to medical
image segmentation. TransUNet performs better than various competing methods in both
multiorgan and heart segmentation. Here, we segmented the bladder tumor region with
the help of a pretrained model.

All models were trained and tested on an Intel 6246 CPU and NVIDIA Tesla V100
32 GB GPU using the MMSegmentation [48] deep learning framework. The optimizer
was set to stochastic gradient descent (SGD), and the initial learning rate was 0.01. The
momentum and weight decay were 0.9 and 0.0005, respectively. Moreover, we utilized
poly-police to update the learning rate in each round of training. The mini-batch size was
8, and the training epochs were 200 for convergence. We also used data enhancement
strategies, such as random flipping, random rotation, and random crop, to optimize the
overfitting phenomenon. Note that the proposed method did not require pretraining on
any large datasets. In addition, for a fair comparison, all models were trained using our
dataset according to the same setup. Furthermore, we partitioned the dataset using a
fivefold cross-validation method to test the generalization performance of the proposed
network. Specifically, in each fold of the training set, we randomly further divided the
training set into four parts, leaving one part for the validation set. In this way, the training,
validation, and test set ratios in each data fold were 3:1:1, respectively.

3.3. Evaluation Metrics

To quantitatively evaluate the segmentation performance of different methods on
bladder tumors, we used three widely used segmentation metrics, the Jaccard index (JI),
Dice similarity coefficient (DSC), and Class pixel accuracy (CPA), respectively. Larger values
of these three metrics represent a more robust segmentation performance of the model. The
calculation formulas are presented as follows:

J I =
TP

FP + TP + FN
(14)

DSC =
2TP

FP + 2TP + FN
(15)

CPA =
TP

TP + FP
(16)

where TP refers to the number of positive samples correctly classified as positive, FP
represents the number of negative samples incorrectly classified as positive, and FN
denotes the number of positive samples incorrectly classified as negative. In addition, a
paired Student’s t-test was also performed to ensure that the experimental results were
statistically significant compared with the state-of-the-art segmentation methods.

4. Results

In this section, we perform a series of ablation experiments on the proposed network
(in Section 4.1). Then, we compare our method with the start-of-the-art deep learning
methods (in Section 4.2). Finally, we report the experimental results.

4.1. Ablation Study
4.1.1. Ablation of the Different Module Architectures

To evaluate the performance of various network components, we conducted ablation
experiments. Table 2 shows the experimental results for the different components. All
results are expressed as means and standard deviations, and the best results are highlighted
in bold. As shown in Table 2, the results indicate that these network components are vital
to improving the segmentation performance. The pyramid scene parsing module generates
the most significant performance improvement of 0.61% for the network in the Jaccard
index. The role of the pyramid scene parsing module is to extract multiscale semantic
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information about bladder tumors. This finding suggests that integrating multiple scales
can ensure a better adaption to the shape and location changes in tumors and strengthen
the algorithm’s ability to extract multiscale high-level semantic feature information. For the
Dice similarity coefficient metric, we found that the lightweight transformer encoder im-
proves the segmentation results by as much as 1.20%. The results mean that the transformer
effectively compensates for the traditional convolutional difficulties of modeling global
relevance, further enriching the extracted coarse-grained high-level semantic features and
ultimately improving the segmentation performance of the algorithm.

Table 2. Segmentation results of different network components. Red arrows indicate increases. The
best results are marked with bold text.

Model JI(%) ↑ DSC(%) ↑ CPA(%) ↑
BaseNet 88.03 ± 0.69 92.39 ± 0.44 93.19 ± 1.14

BaseTNet 88.51 ± 0.79 93.59 ± 0.59 93.77 ± 0.39
BaseTPSPNet 89.12 ± 0.54 93.68 ± 0.46 93.19 ± 0.61

LCANet 89.39± 0.60 94.08± 0.37 94.10± 0.73
JI: Jaccard Index; DSC: Dice Similarity Coefficient; CPA: Class pixel accuracy.

4.1.2. Ablation of the Lightweight Transformer Encoders on Various Stages

We investigated how the lightweight transformer encoder impacts the segmentation
performance at different scales, ranging from EF5 (the deepest layer with a size of 14 × 14)
to EF2 (the shallowest layer with a size of 112 × 112). EF1 was not evaluated due to GPU
capacity limitations. As shown in Figure 4a, the accuracy was improved by stacking
lightweight transformer encoders, and the highest results were achieved when extracting
local–global features in four consecutive stages (EF5, EF4, and EF3). However, applying
the lightweight transformer encoder to large-scale features, such as EF2, increases the
parameters and computational consumption of the model, which may cause overfitting
problems. Therefore, according to the experimental results, we introduced a three-layer
lightweight transformer encoder, which provides the best segmentation results and appro-
priate computational consumption. However, the location of this addition still needs to be
further discussed.
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Figure 4. Segmentation results of different ablation experiments: (a) ablation results of the lightweight
transformer encoders on various stages; (b) ablation results of the block numbers on different
transformer encoders. JI: Jaccard Index; DSC: Dice Similarity Coefficient; CPA: Class pixel accuracy.

4.1.3. Ablation of the Three Lightweight Transformer Encoders at Various Stages

To further evaluate the effect of the lightweight transformer encoder’s placement
on segmentation performance, we analyzed the impact of different insertion locations on
the segmentation results. Specifically, we placed the lightweight transformer encoders
at EF1, EF2, and EF3 and at EF2, EF3, and EF4, respectively. The experimental results are
shown in Table 3. From the experimental results, it can be seen that the stacked lightweight
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transformer encoder improves segmentation performance, and its segmentation results
increase with the stacked positions, i.e., the highest segmentation results are obtained
when modeling global correlation in the EF3, EF4, and EF5 stages. However, since the
feature maps extracted by the shallow layers of the algorithm (e.g., EF1 and EF2) are only
downsampled by 1–2 layers, their feature maps are still large in scale, and applying the
transformer to EF1, EF2, and EF3 will affect the performance and generate additional
computational cost. Therefore, this paper achieves a relative balance between performance
and computational complexity by applying the transformer to EF3, EF4, and EF5.

Table 3. Segmentation results of different lightweight transformer positions. Red arrows indicate
increases. The best results are marked with bold text.

Model JI(%) ↑ DSC(%) ↑ CPA(%) ↑
EF1, EF2 and EF3 87.92 ± 1.15 92.45 ± 0.54 92.19 ± 1.23
EF2, EF3 and EF4 88.31 ± 0.84 93.62 ± 0.59 93.77 ± 0.93
EF3, EF4 and EF5 89.39± 0.60 94.08± 0.37 94.10± 0.73

JI: Jaccard Index; DSC: Dice Similarity Coefficient; CPA: Class pixel accuracy.

4.1.4. Ablation of the Block Numbers on Different Transformer Encoders

Convolution is a local operation that usually only models the relationships between
neighboring pixels. In contrast, a transformer is a global operation with a powerful ability
to model the relationship between all pixels. The use of convolution combined with
transformers can better represent the semantic features of an image [49]. Table 2 also
verifies the effectiveness of the transformer structure. However, the trade-off between the
number of layers and performance in the transformer remains disputed. We analyzed the
impact of the number of layers in the transformer, and the experimental results are shown
in Figure 4b. Note that K, M, and N represent the number of transformer layers in the first,
second, and third lightweight transformer encoders, respectively. For example, 1× 1× 1
means that each lightweight encoder uses only one transformer layer. The results show that
the best segmentation performance was achieved by choosing two transformer layers in
each lightweight transformer encoder. Thus, as the number of layers increases, the number
of network parameters also gradually increases, but the performance gain decreases.

4.2. Comparison with State-of-the-Art Methods

To verify the segmentation performance of the proposed algorithm, we compared it
with different algorithmic models. The experimental results are shown in Table 4. All results
are presented as the mean and standard deviation, and the best results are highlighted
in bold. Table 4 shows that our method achieves the best results on three evaluation
metrics. The three evaluation index values of our method are 89.39%, 94.08%, and 94.10%,
respectively. Compared with the worst results, these metrics are improved by 10.96%,
7.75%, and 11.08%. Compared with our preproposed MSEDTNet network, these metrics
are improved by 0.57%, 0.74%, and 1.65%, respectively. To further validate the merits of our
method, paired Student’s t-tests with secondary results were performed to ensure that the
experimental results were statistically significant. The results are shown in Table 4, and the
p-value (p < 0.05) denotes a significant difference between our method and the comparison
method. From the above analysis, it can be concluded that our method achieves superior
performance in bladder tumor segmentation.
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Table 4. Segmentation results of different competing methods. Red arrows indicate increases. The
best results are marked with bold text. The green asterisk indicates that the difference between our
method and the competitor is significant after the paired Student’s t-test. (*: p < 0.05).

Model JI(%) ↑ DSC(%) ↑ CPA(%) ↑
PylNet [20] 87.99 ± 0.61 93.20 ± 0.39 92.77 ± 0.83 *

Res-UNet [44] 87.42 ± 0.63 92.83 ± 0.41 92.08 ± 0.73
MD-UNet [19] 88.81 ± 0.59 * 92.92 ± 0.85 92.51 ± 1.11
Dolz et al. [25] 88.56 ± 0.37 93.56 ± 0.23 * 92.73 ± 0.51

MSEDTNet [21] 88.22 ± 0.59 93.34 ± 0.38 92.45 ± 1.40
UNet [11] 86.48 ± 1.25 92.20 ± 0.83 91.10 ± 2.08

DeepLabv3+ [45] 83.11 ± 1.16 87.38 ± 0.74 85.32 ± 2.13
TransUNet [46] 81.02 ± 1.36 90.87 ± 1.01 92.54 ± 1.32
Swin-UNet [33] 78.43 ± 1.17 86.33 ± 0.95 83.02 ± 1.63

LCANet 89.39± 0.60 94.08± 0.37 94.10± 0.73
JI: Jaccard Index; DSC: Dice Similarity Coefficient; CPA: Class pixel accuracy.

We also illustrate the floating point operations (FLOPs) and frames per second (FPS) of
different segmentation methods in Figure 5. The FLOPs refer to the amount of computation
and are used to measure the complexity of the model. The larger the value of each FLOPs,
the higher the computational complexity required by the model. The FPS is defined in the
image domain as the number of frames per second transmitted by the screen, which reflects
the inference speed of the model. As shown in Figure 5, compared with MSEDTNet, our
method achieved the best results in both FLOPs and FPS. Although convolution-based
segmentation models, such as PylNet, require less computational effort than our method,
the semantic segmentation performance of their network is shown to be unsatisfactory in
Table 4. This finding illustrates the important role of transformers in driving performance
improvements in segmentation networks and reflects our introduction of a new attention
computation that can effectively reduce the complexity of the network and further improve
its inference speed.
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Figure 5. The FLOPs and FPS histogram of different segmentation methods: (a) the FLOPs histogram
of different segmentation methods; (b) the FPS histogram of different segmentation methods.

Figure 6 displays the visual segmentation results of different methods. Compared
with the segmentation results of other methods, LCANet not only effectively mitigates the
perturbation of tumor size and surrounding tissues but also achieves segmentation results
that are closer to ground-truth masks. In addition, LCANet can alleviate the influence of
heterogeneous structures on the segmentation results and optimize the unsmooth edge re-
gions as much as possible. Comprehensive evaluation results shows that LCANet achieves
the best segmentation results in bladder tumor segmentation.
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(a1) Input Image (b1) UNet (c1) PylNet (e1) Res-Unet

(h1) MD-UNet(g1) Swin-Unet (k1) LCANet (l1) Ground Truth

(f1) Dolz et al.(d1) MSEDTNet 1198

1305

(i1) DeepLabv3+ (j1) TransUNet

(a2) Input Image (b2) UNet (c2) PylNet (e2) Res-Unet (f2) Dolz et al.(d2) MSEDTNet

(h2) MD-UNet(g2) Swin-Unet (k2) LCANet (l2) Ground Truth(i2) DeepLabv3+ (j2) TransUNet

Figure 6. Segmentation results of different competing methods: (a1,a2) The original image of the
input; (b1–k1) and (b2–k2) are images of UNet, PylNet, MSEDTNet, Res-UNet, Dolz et al. [25],
Swin-UNet, MD-UNet, DeepLabv3+, TransUNet, and ours; (l1,l2) the ground-truth image. The red
rectangle is the tumor area.

5. Discussion

In this paper, we propose the use of a lightweight context-aware network (LCANet)
for the semantic segmentation task of bladder cancer. The network not only has a solid
ability to extract local detail information but also captures the global semantic features of
the context using a transformer encoder. In fusing local and global features, we added
the channel attention module to the skip-connection structures to enhance the valuable
feature for bladder tumor segmentation. In addition, the pyramid scene parsing module
is introduced, aiming to achieve the feature extraction of tumor information at different
scales. We conducted the ablation experiments to evaluate the effectiveness of network
modules. According to the experimental results in Tables 2 and 3, we can observe that the
setup of our network components resulted in optimal network performance in bladder
tumor segmentation.

We also compared the performance of LCANet with current state-of-the-art methods.
Based on the experimental results, we can draw several conclusions. In general, the
segmentation performance of the networks based on UNet variants (such as Res-UNet) is
better than that of the original UNet network, which suggests that using residual structures
to fuse low-level features during the encoding phase facilitates the segmentation of bladder
lesions. We observed that DeepLabv3+ achieved a suboptimal performance, possibly
because the network has a robust feature representation and is prone to overfitting on
simple bladder cancer segmentation tasks. We also observed that some improved networks
(e.g., PylNet, MD-UNet, and Dolz et al. [25]) also achieved relatively good segmentation
results, because these networks are modified as necessary for the properties of bladder
tumor images, such as by adopting dilated convolution or atrous pyramid pooling to
enhance the multiscale feature extraction ability of the network. From the segmentation
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results of U-shaped networks with transformers (such as MSEDTNet), it can be concluded
that transformers can also improve segmentation performance. However, Swin-UNet uses a
transformer to replace the convolution operation, yielding poor segmentation results. This
finding suggests that combining transformers with CNNs may improve the segmentation
performance of bladder tumor images [50,51]. However, this process requires necessary
modifications to fit the complex bladder tumor images according to the properties of the
images [52]. For example, TransUNet achieved an unsatisfactory performance, which may
be because the network is not explicitly designed for bladder cancer segmentation.

Our proposed method combines all the merits mentioned above, such as using CNNs
to parse detailed features, using transformers to model global feature relationships, and
using pyramid scene parsing to expand multiscale features. Using these modules, we
achieved satisfactory results. Based on the different methods of FLOPs and the FPS his-
togram in Figure 5, we observed some interesting phenomena. Generally, the computational
complexity required by the convolution-based approach is much lower than that of the
transformer-based method. Thus, the FPS of the convolution-based method is much higher
than that of the transformer-based method. Compared with MSEDTNet, LCANet improves
the self-attention calculation and significantly reduces computational complexity.

According to the visual segmentation results shown in Figure 6, various methods can
segment the tumor region. Specifically, the original UNet fails to model multiscale semantic
features and global semantic relationships; thus, the boundary segmentation is coarse,
especially for regions with muscle coverage. In contrast, PylNet and Res-UNet also obtain
unsatisfactory results for image boundary segmentation, although multiscale low-level and
high-level semantic feature fusion is considered. In addition, whereas MSEDTNet models
global semantic relationships in bladder cancer images, it models the higher-level semantic
information extracted by convolution and does not model interpixel correlations at the
fine-grained scale of MRI images. Our method models interpixel and long-range pixel
correlations from the fine-grained scale of MRI images and fully considers the role of skip
connections fusing local and global information in bladder cancer segmentation, which can
better describe the tumor region and generate more accurate tumor segmentation results.

Although the LCANet achieved the best segmentation performance on the bladder
tumor task, Figures 5 and 6 show that LCANet still has some shortcomings: (1) maintaining
segmentation performance while further reducing the complexity of the self-attention
mechanism remains a challenging task; (2) obtaining accurate tumor boundaries remains
a challenging task, especially in severe situations with similar intensity distributions of
surrounding tissues. To address the above challenges, we will design more lightweight
self-attention computation schemes to further reduce the complexity of self-attention
while maintaining segmentation performance. Furthermore, we will introduce boundary
loss functions to optimize the segmentation boundaries, which improves segmentation
performance. In addition, this paper focuses on the task of tumor segmentation, and the
considerations of future work will include the classification and staging of bladder cancer.

6. Conclusions

To better address the problem of bladder tumor segmentation, we designed a novel
lightweight transformer encoder and used it to construct a lightweight context-aware
network (LCANet) for bladder lesion segmentation. LCANet includes a local detail encoder
to generate local-level details of the lesion, and a lightweight transformer encoder to model
the global-level features with different resolutions, which can reduce the computational
complexity of the self-attention mechanism while maintaining performance. Then, the
pyramid scene parsing module extracts high-level and multiscale semantic features. The
decoder provides high-resolution segmentation results by fusing local-level details with
global-level cues at the channel level. Comprehensive experimental results demonstrate
that LCANet performs better in terms of bladder tumor segmentation and can address more
complex bladder lesion segmentation, showing its promise as a clinical tool for segmenting
bladder tumors and reducing the heavy workload of radiologists. In addition, the LCANet
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framework is scalable and sustainable, meaning that it can easily be extended to other
tumor disease segmentation tasks.
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