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Abstract: This paper investigates the mean-square stability of uncertain time-delay stochastic systems
driven by G-Brownian motion, which are commonly referred to as G-SDDEs. To derive a new set of
sufficient stability conditions, we employ the linear matrix inequality (LMI) method and construct a
Lyapunov–Krasovskii function under the constraint of uncertainty bounds. The resulting sufficient
condition does not require any specific assumptions on the G-function, making it more practical.
Additionally, we provide numerical examples to demonstrate the validity and effectiveness of the
proposed approach.
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1. Introduction

In general, dynamic changes are intrinsically linked to both the current and previous
states. Fundamentally, the designated system feature is defined as a time delay, wherein
mechanisms encompassing such a functionality are termed time-delay systems (TDS). In
view of the widespread applications of time delay in various technical domains such as
engineering technology, mechanics, cybernetics and biomedicine, the research scope of TDS
has gained prominence among researchers. Specifically, comprehensive research on TDS
stability revealed a critical issue pertaining to control theory, which has been assessed in
various monographs [1–13]. For example, in [14], Zhao and Zhu discussed a neutral stochas-
tic highly nonlinear time-delay system with a nonlinear growth condition. In addition,
closer studies revealed discrepancies relating to the memory length in numerous practical
systems, which highlights the lack of mandates concerning fixed delay. Subsequently,
the aspect of time-delay variation warrants both theoretical and practical evaluation [15].
Likewise, the prevalence of random factors and disturbances could potentially result in
system instability. Through extensive studies on stochastic delay differential equations
(SDDE) from several literary sources, valuable research findings have been obtained [14–20].
In particular, the research focus of SDDE stability is divided into two categories: the first
method extends the Lyapunov stability theorem and LaSalle invariant principle of TDS
to SDDE, while the second approach employs the stochastic Lyapunov stability theorem
to derive the stability criterion. With the emergence of the linear matrix inequality (LMI)
toolbox, research domains on SDDE stability have gradually advanced [21]. Furthermore,
prominent scholars have begun to leverage LMI to ascertain SDDE stability and to derive
the system stability conditions [22–24]. For instance, Zhu [25] first solved the stabilization
problem of stochastic nonlinear delay systems by using event-triggered feedback control
and the LMI tool.
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Subsequently, Peng [26,27] formulated the concepts of G-Gaussian expectation (GGE)
and G-Brownian motion (GBM) on the topic of sublinear expectation space, thereby pro-
viding a novel aspect for upcoming investigations. In the presence of model uncertainty,
the discipline of stochastic calculus typically poses serious concerns. Evidently, Peng [28]
adopted the basic theory of time-consistent G-expectation to introduce the GGE and GBM
and diligently utilized both concepts to establish the relevant integral. Furthermore, Ren
and Yuan et al. [29–32] assessed the stability of stochastic differential equations under
G expectation and attained multiple results. Zhu and Huang [33] studied the p-moment
exponential stability of a class of stochastic time-delay nonlinear systems (SDNS) driven by
G-Brownian motion. Fei and Fei [34] attempted to provide the criteria for delay-dependent
stability of G-SDDEs with highly nonlinear coefficients.

In accordance with an accurate mathematical model, both the classical and modern
control theories aid in constructing the control system. In the realm of practical engineering,
multiple ambiguities such as measurement interference, aging of system components, wear,
unmodeled dynamics of the system and system linearization approximation can possibly
lead to system errors or uncertain system parameters [35,36]. Subsequently, the obtained
mathematical model fails to accurately delineate the controlled system and to maintain
optimal system performance, thereby compromising the overall stability of the resultant
control system.

According to the aforementioned discussion, the distinct lack of relevant literature
pertaining to the concurrent stability analysis of both probability and coefficient uncertainty
is evident. In this study, we propose a novel method for obtaining sufficient conditions
for system stability using LMI. By analyzing the uncertainty of system coefficients and the
disturbance of G-Brownian motion on the system, our sufficient conditions do not require
specific assumptions on the G function, making them more practical and easy to implement.
Ideally, this paper strives to conduct an extensive analysis on the subject of G-SDDE to
address the specified issues.

The primary contributions of this research are encapsulated as follows:

(1) This study investigates the stability criterion of G-SDDEs in the context of coefficient
uncertainty, offering a comprehensive understanding of how variable coefficients
impact system stability.

(2) Unlike previous research that typically imposes specialized conditions on the G
function within their premises, our study innovatively addresses the G function
without imposing any specific constraints. This approach, while offering a broader
understanding, undeniably introduces considerable challenges to our research.

Consider the following system:
dx(t) = [A(t)x(t) + B(t)x(t− τ(t))]dt + [Cij(t)x(t) + Dij(t)x(t− τ(t))]d

〈
wi, wj

〉
t
,

+[Ej(t)x(t) + Fj(t)x(t− τ(t))]dwj
t,

x(t) = ϕ(t) t ∈ [−τM, 0],

(1)

where 0 ≤ τ(t) ≤ τM, τ̇(t) 6 d < 1; ws stands for an n-dimensional G-Brownian motion
defined in the G-expectation space; A(t), B(t), Cij(t), Dij(t), Ej(t), Fj(t) ∈ Rn×n, A(t) =
A + ∆A(t), B(t) = B + ∆B(t), Cij(t) = Cij + ∆Cij(t), Dij(t) = Dij + ∆Dij(t), Ej(t) = Ej +
∆Ej(t), Fj(t) = Fj +∆Fj(t) ; [A(t) B(t) Cij(t) Dij(t) Ej(t) Fj(t)] = HK(t)[Z1 Z2 Z3 Z4 Z5 Z6]

and KT(t)K(t) ≤ I; and I is a unit matrix. A, B, Cij, Dij, Ej, Fj ∈ Rn×n are real constant
matrices.

The current paper is summarized as follows: Section 2 presents mathematical concepts.
In Section 3, as the main part of this work, the stability of G-SDDE is proved using LMI.
Section 4 gives some numerical examples and simulation results.
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2. Definitions and Preliminaries

In this section, we introduce some notations and preliminaries about sublinear ex-
pectations and G-Brownian motion; more details concerning this section can be found
in [26,37].

Definition 1 ([27]). Let Ω be the space of all Rn-valued continuous functions with w0 = 0,
equipped with the distance

ρ(w1, w2) =
∞

∑
i=1

1
2i [(max

∣∣∣w1
t − w2

t

∣∣∣) ∧ 1]

Then, (Ω, ρ) is a metric space. H is assumed to be a linear space of real valued functions,
which is defined on Ω.

Definition 2 ([27]). A function Ê : H → R is called a sublinear expectation; if ∀X, Y ∈ H,
C ∈ R and λ > 0, it satisfies the following properties:

(1) Monotonicity: If X, Y ∈ H and X ≥ Y, then ÊX ≥ ÊY.
(2) Maintaining constants: Ê(C) = C.
(3) Subadditivity: Ê(X + Y) ≤ Ê(X) + Ê(Y).
(4) Positive homogeneity: Ê(λX) = λÊ(X).

Definition 3 ([28]). For any fixed T > 0, let ΩT = C0([0, T]; Rn) be the space of Rn-valued
continuous paths on [0, T ] with w0 = 0, endowed with the supremum norm, and Bt(w) = wt be
the canonical process. Cb,Lip(Rd×n) denotes the set of bounded Lipschitz functions on Rd×n.

Definition 4 ([28]). (G-normal distributions) The monotonic and sublinear function G : S(d)→
R is defined by

Lip(ΩT) =
{

ϕ(Bt1 , · · · , Btn) : n > 1, t1, · · · , tn ∈ [0, T], ϕ ∈ Cb,Lip(Rd×n)
}

where S(d) denotes the set of d× d symmetric matrices. Note that there is a bounded and closed
subset Υ ⊂ S+(d) such that

G(A) =
1
2

sup
O∈Υ

tr[OA], A ⊂ S(d).

where S+(d) denotes the set of d× d positive-definite symmetric matrices.

Remark 1. G(·) has the following properties:

(1) G(A + B) ≤ G(A) + G(B).

(2) G(λA) = λG(A), λ ≥ 0.

(3) If A ≤ B, then G(A) ≤ G(B).

Definition 5 ([28]). For each V ∈ C1,2(R+ × Rn; R), define an operator L, which is called a
G-Lyapunov function:

LV(t, x(t)) = ∂tV(t, x(t)) + 〈∂xV(t, x(t)), f (t, x1, x2)〉+ G(〈∂xV(t, x(t)), g(t, x1, x2)〉

+
〈
∂2

xxV(t, x(t))h(t, x1, x2), h(t, x1, x2)
〉
).
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where 〈∂xV(t, x), g(t, x1, x2)〉 +
〈
∂2

xxV(t, x)h(t, x1, x2), h(t, x1, x2)
〉

is a symmetric matrix in
Sn, with the form

〈∂xV(t, x), g(t, x1, x2)〉+
〈

∂2
xxV(t, x)h(t, x1, x2), h(t, x1, x2)

〉
:=

[
〈
∂xV(t, x), gij(t, x1, x2) + gji(t, x1, x2)

〉
+
〈

∂2
xxV(t, x)hi(t, x1, x2), hj(t, x1, x2)

〉
]nij

where x1 = x(t), x2 = x(t− τ(t)), f (t, x1, x2)
∆
= A(t)x(t) + B(t)x(t− τ(t)), g(t, x1, x2)

∆
=

Cij(t)x(t) + Dij(t)x(t− τ(t)), h(t, x1, x2)
∆
= Ej(t)x(t) + Fj(t)x(t− τ(t)).

Definition 6 ([38]). (1) For fixed p > 1, the space Mp,0
G ([0, T]) of simple processes is defined by

Mp,0
G =

{
ηt(ω) :=

N−1

∑
j=0

ξ j(ω)I[tj ,tj+1]
; ξ j(ω) ∈ Lp

G(Ωtj), ∀N > 1, 0 = t0 < t1 < . . . < tN = T, j = 0, 1, . . . , N − 1

}

where Lp
G(Ωtj) =

{
ξ ∈ L1

G(Ωtj) : Ê(|ξ|p) < ∞
}

(2) For every ηt(ω) :=
N−1
∑

j=0
ξ j(ω)I[tj ,tj+1]

∈ Mp,0
G ([0, T]), its Bochner integral is defined by∫ t

0 ηt(ω)dt = ∑N−1
j=0 ξ j(ω)(tj+1 − tj).

(3) Let Ê(η) = 1
T
∫ T

0 Ê(η)dt = 1
T ∑N−1

j=0 ξ j(ω)(tj+1 − tj). For each p > 1, let Mp,0
G ([0, T])

be the completion of Mp,0
G ([0, T]) under the following norm:

‖η‖Mp
G([0,T]) =

1
T
(
∫ T

0
Ê(ηp

s )dt)
1
p = (

1
T ∑N−1

j=0 E
∣∣ξ j(ω)

∣∣P(tj+1 − tj))
1
p

Definition 7 ([38]). Define the Ito integral by I(η) =
∫ T

0 ηtdwt for ηt(ω)

dt = ∑N−1
j=0 ξ j(ω)I(tj+1−tj)

∈ Mp,0
G ([0, T]).

Definition 8 ([39]). The trivial solution of System (1) is said to be asymptotically stable in mean
square, if there exists a σ0 > 0 such that

lim
t→∞

Ê|x(t; t0, x0)|2 = 0

whenever Ê|x0|2 < σ0.

Assumption 1 ( 1′). Let A(t), B(t), Cij(t), Dij(t) satisfy the following conditions:

(1) AT(t) = A(t), BT(t) = B(t).
(2) CT

ij (t) = Cij(t) = Cji(t), Dij(t) = −Dji(t)(Dij
T(t) = Dij(t) = Dji(t)).

Remark 2. While the coefficient matrix’s Assumption 1 and Assumption 1′ appear to be strictly
constrained, they serve a convenient purpose in proving Theorem 2, 3 and 4. These proofs do
not require any special assumptions about the G function, which is often necessary in [30,34].
A special assumption about the G function is made in [26], while in our study, the treatment
of the G function involves the proposition of specific conditions for the study of the G function
itself. Furthermore, Assumption 1’ is more universally applicable than Assumption 1, making it an
essential consideration in the research. It is worth noting that these assumptions play a significant
role in the results obtained.
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Lemma 1 ([39]). If V ∈ C1,2(R+ × Rn; R) satisfies the following conditions, then system (1) is
mean-square exponentially stable:

(1) For all (t, x) ∈ R+ × Rn, we have LV(t, x) ≤ 0.
(2) There exist positive constants C1 and C2 such that C1|x|2 ≤ V(t, x) ≤ C2|x|2.

Lemma 2 ([39]). If there exists V ∈ C1,2(R+ × Rn; R), satisfying the
following properties:

(1) ∀(t, x) ∈ R+ × Rn, there exist a constant λ > 0 such that

LV(t, x) ≤ −λV(t, x(t)),

(2) There exist constants C1, C2 > 0 such that

C1|x|2 ≤ V(t, x) ≤ C2|x|2,

then system (1) is mean-square exponentially stable.

Lemma 3 ([25]). (Schur complement) For known real matrices Ω1, Ω2 and Ω3, where Ω1 = ΩT
1 ,

Ω2 = ΩT
2 , then the following conditions are equivalent to each other:

(1)
[

Ω1 Ω3
ΩT

3 Ω2

]
< 0.

(2) Ω1 < 0, Ω2 −ΩT
3 Ω−1

1 Ω3 < 0.
(3) Ω2 < 0, Ω1 −ΩT

3 Ω−1
2 Ω3 < 0.

Lemma 4 ([21]). For a symmetric matrix Σ and real matrices M and N, the following matrix
inequality holds:

Σ + MKN + NTKT MT < 0,

if and only if the following matrix inequality is met:

Σ + εMMT + ε−1NT N < 0,

where KTK ≤ I and given scalar ε > 0.

3. Existence and Uniqueness Theorem

The G-SDDEs in (1) can be rewritten in an equivalent form:

x(t) = x(0) +
∫ t

0
f (s, x1, x2)ds +

∫ t

0
g(s, x1, x2)d

〈
wi, wj

〉
s
+
∫ t

0
h(s, x1, x2)dwj

s, (2)

where f , g and h satisfy the following Lipschitz condition hold:

Assumption 2. For f , g, h ∈ MP,0
G (R+; Rn), assume that there exist constants

L1, L2, L3, L4, L5 > 0 and L4 > L5, such that we have the following conditions:

(1) | f (s, x1, x2)− f (s, x̄1, x̄2)| ∨ |g(s, x1, x2)− g(s, x̄1, x̄2)| ≤ L1(|x1 − x̄1|+ |x2 − x̄2|).
(2) |h(s, x1, x2)− h(s, x̄1, x̄2)| ≤ L2(|x1 − x̄1|+ |x2 − x̄2|).
(3) | f (s, 0, 0)| ∨ |g(s, 0, 0)| ≤ L3 and |h(s, 0, 0)| ≤ L3.
(4) gT(s, x1, x2)x(s) 6 −L4xT

1 (t)x1(t) + L5xT
2 (t)x2(t)

Theorem 1. Let f , g and h satisfy Assumption 2; then, there is a unique solution x(t) of Equation
(2), which belongs to MP,0

G,l (R+; Rn).

Proof. Using Hölder′s inequality and Assumption 2, we can prove Theorem 1 by employing
similar steps to those used in [40].
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4. Main Results

In this section, we derive certain conditions that can be used to ensure the mean-square
stability of the trivial solutions of System (1). By doing so, we aim to establish a compre-
hensive understanding of the system’s behavior and to identify the underlying factors
that contribute to its stability. Specifically, we will explore various techniques, including
the application of Assumption 1, Assumption 1′ and Assumption 2 to demonstrate how
these conditions can be met. Additionally, we will draw upon similar methodologies
utilized in prior research studies, such as [25], to strengthen our findings and to validate
our conclusions. Overall, this section provides a valuable contribution to the literature and
serves as an important step towards understanding the system’s dynamics.

Theorem 2. Assuming Assumption 1 holds, for a scalar 0 < d < 1 and ∀ε > 0, the uncertain
time-delay system (1) can achieve mean-square stability if there exist positive definite matrices
Pi = PT

i > 0, Qi = QT
i > 0 and Ri = RT

i > 0 for i = 1, · · · , n, satisfying the following linear
matrix inequality (LMI):



Qi + Pi A + AT Pi + ε−1Z1ZT
1 PiB AT Pi + ε−1Z1ZT

1 εHT Pi εHT Pi 0
* −(1− d)Qi + ε−1Z2ZT

2 0 0 εHT Pi 0
* ∗ −Pi 0 0 0
* ∗ ∗ −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −Ri

 < 0, (3)



PiCii + CT
ii Pi + ε−1Z3ZT

3 0 ET
i Pi + ε−1Z3ZT

5 εHT Pi 0 0 0 0
∗ −R2

i FT
i Pi 0 εHT Pi Z6 Ri 0

∗ ∗ −Pi + ε−1Z5ZT
5 0 εHT Pi 0 0 0

∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ri


< 0. (4)

Proof. Using the following Lyapunov–Krasovskii candidate function

V(t, x(t)) = xT(t)Pix(t) +
∫ t

t−τ(t)
xT(s)Qix(s)ds, (5)

for V(t, x(t)), we have

LV(t, x(t)) = xT(t)Qix(t)− (1− τ̇(t))xT(t− τ(t))Qix(t− τ(t)) + 〈2Pix(t), A(t)x(t) + B(t)x(t− τ(t))〉

+G(
〈
2Pix(t), (Cij(t) + Cji(t))x(t) + (Dij(t) + Dji(t))x(t− τ(t))

〉
+
〈
2Pi(Ei(t)x(t) + Fi(t)x(t− τ(t))), Ej(t)x(t) + Fj(t)x(t− τ(t))

〉
)

= xT(t)[Qi + 2Pi A(t)]x(t) + 2xT(t)PiB(t)x(t− τ(t))− (1− τ̇(t))xT(t− τ(t))Qix(t− τ(t))

+2G(Θ).
where

Θ := (xT(t)[Pi(Cij(t) + Cji(t))]x(t) + xT(t)ET
j (t)PiEi(t)x(t)

+xT(t)Ej(t)PiFi(t)x(t− τ(t)) + xT(t− τ(t))FT
j (t)PiFi(t)x(t− τ(t)) + xT(t− τ(t))FT

j (t)PiEi(t)x(t))n
ij=1
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=

(
[xT(t) xT(t− τ(t))]

(
Pi(Cij(t) + Cji(t)) + ET

j (t)PiEi(t) ET
j (t)PiFi(t)

FT
j (t)PiEi(t) FT

j (t)PiFi(t)

)[
x(t)

x(t− τ(t))

])n

i,j=1

=
[
ϕT(t)Λij ϕ(t)

]
n×n

ϕT(t) = [xT(t) xT(t− τ(t))], Λij =

(
Pi(Cij(t) + Cji(t)) + ET

j (t)PiEi(t) ET
j (t)PiFi(t)

FT
j (t)PiEi(t) FT

j (t)PiFi(t)

)
.

LV(t, x(t)) ≤ xT(t)[Qi + Pi A(t) + A(t)Pi + AT(t)Pi A(t)]x(t) + xT(t)PiB(t)x(t− τ(t))

+xT(t− τ(t))B(t)Pix(t)− (1− d)xT(t− τ(t))Qix(t− τ(t)) + 2G(Θ)

= ϕT(t)
(

Qi + Pi A(t) + A(t)Pi + AT(t)Pi A(t) PiB(t)
* −(1− d)Qi

)
ϕ(t) + 2G(Θ).

Using Lemma 3, we have(
Qi + Pi A(t) + AT(t)Pi + AT(t)Pi A(t) PiB(t)

* −(1− d)Qi

)
< 0,

which is equivalent to

Σ1 =

 Qi + Pi A(t) + AT(t)Pi PiB(t) AT(t)Pi
∗ −(1− d)Qi 0
∗ ∗ −Pi

 < 0.

Using Lemma 4, we can obtain

Σ1 = Ω1 + Π1K(t)Γ1 + ΓT
1 K(t)TΠT

1 < 0,

if and only if there is a constant ε fulfilling the next inequality

Ω1 + εΠT
1 Π1 + ε−1Γ1Γ1

T < 0, (6)

where

Ω1 =

 Qi + Pi A + AT Pi PiB AT Pi
∗ −(1− d)Qi 0
∗ ∗ −Pi

, Π1 =

 Pi H Pi H 0
0 0 0

Pi H 0 0

, Γ1 =

 Z1 0 0
0 Z2 0

Z1 0 0

.

Ω1 + εΠT
1 Π1 + ε−1Γ1Γ1

T = Φ1 + Φ2 < 0 is equivalent to
Qi + Pi A + AT Pi + ε−1Z1ZT

1 PiB AT Pi + ε−1Z1ZT
1 εHT Pi εHT Pi

∗ −(1− d)Qi + ε−1Z2ZT
2 0 0 εHT Pi

∗ ∗ −Pi 0 0
∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ −εI

 < 0,

which is equivalent to

Qi + Pi A + AT Pi + ε−1Z1ZT
1 PiB AT Pi + ε−1Z1ZT

1 εHT Pi εHT Pi 0
* −(1− d)Qi + ε−1Z2ZT

2 0 0 εHT Pi 0
* ∗ −Pi 0 0 0
* ∗ ∗ −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −Ri

 < 0

where
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Φ1 =

 Qi + Pi A + AT Pi + ε−1Z1ZT
1 PiB AT Pi + ε−1Z1ZT

1
* −(1− d)Qi + ε−1Z2ZT

2 0
* * −Pi + ε−1Z1ZT

1

,

Φ2 =

 2εHT P2
i H εHT P2

i H 0
* εHT P2

i H 0
* * 0

.

Noting that Λii is a symmetric matrix, Λii < 0 is equivalent to

Σ2 =

 PiCii(t) + CT
ii (t)P 0 ET

i (t)Pi
* 0 FT

i (t)P
* * −Pi

 < 0

using Lemma 4 again, Σ2 < 0 is equivalent to

Σ2 = Ω2 + Π2K(t)Γ2 + ΓT
2 KT(t)ΠT

2 < 0

if and only if there is a constant ε, meeting the upcoming inequality

Ω2 + εΠT
2 Π2 + ε−1Γ2Γ2

T < 0, (7)

where

Σ2 =

 PiCii + CT
ii Pi 0 ET

i Pi
* 0 FT

i P
* * −Pi

, Π2 =

 Pi H 0 0
0 0 0
0 Pi H Pi H

, Γ2 =

 Z3 0 0
0 Z6 0

Z5 0 0


Ω2 + εΠT

2 Π2 + ε−1Γ2Γ2
T = Φ3 + Φ4 < 0 is equivalent to

PiCii + CT
ii Pi + ε−1Z3ZT

3 0 ET
i Pi + ε−1Z3ZT

5 εHT Pi 0 0
* Z6ZT

6 FT
i Pi 0 εHT Pi 0

* * −Pi + ε−1Z5ZT
5 0 εHT Pi 0

* * * −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −εI

 < 0

which is equivalent to

PiCii + CT
ii Pi + ε−1Z3ZT

3 0 ET
i Pi + ε−1Z3ZT

5 εHT Pi 0 0 0 0
∗ −R2

i FT
i Pi 0 εHT Pi Z6 Ri 0

∗ ∗ −Pi + ε−1Z5ZT
5 0 εHT P 0 0 0

∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Ri


< 0

where

Φ3 =

 PiCii + CT
ii Pi + ε−1Z3ZT

3 0 ET
i Pi + ε−1Z3ZT

5
* Z6ZT

6 FT
i Pi

* ∗ −Pi + ε−1Z5ZT
5

, Φ4 =

 εHT P2H 0 0
* εHT P2H εHT P2H
* εHT P2H εHT P2H

.
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Next, according to the properties of function G(·) and Λii < 0, and as we know that O
is a positive definite matrix, we have

G(Θ) =
1
2

sup
O∈Υ

tr(OΘ) 6
1
2

sup
O∈Υ

λmax(O)
n

∑
i=1

tr(Λii) < 0,

where λmax(O) denotes the largest eigenvalue of O and tr(·) denotes the trace of the
corresponding matrix.

Finally, we obtain
LV < 0.

Noting that Pi and Qi are positive definite matrices, there exist constants C1 and C2
such that

C1|x|2 ≤ V(t, x(t)) ≤ C2|x|2.

Therefore, System (1) is mean-square stable.

Theorem 3. Assuming τ(t) = 0 and Assumption 1 holds, ε > 0, the uncertain System (1) can
achieve mean-square stability by finding positive definite matrices Pi = PT

i > 0, Qi = QT
i > 0 and

Ri = RT
i > 0 for i = 1, · · · , n, satisfying the following linear matrix inequality (LMI):

Qi + PA + AT P + εZ1ZT
1 0 εHT P 0

* −Pi 0 0
* ∗ −εI 0
* ∗ ∗ −Ri

 < 0,



CT
ii Pi + PiCii + εZ3ZT

3 0 ET
i Pi + εZ5ZT

5 εHT Pi 0 0
* −R2

i 0 0 Ri 0
* ∗ −Pi 0 0 εHT P
* ∗ ∗ −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −εI

 < 0.

Proof. Obviously, the proof process refers to Theorem 2, and Lemmas 3 and 4 are also
needed.

Theorem 4. Assuming both Assumption 1′ and Assumption 2 hold, and ∀ε > 0, the mean-square
stability of the uncertain time-delay system in (1) can be guaranteed if there exist positive definite
matrices Pi = Pi

T > 0, Qi = Qi
T > 0 and Ri = Ri

T > 0 for i = 1, · · · , n that satisfy the
following linear matrix inequality (LMI):



Qi + Pi A + AT Pi + ε−1Z1ZT
1 PiB AT Pi + ε−1Z1ZT

1 εHT Pi εHT Pi 0
* −(1− d)Qi + ε−1Z2ZT

2 0 0 εHT Pi 0
* ∗ −Pi 0 0 0
* ∗ ∗ −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −Ri

 < 0, (8)
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−R2
i 0 ET

i P Ri 0 0 0
* −R2

i FT
i Pi 0 HT Pi 0 Ri

* ∗ −Pi + ε−1Z5ZT
5 + ε−1Z6ZT

6 0 0 HT Pi 0
* ∗ ∗ −εI 0 0 0
* ∗ ∗ ∗ −εI 0 0
* ∗ ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ ∗ −εI


< 0. (9)

Proof. Consider the same Lyapunov–Krasovskii candidate function as (5).
According to Remark 2, we have G(Θij) 6 G(Θ1

ij) + G(Θ2
ij), considering G(Θ1

ij) and

G(Θ2
ij), respectively.

Θij :=
〈
2Pix(t), (Cij(t) + Cji(t))x(t) + (Dij(t) + Dji(t))x(t− τ(t))

〉
+ 〈2Pi(Ei(t)x(t) + Fi(t)x(t− τ(t))),

Ej(t)x(t) + Fj(t)x(t− τ(t))
〉

Θ1
ij :=

〈
2Pix(t), (Cij(t) + Cji(t))x(t) + (Dij(t) + Dji(t))x(t− τ(t))

〉
Θ2

ij :=
〈
2Pi(Ei(t)x(t) + Fi(t)x(t− τ(t))), Ej(t)x(t) + Fj(t)x(t− τ(t))

〉
Based on (4) in Assumption 2, we can obtain

Θ1
ij 6 −L4xT(t)x(t) + L5xT(t− τ(t))x(t− τ(t)) := Θ3

which implies
G(Θ1

ij) 6 G(Θ1
ij −Θ3) + G(Θ3) < 0,

noting that

G(Θ1
ij −Θ3) =

1
2

sup
O∈Υ

tr(O(Θ1
ij −Θ3)n

i,j=1) 6
1
2

sup
O∈Υ

λmax(O)
n

∑
i=1

tr(Θ1
ii −Θ3) 6 0.

On the other hand,

 Θ3 . . . Θ3

...
. . .

...
Θ3 · · · Θ3

 =


ϕT(t)

(
−L4 0

* L5

)
ϕ(t) . . . ϕT(t)

(
−L4 0

* L5

)
ϕ(t)

...
. . .

...

ϕT(t)
(
−L4 0

* L5

)
ϕ(t) · · · ϕT(t)

(
−L4 0

* L5

)
ϕ(t)


due to L4 > L5, can be easily obtained

tr(ϕT(t)
(
−L4 0

* L5

)
ϕ(t)) < 0.

Therefore, we obtain

G(Θ3) =
1
2

sup
O∈Υ

tr(O(Θ3)n
i,j=1) 6

1
2

sup
O∈Υ

λmax(O)ntr(Θ3) < 0

and we know Θ2
ii = ϕT(t)

(
ET

i (t)PiEi(t) ET
i (t)PiFi(t)

FT
i (t)PiEi(t) FT

i (t)PiEi(t)

)
ϕ(t), so we only need the fol-

lowing to hold: (
ET

i (t)PiEi(t) ET
i (t)PiFi(t)

FT
i (t)PiEi(t) FT

i (t)PiEi(t)

)
< 0
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which is equivalent to  0 0 ET
i (t)Pi

* 0 FT
i (t)Pi

* * −Pi

 < 0

Using Lemma 4, we can show that it is equivalent to

−R2
i 0 ET

i P Ri 0 0 0
* −R2

i FT
i Pi 0 HT Pi 0 Ri

* ∗ −Pi + ε−1Z5ZT
5 + ε−1Z6ZT

6 0 0 HT Pi 0
* ∗ ∗ −εI 0 0 0
* ∗ ∗ ∗ −εI 0 0
* ∗ ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ ∗ −εI


< 0

Hence,
G(Θij) 6 G(Θ1

ij) + G(Θ2
ij) < 0

the rest follows the same proof process as in Theorem 2, and we obtain

Qi + Pi A + AT Pi + ε−1Z1ZT
1 PiB AT Pi + ε−1Z1ZT

1 εHT Pi εHT Pi 0
* −(1− d)Qi + ε−1Z2ZT

2 0 0 εHT Pi 0
* ∗ −Pi 0 0 0
* ∗ ∗ −εI 0 0
* ∗ ∗ ∗ −εI 0
* ∗ ∗ ∗ ∗ −Ri

 < 0

This ends the proof.

5. Numerical Examples

Example 1. Consider the following two-dimensional G-SDDE. Let ϕ1(t) = −0.05+ 0.1 sin(10t),
ϕ2(t) = 0.05− 0.1 sin(10t), τ(t) = 0.5 sin(t), ε = 1 and the corresponding coefficient matrices
be as follows:

A =

(
−0.65 0.5

0.5 −0.65

)
, B =

(
0.3 0.05
0.05 0.05

)
, C11 =

(
−10 0

0 −10

)
, C12 = C21 =

(
0 0
0 0

)
C22 =

(
−5 1
1 −5

)
, E1 =

(
0.1 0
0 0.1

)
, E2 =

(
0.3 0
0 0.3

)
, F1 =

(
0.2 0
0 0.2

)
, F2 =

(
0.1 0
0 0.1

)
Z1 =

(
0.1 0
0 0.1

)
, Z2 =

(
0.1 0
0 0.1

)
, Z3 =

(
−10 0

0 −10

)
, Z5 =

(
−0.05 0

0 −0.05

)
, H =

(
0.02 0

0 0.02

)
,

Z6 =

(
−10 0

0 −10

)
Moreover, let

Υ =

{
Υ =

(
O11 O12
O21 O22

)
: O11 ∈ [4, 5], O12 ∈ [1, 2], O22 ∈ [4, 5]

}
Through the MATLAB LMI toolbox, the upcoming possible solution can be derived for the

LMI in (3) and (4):

P1 =

(
14.0741 0.3062
0.3062 17.0813

)
, Q1 =

(
6.0347 −2.3100
−2.3100 6.9992

)
, R1 =

(
1.6820 −0.0129
−0.0129 1.6820

)
P2 =

(
11.6163 1.6701
1.6701 11.6163

)
, Q2 =

(
9.8632 −0.6683
−0.6683 9.8632

)
, R2 =

(
1.9385 0.0174
0.0174 1.9385

)
.
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By using the Euler method [41], we choose the step size h = 0.001 and w1(t)
∼ N(0, [9, 10]t), w2(t) ∼ N(0, [10, 11]t) to simulate the numerical solution x1(t), x2(t) and
Ê(x1(t))2, Ê(x2(t))2 for the system in Example 1 and Example 2, which are shown in Figures 1–4,
respectively.

Example 2. Consider the following two-dimensional G-SDDE. Let ϕ1(t) = −0.05+ 0.1 sin(10t),
ϕ2(t) = 0.05− 0.1 sin(10t), τ(t) = 0.5 sin(t), ε = 1 and the corresponding coefficient matrices
be as follows:

A =

(
−1.5 0.5
0.5 −1.5

)
, B =

(
0.35 0.05
0.05 0.35

)
, C11 =

(
−10 0

0 −10

)
, C12 = C21 =

(
0 0
0 0

)
C22 =

(
−5 1
1 −5

)
, E1 =

(
0.1 0
0 0.1

)
, E2 =

(
0.3 0
0 0.3

)
, F1 =

(
0.2 0
0 0.2

)
, F2 =

(
0.1 0
0 0.1

)
Z1 =

(
0.1 0
0 0.1

)
, Z2 =

(
0.1 0
0 0.1

)
, Z3 =

(
−10 0

0 −10

)
, Z5 =

(
−0.05 0

0 −0.05

)
, H =

(
0.02 0

0 0.02

)
,

Z6 =

(
−10 0

0 −10

)
, D11 =

(
−10 0

0 −10

)
, D12 = D21 =

(
0 0
0 0

)
, D22 =

(
−5 1
1 −5

)
.

Using the MATLAB LMI toolbox, it is possible to derive a potential solution for the LMI in (8)
and (9), as shown below:

P1 =

(
3.3450 −0.1392
−0.1392 3.3450

)
, Q1 =

(
2.7255 1.0822
1.0822 2.7255

)
, R1 =

(
1.8680 −0.0135
−0.0135 1.8680

)

P2 =

(
9.5265 1.7550
1.7550 9.5265

)
, Q2 =

(
8.6448 4.1045
4.1045 8.6448

)
, R2 =

(
2.1565 0.0064
0.0064 2.1565

)
.

By selecting sufficiently large constants L4 and L5, we can verify that the following condition holds:

〈
2Pix(t), (Cij(t) + Cji(t))x(t) + (Dij(t) + Dji(t))x(t− τ(t))

〉
6 −L4xT(t)x(t) + L5xT(t− τ(t))x(t− τ(t)).

Figure 1. The numerical solution with h = 0.001 of the Euler method.
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Figure 2. The G−expectation of numerical solution with h = 0.001 of the Euler method.

Figure 3. The numerical solution with h = 0.001 of the Euler method.
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Figure 4. The G−expectation of numerical solution with h = 0.001 of the Euler method.

6. Conclusions

This paper primarily investigates the mean-square stability of G-SDDE and presents
three sufficient conditions for the stability of time-delay systems using the Lyapunov
function. Through Theorems 2–4 and numerical examples, we can directly use MATLAB
calculations to preliminarily determine the stability of G-SDDE systems when obtaining
system parameters, without the need for additional proof, thus reducing the practical
workload. These extensions will enhance our understanding of G-SDDE stability and
improve our ability to design effective control strategies for these systems. In the future,
we will also extend our work to the case of intermittent control, impulse control and
cooperative control [11–13].
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