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Abstract: The optimal control problems for stationary magnetohydrodynamic equations under the
inhomogeneous mixed boundary conditions for a magnetic field and the Dirichlet condition for
velocity are considered. The role of controls in the control problems under study is played by normal
and tangential components of the magnetic field given on different parts of the boundary and by the
exterior current density. Quadratic tracking-type functionals for velocity, magnetic field or pressure
are taken as cost functionals. The global solvability of the control problems under consideration
is proved, an optimality system is derived and, based on its analysis, a mathematical apparatus
for studying the local uniqueness and stability of the optimal solutions is developed. On the basis
of the developed apparatus, the local uniqueness of solutions of control problems for specific cost
functionals is proved, and stability estimates of optimal solutions are established.
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1. Introduction

Great attention has recently been paid to optimal control problems for the models of
magnetohydrodynamics (MHD) for a viscous conducting incompressible fluid. There are
a number of papers devoted to the theoretical study of such problems. Among these, we
mention the papers [1–8], devoted to studying the control problems for a stationary MHD
system, and papers [9–12], where the authors study control problems in a nonstationary
case. In these papers, solvability of the control problems is proved, and optimality systems
that describe the necessary conditions of the extremum are constructed and studied. In [5],
the uniqueness and stability of the solutions of control problems are studied for some
particular cases.

Along with optimal control problems, inverse or identification problems for the MHD
models as well as for other hydrodynamic models play a key role in applications. In these
problems, some parameters (constant or functional) that are included into a boundary value
problem under study are unknown and are required to be determined together with the
solution by using additional information about the state of the system. It is significant that
the identification problems can be reduced to appropriate control problems by choosing a
suitable tracking-type cost functional. As a result, control and identification problems can
be analyzed using a common approach based on the theory of smooth-convex extremum
problems in Hilbert or Banach spaces [13,14] (see also [15]).

In this paper, we study control problems for the stationary MHD model in which
magnetohydrodynamic equations are considered under mixed boundary conditions for
a magnetic field and under the Dirichlet boundary condition for velocity (see Section 2).
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The role of controls in control problems under study is played by normal and tangential
components of the magnetic field given on the different parts of the boundary and by
exterior current density given within the flow region. Our goal is to construct a theory
for studying local uniqueness and the stability of optimal solutions. Reaching of this
goal will be based on generalization of the approach developed in [5,16] for studying the
stability of optimal solutions for the stationary Navier–Stokes and MHD systems related to
small perturbations of the cost functionals to be minimized. In this approach, there is no
requirement to determine the second derivative of the cost functional under minimization,
since it is based on the analysis of fundamental properties of the optimality system for
the control problem under study and the use of special estimates for the difference of
solutions of the original and perturbed control problems. The method is rather simple,
natural and applicable for the models of hydrodynamics, heat convection, mass transfer
and other hydrodynamic models based on the Navier–Stokes system [15]. The use of this
approach allows us to obtain stability estimates for optimal solutions with respect to small
perturbations of the cost functional in an explicit and sufficiently easy-to-interpret form.

One of the features of this work consists in proving the solvability of optimal control
problems under minimum requirements on normal and tangential components of the
magnetic field given on the different parts of boundary and playing the role of controls
in control problems. This result, in contrast to [5], allows the use of simple L2 norms for
the normal and tangential components of the magnetic field instead of the standard H1/2

norms of boundary controls as Tikhonov regularizers while studying control problems for
the MHD system. This regularization is needed to prove the local uniqueness and stability
of the control problem solutions. The latter is the main goal of the study.

The structure of this paper is as follows. In Section 2, the boundary value problem is
formulated for stationary MHD equations under inhomogeneous mixed boundary con-
ditions for a magnetic field, and some notations that will be used throughout the paper
are introduced along with the presentation of some additional facts that are necessary for
studying optimal control problems. Presented in Section 3 are two lemmas on the existence
of lifting of the velocity and of the magnetic component of the solution of the boundary
value problem under consideration. In addition, the unique solvability of a generalized
linear analogue of the original MHD boundary value problem is proved. In Section 4, two
optimal control problems are formulated, and their solvability is proved, the optimality
system describing the first-order necessary optimality conditions is derived and, on the
basis of its analysis, the additional properties of optimal solutions are established. Finally,
in Section 5, we will prove the local uniqueness and stability of the solutions for the control
problems for “magnetic field-tracking” or “velocity-tracking” cost functionals.

2. Statement of the Boundary Value Problem and Notation

While studying the flows of electrically conducting fluids in real-life devices, the
necessity often arises in flows of conducting fluid modeling in domains with boundaries
consisting of parts with different electrophysical properties. Mathematical modeling of
conducting flows in such types of domains gives rise to the study of boundary value
problems for MHD equations under the mixed boundary conditions for a magnetic field.

Let Ω be a bounded domain of space R3 with boundary Σ = ∂Ω consisting of two
parts Στ and Σν. In this paper, we study control problems for the stationary magnetohydro-
dynamic equations of a viscous incompressible fluid

−ν∆u + (u · ∇)u +∇p− κ rot H×H = f, div u = 0, (1)

ν1rot H− ρ−1
0 E + κH× u = ν1j, div H = 0, rot E = 0, (2)

considered in domain Ω under the following inhomogeneous boundary conditions:

u|Σ = g, H · n|Στ = q, H× n|Σν = q, E× n|Στ = k. (3)
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Here u is the velocity vector, H and E are magnetic and electric fields, respectively,
p = P/ρ0, where P is the pressure, ρ0 = const is a fluid density, κ = µ/ρ0, ν1 = 1/ρ0σ = κνm,
ν and νm are constant kinematic and magnetic viscosity coefficients, σ is a constant electrical
conductivity, µ is a constant magnetic permeability, n is the outer normal to ∂Ω, and j is the
exterior current density. Further, we will refer to problem (1)–(3) for given f, j, g, q, q and k
as Problem 1. It should be noted that all the quantities used in (1)–(3) are dimensional and,
moreover, their physical dimensions are defined in terms of SI units.

We emphasize that Equations (1) and (2) are considered under mixed boundary
conditions with respect to electromagnetic field (H, E) in (3). These conditions generalize
two types of previously used boundary conditions. The first type is described by relations
H · n = 0 and E× n = 0 on ∂Ω, corresponding to a perfectly conducting boundary
(see, e.g., [2–5,17–20]). The second type is described by the condition H× n = 0 on ∂Ω
(see [8,21,22]) corresponding to a perfectly insulating boundary.

For the first time, global solvability of the homogeneous analogue of Problem 1 was
proved in [23]. In this work, mathematical tools from [24–26] were essentially used. Global
solvability of the inhomogeneous mixed Problem 1 was proved in [27]. In [28], the results
obtained in [27] were generalized for the model of heat conducting magnetohydrodynamics.
It should be noted that papers [29–31], magnetohydrodynamic equations are studied under
mixed boundary conditions with respect to velocity and under the standard boundary
conditions of the first type for an electromagnetic field. In [32], the author proves the
existence of a very weak solution of the MHD boundary value problem using the Dirichlet
boundary condition for a magnetic field. In [33], the MHD boundary value problem is
studied in the case where a pressure and zero tangential velocity component are specified on
an entire boundary. A local solvability of boundary value and boundary control problems
for the model of magnetomicropolar flow is proved in paper [6], where the optimality
systems are also derived and analyzed for the control problem.

Papers [4,28] and a number of others study the solvability of boundary value problems
for stationary and nonstationary magnetohydrodynamics–Boussinesq systems. In [34],
the authors study the properties of solutions (and, in particular, solvability) of the heat
conducting magnetic hydrodynamic equations with the buoyancy effects due to temper-
ature differences in the flow, Joule and viscous heating effects. In [35,36], the authors
study the solvability of boundary value problems respectively for a steady or nonsteady
MHD–Boussinesq system considered under mixed boundary conditions for temperature,
magnetic field and velocity, in the general case when the thermal conductivity viscosity
coefficient, electrical conductivity, magnetic permeability and specific heat of the fluid
depend on the temperature.

We will assume below that the domain Ω and the boundary Σ partitioning into parts
Στ and Σν satisfy

(i) Ω is a bounded domain in the space R3, and its boundary Σ = ∂Ω consists of m+1
disjoint closed C2 – surfaces Σ0, Σ1,. . . , Σm, each of which has a finite area where Σ0 is the
outer boundary of Ω.

(ii) Sets Στ and Σν are not empty, open and the following conditions take place:

Σ = Στ ∪ Σν, Στ ∩ Σν = ∅.

The conditions in (ii) mean that each of the parts Στ and Σν consists of a finite number
of connected components of the boundary Σ.

It is assumed that, in the general case, Ω is a multi-connected domain and by n ≥ 1,
we denote the number of handles of Σ. The case n = 0 corresponds to a simply connected
domain.

The numbers n and m are respectively called the first and second Betti numbers (see,
e.g., [15] (p. 277) and [37]). Typical examples of domain Ω are shown in Figures 1 and 2,
where a simply connected domain Ω with a disjoint boundary Σ = Σ0 ∪ Σ1 ∪ Σ2 (with
Betti numbers m = 2 and n = 0) and multi-connected toroidal domain Ω with a disjoint
boundary Σ (with Betti numbers m = 2 and n = 1), respectively, are presented.
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Figure 1. Example of simply connected domain with n = 0, m = 2.
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Figure 2. Example of multi-connected domain with n = 1, m = 2.

Similarly to [37], we denote, by m̂ + 1, the number of connected components of the
part Σν of the boundary Σ, by Σi, i = 1, . . . , m0 ≤ m we denote the internal connected
components of the boundary Σ contained in Σν. It is clear that m̂ = m0 if Σ0 ⊂ Σν and
m̂ = m0 − 1 if Σ0 ⊂ Στ . Similarly, by n1 (or n2), we denote the number of handles of the
part Σν (or Στ). Clearly, n1 + n2 = n (where n is the number of handles of Σ).

Below we will use the Sobolev spaces Hs(D), s ∈ R, H0(D) ≡ L2(D), where D denotes
Ω or the boundary Σ or a part Σ0 ⊂ Σ. The corresponding spaces of vector functions are
denoted by Hs(D)3 and L2(D)3. The inner products and norms in the spaces Hs(D) and
Hs(D)3 are denoted by (·, ·)s,D and ‖ · ‖s,D. The inner products and norms in L2(Ω) and
L2(Ω)3 are denoted by (·, ·) and ‖ · ‖Ω. By ‖ · ‖1,Ω and | · |1,Ω we denote norm and seminorm
in H1(Ω) or in H1(Ω)3. For arbitrary Hilbert space H by H∗ we denote the dual space of
H. By Hs

T(Σ0) we will denote the subspace in Hs(Σ0)
3 consisting of tangential on Σ0 ⊆ Σ

vector functions. Set H−s(Στ) = Hs(Στ)∗, H−s
T (Σν) = Hs

T(Σν)∗, H−1/2
T (Σ) = H1/2

T (Σ)∗

for s ≥ 0.
Let D(Ω) be the space of infinitely differentiable compactly supported functions in

Ω, H1
0(Ω) be the closure of D(Ω) in H1(Ω), V = {v ∈ H1

0(Ω)3 : div v = 0}, H−1(Ω)3 =
(H1

0(Ω)3)∗, L2
0(Ω) = {p ∈ L2(Ω) : (p, 1) = 0}, H1(Ω, Στ) = {ϕ ∈ H1(Ω) : ϕ|Στ = 0},

CΣτ0(Ω)3 := {v ∈ C0(Ω)3 : v · n|Στ = 0, v× n|Σν = 0}. In addition to the spaces defined
above, we will use the spaces H(div, Ω) = {v ∈ L2(Ω)3 : div v ∈ L2(Ω)}, H(curl, Ω) =
{v ∈ L2(Ω)3 : curl v ∈ L2(Ω)3}, H0(curl, Ω) = {v ∈ H(curl, Ω) : curl v = 0} and the
space HDC(Ω) = H(div, Ω) ∩ H(curl, Ω), endowed with Hilbert norm defined by

‖u‖2
DC := l−2‖u‖2

Ω + ‖div u‖2
Ω + ‖curl u‖2

Ω. (4)
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Here l is a dimensional factor of the dimension [l] = L0, and its value is equal to 1, L0
denotes the SI dimension of the length (for more detail, see Section 4).

Any vector v defined on the boundary Σ (or on a part Σ0 ⊂ Σ) can be decomposed to
the sum of two vectors—the normal and tangential components vn and vT : v = vn + vT .
If v ∈ L2(Σ)3, the components vn and vT are given by formulas vn = (v · n)n ≡ vnn and
vT = v− vn ≡ (n× v)× n. Here vn = v · n decribes the normal component of field v,
v× n describes the tangential vector orthogonal to the normal n and to vT . It is clear that
vT = 0 on Σ if v× n|Σ = 0. By γn|Σ0 (or γτ |Σ0) we denote the operator defined on HDC(Ω),
which is placed in correspondence to every function h ∈ HDC(Ω) with the normal trace
γn|Σ0 h = h · n|Σ0 (or tangential trace γτ |Σ0 h = h× n|Σ0 ).

The following Green’s formulae (see, e.g., [38]) will be used below:∫
Ω

v · grad ϕ dx +
∫

Ω
div v ϕ dx =

∫
∂Ω

v · n ϕ dσ ∀v ∈ H1(Ω)3, ϕ ∈ H1(Ω), (5)

∫
Ω
(v · curl w−w · curl v)dx =

∫
∂Ω

(v× n) ·wTdσ ∀v, w ∈ H1(Ω)3. (6)

If ϕ ∈ H1(Ω, Στ) or w ∈ CΣτ0(Ω)3 ∩ H1(Ω)3 the right-hand sides of (5) or (6) become∫
Σν

v · n ϕdσ or
∫

Στ
(v× n) ·wTdσ. Based on (5), (6) we say, following [25], that the function

v ∈ HDC(Ω) weakly satisfies condition v · n = 0 on Σν if∫
Ω
(v · grad ϕ + div v ϕ)dx = 0 ∀ϕ ∈ H1(Ω, Στ).

Similarly, we say that v× n = 0 weakly on Στ if∫
Ω
(v · curl w−w · curl v)dx = 0 ∀w ∈ CΣτ0(Ω)3 ∩ H1(Ω)3.

Let HDCΣτ
(Ω) be the closure of CΣτ0(Ω)3∩H1(Ω)3 with respect to norm ‖ · ‖DC in (4).

Set

HΣτ (Ω) = {h ∈ L2(Ω)3 : div h = 0, curl h = 0 in Ω, h · n|Στ = 0, h× n|Σν = 0},

HΣν(Ω) = {h ∈ L2(Ω)3 : div h = 0, curl h = 0 in Ω, h · n|Σν = 0, h× n|Στ = 0},

VΣτ (Ω) = {v ∈ HDCΣτ
(Ω) : div v = 0 in Ω} ∩HΣτ (Ω)⊥. (7)

Equalities h · n|Στ = 0, h× n|Σν = 0 or h · n|Σν = 0, h× n|Στ = 0 in (7) are understood
in the weak sense defined above.

We remind that the spacesHΣτ (Ω) andHΣν(Ω) are finite dimensional [37]. In partic-
ular, the dimension ofHΣτ (Ω) under conditions (i), (ii) is exactly m̂ + n2, and the basis of
the spaceHΣτ (Ω) consists of gradients∇ẑj of harmonic functions ẑj ∈ H1(Ω), j = 1, . . . , m̂
satisfying boundary conditions

∂ẑj/∂n|Στ = 0, ẑj|Σν\Σj
= 0, ẑj|Σj = 1, j = 1, . . . , m̂,

and harmonic vector fields yl ∈ HΣτ (Ω), l = 1, . . . , n2 satisfying the condition
∫

ςk
yl · ndσ = δlk

for any cycle ςk, k = 1, . . . , n2, contained in Στ and not homotopic to zero in Ω. Here and
below, δlk is the Christoffel symbol equal to 1 at l = k and 0 at l 6= k.

Similarly, the basis ofHΣν(Ω) consists of gradients∇ẑj of harmonic functions ẑj ∈ H1(Ω),
j = m̂ + 1, . . . , m satisfying the boundary conditions

∂ẑj/∂n|Σν = 0, ẑj|Στ\Σj
= 0, ẑj|Σj = 1, j = m̂ + 1, . . . , m
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and harmonic vector fields yl ∈ HΣν(Ω) satisfying the condition
∫

ζk
yl · ndσ = δlk ∀ζk,

k, l = n2 + 1, . . . , n. Here ζk denotes a cicle contained in Σν that is not homotopic to zero
in Ω.

A number of important properties inherent in the function spaces defined above and
proved in [25] are presented in the following lemma.

Lemma 1. We assume that conditions (i), (ii) hold. Then:
(1) HDCΣτ

(Ω) ⊂ H1(Ω)3 and the norm ‖ · ‖DC is equivalent to the norm ‖ · ‖1,Ω;
(2) there is a positive constant δ1 depending on domain Ω and Στ such that the following

holds:
‖curl h‖2 ≥ δ1‖h‖2

1,Ω ∀h ∈ VΣτ (Ω); (8)

(3) the orthogonal decomposition of the space L2(Ω)3 holds:

L2(Ω)3 = ∇H1(Ω, Στ)⊕ curl HDCΣτ
(Ω)⊕HΣν(Ω). (9)

Along with the spaces HDC(Ω) and H0(curl, Ω), their subspaces

Hs+1/2
div (Ω) := Hs+1/2(Ω)3 ∩ {h ∈ HDC(Ω) : divh = 0} ∩HΣτ (Ω)⊥,

H0
Στ
(curl, Ω) := {e ∈ H0(curl, Ω) : e× n|Στ ∈ L2

T(Στ)}, 0 ≤ s ≤ 1/2,

will be used equipped, respectively, with norms

‖h‖Hs+1/2
div (Ω)

= ‖h‖s+1/2,Ω + ‖curl h‖Ω, ‖e‖H0
Στ

(curl,Ω) := ‖e‖Ω + ‖e× n‖Στ .

The spacesHs+1/2
div (Ω) and H0

Στ
(curl, Ω) will be used below as the solution spaces for

magnetic and electric components, respectively. In turn, the spaces

H1
T(Ω) = {v ∈ H1(Ω) : v · n|Σ = 0}, H1

div(Ω) := {v ∈ H1
T(Ω) : div v = 0},

will play the role of the solution spaces for velocity u. Besides Lemma 1, we also will use
the following lemma (for details, see [25,26,38]).

Lemma 2. Under condition (i) there exist constants C1 = C1(Ω), δi = δi(Ω) > 0, γ′i(Ω),
γi = γi(Ω) > 0, i = 0, 1, β = β(Ω), depending on Ω such that

|(∇u,∇w)| ≤ ‖u‖1,Ω‖w‖1,Ω ∀u, w ∈ H1(Ω)3, (∇v,∇v) ≥ δ0‖v‖2
1,Ω ∀v ∈ H1

0(Ω)3, (10)

(curl Ψ, rot Ψ) ≥ δ1‖Ψ‖2
1,Ω ∀Ψ ∈ VΣτ (Ω), (11)

‖curlH‖Ω ≤ ‖H‖Hs+1/2
div (Ω)

≤ C1‖H‖1,Ω ∀ H ∈ H1(Ω)3. (12)

|((u · ∇)v, w)| ≤ γ′0‖u‖L3(Ω)3‖v‖1,Ω‖w‖1,Ω ≤

≤ γ0‖u‖1,Ω‖v‖1,Ω‖w‖1,Ω ∀u, v, w ∈ H1(Ω)3,
(13)

|(curlH1 ×H2, v)| ≤ ‖curlH1‖Ω‖H2‖L3(Ω)‖v‖L6(Ω) ≤

≤ γ1‖H1‖1,Ω‖H2‖s+1/2,Ω‖v‖1,Ω ∀H1 ∈ H(curl, Ω), H2 ∈ Hs+1/2(Ω)3,
(14)

|(curlΨ× h, v)| ≤ ‖rotΨ‖Ω‖h‖L3(Ω)3‖û‖L6(Ω)3 ≤

≤ γ1‖Ψ‖1,Ω‖H‖s+1/2,Ω‖v‖1,Ω ∀H ∈ Hs+1/2
div (Ω), v, Ψ ∈ H1(Ω)3.

(15)

Moreover, the following equality holds:

((u · ∇)v, v) = 0 ∀u ∈ H1
div(Ω), v ∈ H1

0(Ω)3. (16)
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The bilinear form defined by −(div·, ·) satisfies

sup
v∈H1

0 (Ω)3,v 6=0
−(divv, p)/‖v‖1,Ω ≥ β‖p‖Ω ∀p ∈ L2

0(Ω). (17)

Below, when formulating a result on the existence of magnetic lifting, we will need
the space

H−1/2
T (divΣν ; Σν)={h ∈ H−1/2

T (Σν) : divΣν h∈H−1/2(Σν)},

endowed with a norm

‖h‖2
−1/2,div,Σν

= ‖h‖2
−1/2,Σν

+ ‖divΣν h‖2
−1/2,Σν

,

and its subspace

H̃s
T(Σν) = {h ∈ H−1/2

T (divΣν ; Σν) : divΣν h = 0 in H−1/2(Σν),

(h, m)Σν = 0 ∀m ∈ HΣν(Ω), (h, yl)Σν = 0, l = n2 + 1, . . . , n} ∩ Hs
T(Σν), (18)

s ≥ 0, with the norm ‖h‖H̃s
T(Σν)

= ‖h‖s,Σν . Here divΣν is the linear surface divergence

operator on the part Σν of the boundary Σ (see [15,37]). In the case s = 0, instead of H̃T(Σν),
we will write L̃2

T(Σν).
Let the following conditions for the data take place in addition to conditions (i), (ii):
(iii) f ∈ H−1(Ω)3, g ∈ H1/2

T (Σ), k ∈ (γτ |Στ )H0
Στ
(curl, Ω),

(iv) q ∈ Hs(Στ), q ∈ H̃s
T(Σν), j ∈ L2(Ω)3, s ∈ [0, 1/2].

As usual, while studying control problems for the MHD system, we will deal with a
weak form of Problem 1. This consists of finding a triple of functions (u, H, p) ∈ H1

T(Ω)×
Hs+1/2

div (Ω)× L2
0(Ω) satisfying

ν(∇u,∇v) + ν1(rotH, rotΨ) + ((u · ∇)u, v) + κ[(rotΨ×H, u)− (rotH×H, v)] −

− (divv, p) = F(v, Ψ) ≡ 〈f, v〉+ ν1(j, rot Ψ) + ρ−1
0 (k, Ψ)Στ

∀(v, Ψ) ∈ H1
0(Ω)3 ×VΣτ

(Ω),
(19)

divu = 0 in Ω, u = g on Σ, H · n = q on Στ , H× n = q on Σν. (20)

In order to obtain (19), one should multiply the first relation in (1) by v ∈ H1
0(Ω)3,

the first relation in (2) by rot Ψ where Ψ ∈ VΣτ (Ω), to integrate over Ω, to apply Green’s
formulas, to add the obtained results and to make use of the identity (see details in [27])

(E, curl Ψ) =
∫

Στ

(E× n|Στ ) ·ΨTdσ = (k, ΨT)Στ ∀Ψ ∈ VΣτ(Ω). (21)

The identity (19) does not contain electric field E ∈ H0
Στ
(curl, Ω), which was eliminated

with the help of (21). However, using a condition on a boundary vector k in (iii), vector E can
be uniquely recovered from triple (u, H, p) ∈ H1

div(Ω)×Hs+1/2
div (Ω)× L2

0(Ω) satisfying (19)
such that the first equation in relations (2) holds a.e. in Ω (see [27]). This allows us to refer,
below, to the mentioned triple (u, H, p) satisfying relations (19), (20) as a weak solution to
Problem 1.

3. Lifting of the Velocity and Magnetic Field, Solvability of Problem 1 and Its
Linear Analogue

The proof of the existence of a solution of the inhomogeneous boundary value
problem (1)–(3) essentially uses the results for the existence of lifting of the velocity and
magnetic field corresponding to the boundary conditions in (3). By velocity lifting, we
mean the function u0 ∈ H1

div(Ω) satisfying the boundary condition u0|Σ = g. By magnetic
field lifting, we mean the function H0 ∈ Hs+1/2

div (Ω) satisfying the mixed boundary condi-
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tions H0 · n|Στ = q and H0 × n|Σν = q . The existence of velocity lifting is ensured by the
following lemma, proved in [3].

Lemma 3. Under condition (i) for each function g ∈ H1/2
T (Σ) and arbitrary number ε > 0, there

is a function uε ∈ H1
T(Ω) such that

div uε = 0 in Ω, uε = g on Γ, ‖uε‖1,Ω ≤ Cε‖g‖1/2,Σ, ‖uε‖L4(Ω)3 ≤ ε‖g‖1/2,Σ. (22)

Here Cε is a constant depending on ε and Ω.

The existence of the lifting of the magnetic part of the solution is ensured by the
following result, which is a generalization of Theorem 4.2 in [37], where it was proved in
the case s = 0.

Lemma 4. Let conditions (i), (ii) be satisfied. Then for any pair q ∈ Hs(Στ) and q ∈ H̃s
T(Σν),

where s ∈ [0, 1/2], there exists a unique function H0 ∈ Hs+1/2
div (Ω) such that

rot H0 = 0, div H0 = 0 in Ω, H0 · n = q on Στ , H0 × n = q on Σν,

‖H0‖Hs+1/2
div (Ω)

= ‖H0‖s+1/2,Ω ≤ CΣ(‖q‖s,Στ + ‖q‖s,Σν). (23)

Here CΣ is a constant independent of q and q.

In what follows, the vector H0 alone, defined in Lemma 4, will play the role of magnetic
lifting for Problem 1.

Let us define two linear subspaces ofHs+1/2
div (Ω):

Hs+1/2
div (Ω, Σν) = {h ∈ Hs+1/2

div (Ω) : h× n = 0 on Σν},

Hs+1/2
div (Ω, Στ) = {h ∈ Hs+1/2

div (Ω) : h · n = 0 on Στ}. (24)

From Lemma 4, applied for the case q = 0 on Σν, it follows that for any function
q ∈ Hs(Στ), there exists a unique solution h ∈ Hs+1/2

div (Ω, Σν) of problem (23) for q = 0,
while for any function q ∈ H̃s

T(Σν) there exists a unique solution h ∈ Hs+1/2
div (Ω, Στ) of

problem (23) for the case q = 0. Moreover, when h runs throughHs+1/2
div (Ω, Σν), its normal

component h · n|Στ runs through the space Hs(Στ). Similarly, when h runs through the
spaceHs+1/2

div (Ω, Στ), its tangential component h× n|Σν runs through the space H̃s
T(Σν).

Define the next products of spaces:

X = H1
T(Ω)×Hs+1/2

div (Ω)× L2
0(Ω), H = H1

T(Ω)×Hs+1/2
div (Ω),

W = H1
0(Ω)3 ×VΣτ (Ω), Y = W∗ × L2

0(Ω)× H1/2
T (Σ)× Hs(Στ)× H̃s

T(Σν). (25)

Along with Problem 1, when studying the control problems below, an important
role will be played by a linear analogue of Problem 1. This consists of finding a triple
(u, H, p) ∈ X ≡ H1

T(Ω)×Hs+1/2
div (Ω)× L2

0(Ω) satisfying the functions

aûĤ((u, H), (v, Ψ)) ≡ ν(∇u,∇v) + ν1(rotH, rotΨ) + ((û · ∇)u, v) + κ(rotΨ× Ĥ, w) −

− (rotH× Ĥ, v) = 〈F, (v, Ψ)〉+ (divv, p) ∀(v, Ψ) ∈W, (26)

divu = χ in Ω, u|Σ = g, H · n|Στ = q and H× n|Σν = q. (27)

Here F ∈ W∗ is an arbitrary functional, “velocity” û ∈ H1
div(Ω), “magnetic field”

Ĥ ∈ Hs+1/2
div (Ω) and χ ∈ L2

0(Ω) are given functions. In fact, we have somewhat generalized
the linear analogue of Problem 1 by replacing the solenoidality condition divu = 0 by the
more general condition divu = χ. Another generalization is that by the functional F in (26),
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we mean an arbitrary functional from W∗, which does not necessarily coincide with the
functional F defined in (19).

The following lemma about the unique solvability of problems (26), (27) holds.

Lemma 5. Let conditions (i), (ii) be satisfied. Then for any quintuple (F, χ, g, q, q) ∈ Y for
arbitrary s ∈ [0, 1/2], there exists a unique solution (u, H, p) ∈ X of problems (26), (27), and for
the solution the following estimates hold:

‖u‖1,Ω ≤ M̂0
u, ‖H‖Hs+1/2

div (Ω)
≤ M̂0

H, ‖p‖Ω ≤ M̂0
p. (28)

Here M̂0
u, M̂0

H, M̂0
p are nondecreasing continuous functions of ‖χ‖Ω, ‖F‖W∗ , ‖g‖1/2,Σ,

‖q‖s,Στ , ‖q‖s,Σν .

Proof of Lemma 5. The existence of the solution of (26), (27) and estimate (28) are proved
using the scheme proposed in [3] (see also [15], Chapter 6). For proving the uniqueness, let
us assume that there exist two solutions (ui, Hi, pi) ∈ X, i = 1, 2, of problem (26), (27). Then
the quantities u = u1 − u2, H = H1 −H2 and p = p1 − p2 belong to V ×VΣτ (Ω)× L2

0(Ω)
and satisfy

ν(∇u,∇v) + ν1(curl H, curlΨ) + ((û · ∇)u, v) +

+ κ[(curlΨ× Ĥ, w)− (curl H× Ĥ, v)]− (div v, p) = 0 ∀(v, Ψ) ∈W, (29)

div u = 0 in Ω, u|Σ = 0, H · n|Στ = 0, H× n|Σν = 0. (30)

Setting v = u, Ψ = H in (29) and using (16), we arrive at the relation

ν(∇u,∇u) + ν1(curl H, curl H) = 0. (31)

where (31) takes place by (10), (11) if u = 0 and H = 0 or u1 = u2 and H1 = H2 in Ω. Then
from (29), it follows that (divv, p) = 0 for all v ∈ H1

0(Ω)3. This means by inf-sup condition
(17), that p = 0 or p1 = p2 in Ω.

Let us rewrite the problem (26), (27) in an equivalent operator form. To this end, we
put in correspondence with the bilinear continuous forms

aû,Ĥ : H ×W ≡ (H1
T(Ω)×Hs+1/2

div (Ω))× (H1
0(Ω)3 ×VΣτ (Ω))→ R, b : W × L2

0(Ω)→ R,

linear continuous operators A : H → W∗, B : W → L2
0(Ω)∗ ≡ L2

0(Ω), B∗ : L2
0(Ω) → W∗,

acting by

〈A(u, H), (v, Ψ)〉 = aû,Ĥ((u, H), (v, Ψ)) ∀(u, H) ∈ H and (v, Ψ) ∈W, (32)

〈B(v, Ψ), r〉 = b̃((v, Ψ), r) ≡ b(v, r) = 〈B∗r, (v, Ψ)〉 ∀r ∈ L2
0(Ω), (v, Ψ) ∈W.

Using (32), one can rewrite the identity (26) in the equivalent operator form

A(u, H) + B∗p = F.

Setting x = (u, H, p), we define the operator Φ = (Φ1, Φ2, Φ3, Φ4, Φ5) : X → Y by

Φ1(x) = A(u, H) + B∗p, Φ2(x) = divu, Φ3(x) = u|Σ,

Φ4(x) = H · n|Στ , Φ5(x) = H× n|Σν . (33)

By construction, Φ belongs to the space of continuous linear operators L(X, Y), and
the original linear problems (26), (27) is equivalent to the operator equation

Φ(x) = y ≡ (F, χ, g, q, q) ∈ Y. (34)
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From Lemma 5, it follows that (34) has a unique solution for any element y ∈ Y.
This means that the operator Φ = (Φ1, Φ2, Φ3, Φ4, Φ5) is surjective and invertible. Then
it follows from Banach’s inverse operator theorem that the operator Φ : X → Y is an
isomorphism. Therefore, the following theorem holds.

Theorem 1. Let assumptions (i), (ii) be satisfied. Then the operator Φ : X → Y, which is defined
by (32), (33), is the isomorphism of the space X into Y.

We now formulate the following result concerning the sufficient conditions of the
existence of the solution to Problem 1, which was proved in [27].

Theorem 2. Under assumptions (i)–(iv) there exists a weak solution (u, H, p) to Problem 1, and
for this solution the following estimates hold:

‖u‖1,Ω ≤ Mu, ‖H‖Hs+1/2
div (Ω)

≤ MH, ‖p‖Ω ≤ Mp. (35)

Here Mu, Mp and MH are nondecreasing continuous functions of norms ‖f‖−1,Ω, ‖j‖Ω,
‖k‖Στ , ‖g‖1/2,Σ, ‖q‖s,Στ , ‖q‖s,Σν . If, besides, elements f, j, k, g, q and q are small (or “viscosity
coefficients” ν, νm are, vice versa, great) in the sense

γ0Mu + γ1(
√

κ/2)MH < δ0ν, γ1Mu + γ1(
√

κ/2)MH < δ1νm, (36)

where constants δ0, δ1, γ0, γ1 were defined in Lemmas 1 and 2, then the weak solution (u, H, p)
is unique.

Remark 1. Theorem 2 was proved in [27] under an additional condition on function g, namely
that g is a tangential vector on Σ. If this condition does not hold, i.e., g · n|Σ 6≡0, one can prove
only the local solvability of Problem 1. Thus, the problem of global solvability of inhomogeneous
problem (1)–(3) in the general case when g · n|Σ 6=0 is still an open problem (see related discussion
in [15,22]).

4. Statement of Control Problems, Optimality System and Additional Properties of
Optimal Solutions

We note that problems (1)–(3) contain constant parameters ν, ν1, ρ0, κ and functional
parameters—boundary functions g, k, q, q and “volume” source densities f and j. To solve
problems (1)–(3), one must specify values of respective parameters, boundary functions
and sources. In practice, however, some of their specific elements may be unknown, and
one should determine them and the solution (u, H, p) using certain information about
the solution.

In this section, control problems for the MHD system (1)–(3) will be considered, for
which we prove their global solvability. These problems are to minimize the so-called cost
functionals, which depend on the variables (u, H, p) of the main state and other unknown
functions (controls) satisfying the state Equations (1)–(3). We will choose one specific
cost functional:

I1(u) = ‖u− ud‖2
Q, I2(H) = ‖H−Hd‖2

Q, I3(p) = ‖p− pd‖2
Q. (37)

Here the function ud ∈ L2(Q)3 describes, in a subdomain Q ⊂ Ω velocity field,
given functions Hd ∈ L2(Q)3 and pd ∈ L2(Q) have a similar sense for magnetic field
or pressure. We note that functionals I1, I2, I3 are used to solve inverse problems for the
MHD system (1)–(3) using the optimization method. This method was developed by
A.N. Tikhonov in the process of creating the famous Tikhonov regularization method [39].
Currently, the optimization method is one of the fundamental methods for solving inverse
problems arising in electromagnetism, acoustics, fluid mechanics, heat and mass transfer,
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design of complicated technical devices and in other fields of physics, natural science and
engineering (for more detail, see [40–51]).

As controls in this paper, we choose three functions: q, q and j. The function j will
play the role of distributed control, while q and q will play the role of boundary controls in
the control problems stated below. We assume that the functions q, q and j change over
sets K1, K2 and K3 satisfying the following conditions:

(j) K1 ⊂ Hs(Στ), K2 ⊂ H̃s
T(Σν), K3 ⊂ L2(Ω)3 are nonempty convex closed sets.

Setting u = (q, q, j) ∈ K = K1 × K2 × K3, x = (u, H, p) ∈ X ≡ H1
T(Ω)×Hs+1/2

div (Ω)×
L2

0(Ω), we define an operator F ≡ (F1, F2, F3, F4, F5) : X×K → Y ≡ (H−1(Ω)3×VΣτ (Ω)∗)×
L2

0(Ω)× H1/2
T (Σ)× Hs(Στ)× H̃s

T(Σν) by

〈F1(x, u), (v, Ψ)〉 = ν(∇u,∇v) + ν1(rotH, rotΨ) + ((u · ∇)u, v)− (divv, p) +

+ κ[(rotΨ×H, u)− (rotH×H, v)]− 〈f, v〉 − ν1(j, rot Ψ) −

− ρ−1
0 (k, ΨT)Στ ∀(v, Ψ) ∈ H1

0(Ω)3 ×VΣτ (Ω),

〈F2(x), r〉 = −(divu, r) ∀r ∈ L2
0(Ω), F3(x) = u|Σ − g ∈ H1/2

T (Σ),

F4(x, u) = H · n|Στ − q ∈ Hs(Στ), F5(x, u) = H× n|Σν − q ∈ H̃s
T(Σν) (38)

and rewrite the weak form (19), (20) of Problem 1 as operator equation

F(x, u) ≡ F(u, H, p, q, q, j) = 0. (39)

Let us introduce a functional I : X → R and nonnegative parameters µ0, µ1, µ2, µ3,
and let us presuppose that the following conditions take place, in addition to (j):

(jj) I : X → R is a weakly lower semicontinuous cost functional;
(jjj) µ0 > 0, µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0 and K1, K2, K3 are limited sets, or µ1 > 0, µ2 > 0,

µ3 > 0 and the functional I : X → R is bounded below.
The following problem will be considered below:

J(x, u) =
µ0
2

I(x) +
µ1
2
‖q‖2

s,Στ
+

µ2
2
‖q‖2

s,Σν
+

µ3
2
‖j‖2

Ω → inf, F(x, u) = 0, (x, u) ∈ X× K. (40)

The parameters µ0, µ1, µ2, µ3 serve in regulating the relative contribution of each of
the terms in (40) and, moreover, to adjust their dimensions. Another purpose of using µl is
to ensure the uniqueness and stability for the control problems under study (see below).
The last three terms in the structure of J are penalization terms. In what follows, we will
refer to these terms as regularizers (strong in the case s > 0 and weak for s = 0). As will be
shown in Section 5, just the presence of these regularizers in the structure of the functionals
under minimization will allow us to prove the theorems concerning both the uniqueness
and stability for optimal solutions.

Let Zad = {(x, u) ∈ X × K, F(x, u) = 0, J(x, u) < ∞} be a set of possible pairs for
problem (40).

Theorem 3. Let the assumptions (i)–(iii), (j)–(jjj) hold, and let the set Zad be nonempty. Then for
arbitrary s ∈ [0, 1/2], the problem (40) has at least one solution (x, u) ∈ X× K.

Proof of Theorem 3. Let us denote by (xm, um) ≡ (um, Hm, pm, qm, qm, jm) ∈ Zad,
m ∈ N = {1, 2, . . . } a minimizing sequence, for which

lim
m→∞

J(xm, qm, qm, jm) = inf
(x,q,q,j)∈Zad

J(x, q, q, j) ≡ J∗.
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By the conditions of Theorem 3 and in virtue of Theorem 2, we have the following
estimates for qm, qm, jm, um, Hm, pm:

‖qm‖s,Στ ≤ c1, ‖qm‖s,Σν ≤ c2, ‖jm‖Ω ≤ c3, ‖um‖1,Ω ≤ c4,

‖Hm‖Hs+1/2
div (Ω)

≤ c5, ‖pm‖Ω ≤ c6.

Here c1, c2, . . . are some constants that do not depend on m. From the given estimates,
it follows that there are weak limits q∗ ∈ Hs(Στ), q∗ ∈ Hs

T(Σν), j∗ ∈ L2(Ω)3, u∗ ∈ H1
T(Ω),

H∗ ∈ Hs+1/2
div (Ω), p∗ ∈ L2

0(Ω) of some subsequences of sequences {qm}, {qm}, {jm}, {um},
{Hm}, {pm}. As usual, one should consider that as m→ ∞

qm → q∗ weakly in Hs(Στ), qm → q∗ weakly in Hs
T(Σν), jm → j∗ weakly in L2(Ω)3,

pm → p∗ weakly in L2(Ω), um → u∗ weakly in H1(Ω)3 and strongly in L4(Ω)3,

Hm → H∗ weakly inHs+1/2
div (Ω) ∩ L3(Ω)3 and strongly in L2(Ω)3. (41)

It is clear that u∗ ≡ (q∗, q∗, j∗) ∈ K, F2(x∗) = 0, F3(x∗) = 0, F4(x∗, u∗) = 0 and
F5(x∗, u∗) = 0 where x∗ ≡ (u∗, H∗, p∗). Let us show that F1(x∗, u∗) = 0, i.e., that

ν(∇u∗,∇v) + ν1(rot H∗, rot Ψ) + ((u∗ · ∇)u∗, v)− (div v, p∗) +

+ κ[(rot Ψ×H∗, u∗)− (rot H∗ ×H∗, v)] ≡

= 〈f, v〉+ ν(j∗, rot Ψ) + ρ−1
0 (k, ΨT)Στ ∀(v, Ψ) ∈ H1

0(Ω)3 ×VΣτ (Ω). (42)

To this end, we note that um, Hm, pm and jm satisfy the identity

ν(∇um,∇v) + ν1(rot Hm, rot Ψ) + ((um · ∇)um, v)− (div v, pm) +

+ κ[(rot Ψ×Hm, um)− (rot Hm ×Hm, v)] =

= 〈f, v〉+ ν1(jm, rot Ψ) + ρ−1
0 (k, ΨT)Στ ∀(v, Ψ) ∈ H1

0(Ω)3 ×VΣτ (Ω). (43)

Let us pass to a limit in (43) as m→ ∞. From (41), it follows that all linear terms in (43)
pass to corresponding linear terms in (42) as m→ ∞. Let us treat nonlinear terms beginning
with ((um · ∇)um, v). Since um ∈ H1

T(Ω), then arguing as in [3], we easily derive that

((um · ∇)um, v)→ ((u∗ · ∇)u∗, v) ∀v ∈ H1
0(Ω)3 as m→ ∞. (44)

We now consider the second nonlinear term (rot Hm ×Hm, v) in (43). It is clear that

(rot Hm ×Hm, v)− (rot H∗ ×H∗, v) =

= (rot Hm × (Hm −H∗), v) + (rot (Hm −H∗)×H∗, v). (45)

Let us prove firstly that for the first term in (45), we have

(rot Hm × (Hm −H∗), v)→ 0 ∀v ∈ H1
0(Ω)3 as m→ ∞. (46)

For this purpose, it is sufficient to prove that for an arbitrary pair, a number ε > 0 and
a test function v ∈ H1

0(Ω)3, there exists a number M = M(ε, v) such that

|(rot Hm × (Hm −H∗), v)| ≤ ε ∀v ∈ H1
0(Ω)3, ∀m ≥ M. (47)
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As H1
0(Ω) is the closure of D(Ω) by norm ‖ · ‖1,Ω, then for mentioned function

v ∈ H1
0(Ω)3 there exists a sequence vn ∈ D(Ω)3, converging to v by norm ‖ · ‖1,Ω as

n→ ∞. It is clear that for all m, n ∈ N, we have

|(rot Hm × (Hm −H∗), v)| ≤ |(rot Hm × (Hm −H∗), vn)| +

+ |(rot Hm × (Hm −H∗), vn − v)| ∀m, n ∈ N. (48)

From (41) follows that the norms ‖rot Hm‖Ω and ‖Hm − H∗‖L3(Ω)3 are uniformly
bounded. Therefore for all m ∈ N there exists a number N=N(ε, v) such that for the second
term in the right-hand side of (48) we have

|(rot Hm × (Hm −H∗), vn − v)| ≤ ε/2 ∀n ≥ N, ∀m ∈ N. (49)

Let us consider the first term on the right-hand side of (48). Based on Hölder inequality
for three functions, we have

|(rot Hm × (Hm −H∗), vn)| ≤ ‖rot Hm‖Ω ‖Hm −H∗‖Ω ‖vn‖L∞(Ω)3 .

Since ‖rot Hm‖Ω ≤ ‖Hm‖Hs+1/2
div (Ω)

≤ c5 and Hm → H∗ in L2(Ω)3 as m → ∞ by (41),

then there exists a number M = M(ε, v, N) such that the estimate |(rot Hm × (Hm −
H∗), vn)| ≤ ε/2 holds for all m ≥ M, n = N. From the obtained inequality and from
(48), (49), the estimate (47) follows. Since ε is an arbitrary positive number, the relation (46)
is proved.

Now we turn to the second term on the right-hand side of (45) and prove that

|((rot(Hm −H∗)×H∗), v)| → 0 ∀v ∈ H1
0(Ω)3 as m→ ∞. (50)

From the weak convergence of the sequence Hm in the space Hs+1/2
div (Ω), the weak

convergence of rot Hm to rot H∗ in L2(Ω)3 follows. As H∗ × v ∈ L2(Ω)3, we have

(rot (Hm −H∗)×H∗, v) = (rot Hm − rotH∗), H∗ × v)→ 0 ∀v ∈ H1
0(Ω)3 as m→ 0.

Therefore, (50) is proved. From (46) and (50), it follows from (45) that

(rot Hm ×Hm, v)→ (rot H∗ ×H∗, v) ∀v ∈ H1
0(Ω)3 as m→ ∞. (51)

Using the analogous scheme, one can show that for the last nonlinear term in (43), we
have

(rot Ψ×Hm, um)→ (rot Ψ×H∗, u∗) ∀Ψ ∈ VΣτ (Ω) as m→ ∞. (52)

As a result, passing to the limit in (43) as m → ∞, we arrive by (44), (51) and (52)
at (42). Finally, since J below is weakly semicontinuous on X× K functional, we have that
J(x∗, u∗) = J∗.

According to Theorem 3, the solution of the control problem (40) exists for any value
s ∈ [0, 1/2]. The case s = 0, corresponding to weak regularizers when q ∈ L2(Στ),
q ∈ L2

T(Σν), is physically the most interesting. Another physically interesting case is the
control problem with weak regularizers having the form

J(x, q) = (µ0/2)I(x) + (µ1/2)‖q‖2
Στ

+ (µ2/2)‖q‖2
Σν

+

+ (µ3/2)‖j‖2
Ω → inf, F(x, u) = 0, (x, u) ∈ X× K (53)

provided that (x, u) ∈ X × K for s > 0 as in the situation of problem (40) with strong
regularizers. Let the following additional condition apply:

(jv) µ0 > 0; µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0 and K is a bounded set in Hs(Στ)× H̃s
T(Σν)×

L2(Ω)3 for fixed s ∈ (0, 1/2].
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The proof of the following theorem is carried out analogously to the proof of Theorem 3.

Theorem 4. Let the assumptions (i)–(iii) and (j), (jj), (jv) hold, and let the set Zad be nonempty.
Then the problem (53) has a solutuion (x, u) ∈ X× K for any s ∈ (0, 1/2].

Our next goal is to analyze the uniqueness and stability of the solutions of our control
problems. For this purpose, we apply the technique developed in [5], which is based on
using the additional properties of optimal solutions obtained by analyzing the optimality
system. Therefore, the next stage of our study is to obtain the required optimality system.
For concreteness, we will consider the case of control problem (40). Preliminarily, we define
the spaces

X∗ = H1
T(Ω)∗ ×Hs+1/2

div (Ω)∗ × L2
0(Ω),

Y∗ = (H1
0(Ω)3 ×VΣτ (Ω))× L2

0(Ω)× H1/2
T (Σ)∗ × Hs(Στ)

∗ × H̃s
T(Σν)

∗,

which are dual of spaces X and Y defined in (25).
By [13], the derivation of the optimality system uses finding of the Fréchet par-

tial derivative with respect to x of F :≡ (F1, F2, F3, F4, F5) : X × K → Y defined in (38).
The simple analysis shows that the mentioned partial derivative at any point (x̂, û) ≡
(û, Ĥ, p̂, q̂, q̂, ĵ) ∈ X× K is a linear continuous operator F′x(x̂, û) : X → Y, which associates
every element (w, h, r) ∈ X with the element F′x(x̂, û)(w, h, r) = (ŷ1, ŷ2, ŷ3, ŷ4, ŷ5) ∈ Y.
Here the elements ŷ1 ∈ W∗ = H−1(Ω)3 × VΣτ (Ω)∗, ŷ2 ∈ L2

0(Ω), ŷ3 ∈ H1/2
T (Σ), ŷ4 ∈

Hs(Στ), ŷ5 ∈ H̃s
T(Σν) are defined by the triples (û, Ĥ, p̂) and (w, h, r) from relations

〈ŷ1, (v, Ψ)〉 = ν(∇w,∇v) + ν1(rot h, rotΨ) + ((w · ∇)û, v) +

+ ((û · ∇)w, v) + κ[(rotΨ× h, û) + (rotΨ× Ĥ, w)− (rot h× Ĥ, v)

−(rot Ĥ× h, v)] + b(v, r) ∀(v, Ψ) ∈ H1
0(Ω)3 ×VΣτ (Ω),

〈ŷ2, r〉 = b(w, r) ∀r ∈ L2
0(Ω), ŷ3 = w|Σ, ŷ4 = h · n|Στ , ŷ5 = h× n|Σν . (54)

By F′x(x̂, û)∗ : Y∗→X∗, we denote the operator adjoint to F′x(x̂, û), which is defined by

〈F′x(x̂, û)∗y∗, x〉X∗×X = 〈y∗, F′x(x̂, û)x〉Y∗×Y ∀(x, y∗) ∈ X×Y∗.

Following to [13] (Chapter 1), let us introduce an element y∗ = ((ξ, η), σ, ζ1, ζ2, ζ3) ∈
Y∗ having the sense of an adjoint state and define the Lagrangian L : X×K×R+×Y∗ → R
where R+ = {x ∈ R : x ≥ 0} by

L(x, u, λ0, y∗) = λ0 J(x, u) + 〈y∗, F(x, u)〉Y∗×Y ≡ λ0 J(x, u) + 〈F1(x, u), (ξ, η)〉 +

+ (F2(x), σ) + 〈ζ1, F3(x)〉Σ + 〈ζ2, F4(x, u)〉Στ + 〈ζ3, F5(x, u)〉Σν . (55)

Here and below, 〈·, ·〉Σ, 〈·, ·〉Στ or 〈·, ·〉Σν denote the duality pairings between H1/2
T (Σ)

and H−1/2
T (Σ), between Hs(Στ) and H−s(Στ) or between Hs

T(Σν) and H−s
T (Σν), respec-

tively. Based on the results of [13] (Chapter 1), one can prove the following theorem
about the justification of the Lagrange principle for problem (40) and the regularity for the
Lagrange multiplier (λ0, y∗).

Theorem 5. Let, under assumptions (i)–(iii) and (j), (jjj), the element (x̂, û) ≡ (û, Ĥ, p̂, q̂, q̂, ĵ) ∈
X × K be a local minimizer for problem (40), and let the cost functional I have the continuous
Fréchet derivative with respect to x at x̂. Then:

(1) there is a nonvanishing Lagrange multiplier (λ0, y∗) = (λ0, (ξ, η), σ, ζ1, ζ2, ζ3) ∈ R+ ×
Y∗ for which the Euler–Lagrange equation

F′x(x̂, û)∗y∗ = −λ0(µ0/2)I′(x̂) in X∗ (56)
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for adjoint state y∗ is satisfied and the minimum principle holds, having the form

L(x̂, û, λ0, y∗) ≤ L(x̂, u, λ0, y∗) ∀u ∈ K. (57)

(2) If, besides, condition (36) holds for each triple u ≡ (q, q, j) ∈ K, then any nonvanishing
Lagrange multiplier (λ0, y∗) satisfying (56) is regular, i.e., λ0 = 1. Moreover, it is determined
uniquely if the value is given.

Proof of Theorem 5. To prove statement 1 of Theorem 5 by [13] Chapter 1 (see also [15],
Chapter 6), it is sufficient to prove that the operator F′x(x̂, û) : X → Y is a Fredholm operator.
By virtue of (54), the operator F̂ ≡ F′x(x̂, û) : X → Y can be written in the form

F̂ = Φ + Φ̂ ≡ (Φ1, Φ2, Φ3, Φ4, Φ5) + (Φ̂1, 0, 0, 0, 0). (58)

Here the operators Φ1, Φ2, Φ3, Φ4, Φ5 : X → Y are defined by relations (32) and (33),
while the operator Φ̂1 : X →W∗ = H−1(Ω)3 ×VΣτ (Ω)∗ is defined by

〈Φ̂1(w, h, r), (v, Ψ)〉 = ((w · ∇)û, v) + κ[(rot Ψ× h, û)− (rot Ĥ× h, v)]. (59)

Using estimates (13)–(15), we deduce that

|((w · ∇)û, v)| ≤ γ′0‖w‖L3(Ω)3‖û‖1,Ω‖v‖1,Ω ∀v, w ∈ H1
T(Ω), (60)

|(rotΨ× h, û)| ≤ ‖rotΨ‖Ω‖h‖L3(Ω)3‖û‖L6(Ω)3 ∀Ψ ∈ Hs+1/2
div (Ω), ∀h ∈ Hs+1/2

div (Ω), (61)

|(rotĤ× h, v)| ≤ ‖rotĤ‖Ω‖h‖L3(Ω)3‖v‖L6(Ω)3 ∀v ∈ H1
T(Ω), h ∈ Hs+1/2

div (Ω). (62)

Since the space H1(Ω)3 and the space Hs+1/2
div (Ω) for any s > 0 are continuously

and compactly embedded into the space L3(Ω)3, then estimates (60)–(62) imply that the
operator Φ̂ = (Φ̂1, 0, 0, 0, 0) : X → Y where Φ̂1 is defined by (59) is continuous and
compact. In addition, it follows from Theorem 1 that the operator Φ : X → Y, defined by
relations (32) and (33) is an isomorphism. This means that the operator F′x(x̂, û) is Fredholm
as the sum of the isomorphism Φ and the continuous compact operator Φ̂. Therefore,
statement 1 about existence of nonzero Lagrange multiplier (λ0, y∗) is proved.

It remains to prove the regularity of the multiplier (λ0, y∗), i.e., that λ0 6= 0 under
conditions (36). Arguing as in paper [3], one can verify that (56) is equivalent to three
identities with respect to the adjoint state (ξ, η, σ, ζ1, ζ2, ζ3) having the form:

ν(∇w,∇ξ) + ν1(roth, rotη) + ((û · ∇)w, ξ) + ((w · ∇)û, ξ) +

+ κ[(rotη × Ĥ, w) + (rotη × h, û)] −

− κ[(rotĤ× h, ξ) + (roth× Ĥ, ξ)]− (divw, σ) + 〈ζ1, w〉Σ + 〈ζ2, h · n〉Στ +

+ 〈ζ3, h× n〉Σν=

= − λ0(µ0/2)〈I′u(x̂), w〉 − λ0(µ0/2)〈I′H(x̂), h〉 ∀(w, h) ∈ H1
T(Ω)×Hs+1/2

div (Ω), (63)

(divξ, r) = λ0(µ0/2)(I′p(x̂), r) ∀r ∈ L2
0(Ω). (64)

The mentioned statement about the regularity of the multiplier (λ0, y∗) is equivalent
to the statement about the nonexistence of nonvanishing solutions of the systems (63),
(64) at λ0 = 0, in which the elements x̂ = (û, Ĥ, p̂) and û = (q̂, q̂, ĵ) are connected by the
relation F(x̂, û) = 0. To prove this, one should denote by y∗ = (ξ, η, σ, ζ1, ζ2, ζ3) ∈ Y∗ an
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arbitrary solution of problems (63), (64) at λ0 = 0. Setting w = ξ, h = η and λ0 = 0 in (63),
(64) and using (16), we have

ν(∇ξ,∇ξ) + ν1(rotη, rotη) + ((ξ · ∇)û, ξ) + κ[(rotη × η, û)− (rotĤ× η, ξ)] = 0,

div ξ = 0 in Ω. (65)

Arguing as in [8], i.e., applying inequalities (8), (10), (13)–(15) for estimating all terms
in (65) and using estimates (35) at u = û, H = Ĥ, we derive the following inequality
from (65):

(δ0ν−γ0Mû−γ1(
√

κ/2)MĤ)‖ξ‖2
1,Ω +(δ1νm−γ1Mû−γ1(

√
κ/2)MĤ)κ‖η‖2

1,Ω ≤ 0. (66)

From (66), it follows under smallness conditions (36) at u = û, H = Ĥ that ξ = 0 and
η = 0 in Ω.

Setting ξ = 0, η = 0 in (63) at λ0 = 0, we have

−(divw, σ) + 〈ζ1, w〉Σ + 〈ζ2, h · n〉Στ
+ 〈ζ3, h× n〉Σν

= 0 ∀(w, h) ∈ H1
T(Ω)×Hs+1/2

div (Ω) (67)

,which in the case h = 0, transforms to

−(divw, σ) + 〈ζ1, w〉Σ = 0 ∀w ∈ H1
T(Ω). (68)

From (68), it follows that

(divw, σ) = 0 ∀w ∈ H1
0(Ω)3. (69)

By inf-sup condition (17), this identity holds if σ = 0. Setting σ = 0 in (68), we obtain
〈ζ1, w〉Σ = 0 for all w ∈ H1

T(Ω). This means that ζ1 = 0 in H−1/2
T (Σ).

Setting σ = 0, ζ1 = 0 in (67), we arrive at

〈ζ2, h · n〉Στ + 〈ζ3, h× n〉Σν = 0 ∀h ∈ Hs+1/2
div (Ω). (70)

Choosing h ∈ Hs+1/2
div (Ω, Σν) in (70), where Hs+1/2

div (Ω, Σν) is defined in (24), we
obtain 〈ζ2, h · n〉Στ = 0 for all h ∈ Hs+1/2

div (Ω, Σν). This means that ζ2 = 0 in H−s(Στ).
Analogously, we deduce that ζ3 = 0 in H−s

T (Σν). Thus, we obtained y∗ = 0, and the
regularity of the Lagrage multiplier is proved. Concerning the uniqueness property of the
Lagrange multiplier (1, y∗i ), it is a consequence of Fredholm property of the linear operator
F′x(x̂, û) : X → Y.

We note that the Lagrangian L defined in (55) is a continuously differentiable function
of controls q ∈ K1, q ∈ K2 and j ∈ K3, and its partial derivatives L′q(x̂, û, λ0, y∗) with
respect to q, L′q(x̂, û, λ0, y∗) with respect to q and L′j(x̂, û, λ0, y∗) with respect to j in any
point (x̂, û, λ0, y∗) are determined by

〈L′q(x̂, û, λ0, y∗), q〉 = λ0µ1(q̂, q)s,Στ − 〈ζ2, q〉Στ ∀q ∈ K1,

〈L′q(x̂, û, λ0, y∗), q〉 = λ0µ2(q̂, q)s,Σν − 〈ζ3, q〉Σν ∀q ∈ K2,

〈L′j(x̂, û, λ0, y∗), j〉 = λ0µ3(ĵ, j)− ν1(j, rot η) ∀j ∈ K3.

As the triple û ≡ (q̂, q̂, ĵ) is a minimizer of the function L(x̂, ·, λ0, y∗) on a closed
convex set K = K1 × K2 × K3 by (57), the following inequalities hold (see, e.g., [52]):

〈L′q(x̂, û, λ0, y∗), q− q̂〉 ≡ λ0µ1(q̂, q− q̂)s,Στ − 〈ζ2, q− q̂〉Στ ≥ 0 ∀q ∈ K1, (71)

〈L′q(x̂, û, λ0, y∗), q− q̂〉 ≡ λ0µ2(q̂, q− q̂)s,Σν − 〈ζ3, q− q̂〉Σν ≥ 0 ∀q ∈ K2, (72)
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〈L′j(x̂, û, λ0, y∗), j− ĵ〉 ≡ λ0µ3(ĵ, j− ĵ)− ν1(j− ĵ, rot η) ≥ 0 ∀j ∈ K3. (73)

Identities (63) and (64), the variational inequalities (71)–(73) and the operator constraint
(state equation) (39), which is equivalent to the weak forms (19) and (20) of Problem 1,
constitute the optimality system for our control problem (40). It describes the first-order
necessary conditions of optimality.

Below we will assume that multiplier λ0 is dimensionless. Dimensions of adjoint state
variables ξ, η, σ, ζ1, ζ2, ζ3 clearly depend on dimension [µ0] of parameter µ0. We assume
that the dimension [µ0] is chosen so that the dimensions of the adjoint state variables ξ, η
and σ coincide with those of u, H and p in the main state x = (u, H, p), i.e., so that

[ξ] = [u] = L0/T0, [η] = [H] = I0/L0, [σ] = [p] = L2
0/T2

0 . (74)

Here and below, L0, T0, I0 and M0 denote the SI dimensions of the length, time, electric
current and mass units expressed in meters, seconds, amperes and kilograms, respectively.
This allows us to refer to ξ, η and σ as “adjoint velocity”, “adjoint magnetic field” and
“adjoint pressure”.

Remark 2. It follows from conditions ξ ∈ H1
0(Ω)3, η ∈ VΣτ (Ω) and (64) that the adjoint velocity

ξ and adjoint magnetic field η possess properties

ξ|Σ = 0, η · n|Στ = 0, η × n|Σν = 0, div η = 0 and div ξ = λ0(µ0/2)χQ I′p(x̂) in Ω. (75)

Here χQ is a characteristic function of the set Q. We emphasize that the adjoint velocity ξ,
unlike η, is in a general case a nonsolenoidal vector function except for the case when the cost
functional I is independent of pressure p. Only in this case div ξ = 0 and, moreover, ξ ∈ V.

To prove the uniqueness and also stability of the solution of (40), we need to introduce
additional conditions for the data depending on the cost functional. Below, we preliminarily
derive one important inequality with respect to the difference of a solution (x1, u1) of
problem (40) and a solution (x2, u2) of the perturbed problem (40). In addition, we derive
the estimates for the difference x1− x2 via the difference u1− u2 = (q1− q2, q1−q2, j1− j2).

Let us denote by (x1, u1) ≡ (u1, H1, p1, q1, q1, j1) ∈ X×K an arbitrary solution to prob-
lem (40). By (x2, u2) ≡ (u2, H2, p2, q2, q2, j2) ∈ X × K, we denote the solution to problem

J̃(x, u) =
µ0
2

Ĩ(x) +
µ1
2
‖q‖2

s,Στ
+

µ2
2
‖q‖2

s,Σν
+

µ3
2
‖j‖2

Ω → inf, F(x, u) = 0, (x, u) ∈ X× K. (76)

Here Ĩ is a functional which is close to functional I. By virtue of Theorem 2, we have
for triples (ui, Hi, pi), i = 1, 2:

‖ui‖1,Ω ≤ M0
u = sup

u∈K
Mu(u), ‖Hi‖Hs+1/2

div (Ω)
≤ M0

H = sup
u∈K

MH(u),

‖pi‖Ω ≤ M0
p = sup

u∈K
Mp(u). (77)

Let the values M0
u and M0

H be such that

(γ0/δ0ν)M0
u + (γ1/δ0ν)(

√
κ/2)M0

H < 1/2,

(γ1/δ1νm)M0
u + (γ1/δ1νm)(

√
κ/2)M0

H < 1/2. (78)

To make conditions (78) more illustrative and to simplify the subsequent presentation,
we define the parameters

Re = γ0 M0
u/(δ0ν), Rm = γ1 M0

u/(δ1νm), Ha = γ1
√

κM0
H/(δ0ν), Pm = δ0ν/(δ1νm). (79)
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They are analogues of the hydrodynamic dimensionless parameters [53], namely the
Reynolds number Re, the magnetic Reynolds number Rm, the Hartman number Ha and
the magnetic Prandtl number Pm. We emphasize that parametersRe,Rm,Ha and Pm are
dimensionless. To demonstrate this fact, one should know the dimensions of all parameters
δ0, δ1, γ0, γ1 and β defined in Lemma 2 and also of M0

u and M0
H entering into (78). In order

to determine the dimensions ofRe,Rm,Ha and Pm, it will be assumed, below, the norms
‖ · ‖Ω and ‖ · ‖1,Ω of a function u in L2(Ω) and in H1(Ω) and seminorm | · |1,Ω in H1(Ω)
are defined as follows:

‖u‖2
Ω =

∫
Ω

u2dΩ, |u|21,Ω =
∫

Ω
|∇u|2dΩ, ‖u‖2

1,Ω = l−2‖u‖2
Ω + |u|21,Ω, [l] = L0. (80)

Here l is the dimensional factor having the dimension [l] = L0 with value equal to 1.
Using (80), one can verify that the dimensions of ‖u‖Ω, |u|1,Ω and ‖u‖1,Ω are connected
with the dimension [u] of u by the formulas

[‖u‖Ω] = [u]L3/2
0 and [|u|1,Ω] = [‖u‖1,Ω] = [u]L1/2

0 .

We recall also (see, e.g., [15] (p. 272)) that

[g] = [u] = L0/T0, [q] = [q] = [H] = I0/L0, [j] = I0/L2
0,

[νm] = [ν] = L2
0/T0, [κ] = L4

0/T2
0 I2

0 .

Combining this with (10)–(15), (17) and (74) yields

[δi] = 1, [γi] = L1/2
0 , [β] = 1,

[M0
u] = [‖u‖1,Ω] = [‖ξ‖1,Ω] = [‖g‖1/2,Σ] = L3/2

0 /T0, [M0
p] = L7/2

0 /T2
0 ,

[M0
H] = [‖H‖Hs+1/2

div (Ω)
] = [‖η‖1,Ω] = [‖q‖Στ ] = [‖q‖]Σν = [‖j‖Ω] = I0/L1/2

0 ,

[
√

κ‖H‖Hs+1/2
div (Ω)

] = L3/2
0 /T0 = [M0

u]. (81)

Using (81), we have that

[Re] = [Rm] = [Ha] = [Pm] = 1,

i.e., all the parameters Re, Rm, Ha and Pm defined in (79) are dimensionless. Since
parameters Re and Rm are connected by relation Rm = (γ1/γ0)PmRe, we can rewrite
conditions (78) in the following form containing only three nondimensional parameters
Re,Ha and Pm:

Re + (1/2)Ha < 1/2, (γ1/γ0)PmRe + (1/2)PmHa < 1/2. (82)

Denote, by (1, y∗i ) ≡ (1, ξi, ηi, σi, ζ
(i)
1 , ζ

(i)
2 , ζ

(i)
3 ), i = 1, 2, the Lagrange multipliers that

correspond to solutions (x1, u1) and (x2, u2) of problems (40) and (76), respectively (these
multipliers are determined uniquely under conditions (82)). By definition, they satisfy
identities

ν(∇w,∇ξi) + ν1(roth, rotηi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ[(rotηi ×Hi, w)

+(rotηi × h, ui)]− κ[(rotHi × h, ξi) + (roth×Hi, ξi)]− (divw, σi) + 〈ζ
(i)
1 , w〉Σ +

+ 〈ζ(i)2 , h · n〉Στ
+ 〈ζ(i)3 , h× n〉Σν

=

= − (µ0/2)〈(Ii)′u(xi), w〉 − (µ0/2)〈(Ii)′H(xi), h〉 ∀(w, h) ∈ H1
T(Ω)×Hs+1/2

div (Ω), i = 1, 2, (83)

(divξi, r) = (µ0/2)((Ii)′p(xi), r) ∀r ∈ L2
0(Ω), i = 1, 2. (84)
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Here we renamed I = I1, Ĩ = I2. We define the following differences:

u = u1 − u2, H = H1 −H2, p = p1 − p2, q = q1 − q2, q = q1 − q2, j = j1 − j2,

ξ = ξ1 − ξ2, σ = σ1 − σ2, ζ1 = ζ
(1)
1 − ζ

(2)
1 , ζ2 = ζ

(1)
2 − ζ

(2)
2 , ζ3 = ζ

(1)
3 − ζ

(2)
3 . (85)

We now deduce an important inequality for differences (85). While obtaining the
inequality, we will use some ideas and results from [5], which we will sketch here for the
reader’s convenience.

Subtract relations (19), (20), written for u2, H2, p2, u2, from (19), (20) for u1, H1, p1, u1.
Using (85), we obtain

ν(∇u,∇v) + ν1(rotH, rotΨ) + [((u · ∇)u1, v) + ((u2 · ∇)u, v)] + κ[(rotΨ×H, u1)+

+(rotΨ×H2, u)]− κ[(rotH1 ×H, v) + (rotH×H2, v)]− (divv, p) =

= ν1(j, rot Ψ) ∀(v, Ψ) ∈ H1
0(Ω)3 ×VΣτ (Ω), (86)

div u = 0 in Ω, u|Σ = 0, H · n|Στ = q, H× n|Σν = q. (87)

Set j = j2 in the inequality (73) under λ0 = 1, written at ĵ = j1, η = η1, and then we set
j = j1 in (73) under λ0 = 1, written at ĵ = j2, η = η2. We obtain−µ3(j1, j)+ ν1(j, rot η1) ≥ 0
and µ3(j2, j)− ν1(j, rot η2) ≥ 0. Adding these inequalities yields the relation

−ν1(j, rot η) ≤ −µ3‖j‖2
Ω. (88)

In the same manner, we derive from (71) and (72) the inequalities

−〈ζ2, q〉Στ ≤ −µ1‖q‖2
s,Στ

, −〈ζ3, q〉Σν ≤ −µ2‖q‖2
s,Σν

. (89)

Let us subtract identities (83), (84) for i = 2 from (83), (84) for i = 1 and set
w = u, h = H, r = p. Adding the results and using conditions u|Σ = 0, H · n|Στ = q,
H× n|Σν = q, we obtain

ν(∇u,∇ξ) + ν1(rotH, rotη) + ((u1 · ∇)u, ξ) + 2((u · ∇)u, ξ2) + ((u · ∇)u1, ξ)+

+κ[(rotη ×H1, u) + 2(rotη2 ×H, u) + (rotη ×H, u1)]−

−κ[(rotH1 ×H, ξ) + 2(rotH×H, ξ2) + (rotH×H1, ξ)]− (divξ, p) =

= −〈ζ2, q〉Στ − 〈ζ3, q〉Σν − (µ0/2)〈I′u(x1)− Ĩ′u(x2), u〉−

−(µ0/2)〈I′H(x1)− Ĩ′H(x2), H〉 − (µ0/2)〈I′p(x1)− Ĩ′p(x2), p〉. (90)

We now set v = ξ, Ψ = η in (86) and subtract from (90). Using (88), (89) and relations

2((u · ∇)u, ξ2) + ((u1 · ∇)u, ξ)− ((u2 · ∇)u, ξ) = 2((u · ∇)u, ξ2) + ((u · ∇)u, ξ) =

= ((u · ∇)u, ξ1 + ξ2),

−2(rotH×H, ξ2) + (rotH×H2, ξ)− (rotH×H1, ξ) = −(rotH×H, ξ1 + ξ2),

2(rotη2 ×H, u) + (rotη ×H1, u)− (rotη ×H2, u) = (rot(η1 + η2)×H, u),

we arrive at

((u · ∇)u, ξ1 + ξ2)− κ(rotH×H, ξ1 + ξ2) + κ(rot(η1 + η2)×H, u)+

+(µ0/2)〈I′u(x1)− Ĩ′u(x2), u〉+ (µ0/2)〈I′H(x1)− Ĩ′H(x2), H〉+ (µ0/2)(I′p(x1)− Ĩ′p(x2), p) ≤
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≤ −µ1‖q‖2
s,Στ
− µ2‖q‖2

s,Σν
− µ3‖j‖2

Ω. (91)

This inequality alone will take the important role in Section 5 when studying the local
uniqueness and stability for optimal solutions. It is appropriate to formulate this result as
the next theorem.

Theorem 6. Let, under assumptions of Theorem 3 for cost functionals I and Ĩ and under (82), pairs
(x1, u1) = (u1, H1, p1, q1, q1, j1) ∈ X × K and (x2, u2) = (u2, H2, p2, q2, q2, j2) ∈ X × K be
solutions to (40) and (76), respectively. Let y∗i =(ξi, ηi, σi, ζ

(i)
1 , ζ

(i)
2 , ζ

(i)
3 )∈Y∗, i = 1, 2, be adjoint

states which correspond to these solutions. Then the relation (91) for differences u, H, p, q, q, j
defined in (85) holds.

We now consider problems (86), (87) with respect to differences u = u1−u2, H = H1 −H2
and p = p1 − p2. In this problem, differences j = j1 − j2, q = q1 − q2 and q = q1 − q2
play the role of the data together with functions u1, u2, H1 and H2. Below, we will need
estimates for norms of the differences u, H and p via norms of the differences q, q and
j. In order to derive these estimates, we present the difference H ≡ H1 −H2 in the form
H = H0 + H̃ where H0 is a unique solution of (23) corresponding to differences q = q1− q2
and q = q1 − q2, while H̃ ∈ VΣτ (Ω) is a certain function. We set v = u and Ψ = H̃ in (86).
Taking into account (16) and condition rotH0 = 0, we obtain

ν(∇u,∇u) + ν1(rotH̃, rotH̃) = −((u · ∇)u1, u)− κ(rot H̃× H̃, u1)− κ(rot H̃×H0, u1)−

−κ(rot H1 × H̃, u)− κ(rot H1 ×H0, u) + ν1(j, rot H̃). (92)

Using estimates (10)–(15), (77) and setting ν1 = νmκ, we obtain from (92) that

δ0ν‖u‖2
1,Ω + δ1νmκ‖H̃‖2

1,Ω ≤ γ0M0
u‖u‖2

1,Ω + κγ1M0
u‖H̃‖2

1,Ω

+κγ1M0
H‖u‖1,Ω‖H̃‖1,Ω + κγ1M0

H‖u‖1,Ω‖H0‖s+1/2,Ω

+κγ1M0
u‖H̃‖1,Ω‖H0‖s+1/2,Ω + C1νmκ‖j‖Ω‖H̃‖1,Ω. (93)

Applying (79) and Young’s inequality |ab| ≤ εa2/2 + b2/(2ε) or 2ab ≤ εa2/2 + 2b2/ε,
ε = const > 0, at ε = δ0ν/2, ε = δ1νmκ/4 or ε = 1, we consequently derive that

κγ1M0
H‖u‖1,Ω‖H̃‖1,Ω ≤ (

√
κ/2)γ1(‖u‖2

1,Ω + κ‖H̃‖2
1,Ω), (94)

κγ1M0
H‖H0‖s+1/2,Ω‖u‖1,Ω ≤

ε

2
‖u‖2

1,Ω +
(γ1κM0

H‖H0‖s+1/2,Ω)2

2ε
=

=
δ0ν

4
‖u‖2

1,Ω + κδ0νHa2‖H0‖2
s+1/2,Ω, (95)

κγ1M0
H‖H0‖s+1/2,Ω‖H̃‖1,Ω ≤

ε

2
‖H̃‖2

1,Ω +
(γ1κM0

u)
2

2ε
‖H0‖2

s+1/2,Ω) =

= (κδ1νm/8)‖H̃‖2
1,Ω + 2κδ0νPm(γ1/γ0)

2Re‖H0‖2
s+1/2,Ω, (96)

C1κνm‖j‖Ω‖H̃‖1,Ω ≤ 2κνmC2
1δ−1

1 ‖j‖
2
Ω +

δ1κνm

8
‖H̃‖1,Ω. (97)

Taking into account (94)–(97), we obtain from (93) that

(δ0ν− γ0M0
u + γ1(

√
κ/2)M0

H)‖u‖2
1,Ω + (δ1νm − γ1M0

H + γ1(
√

κ/2)M0
H)κ‖H̃‖2

1,Ω ≤

≤ (δ0ν/4)‖u‖2
1,Ω + (δ1νmκ/4)‖H̃‖2

1,Ω + κδ0ν(Ha2+
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+2Pm(γ1/γ0)
2R2)‖H0‖2

s+1/2,Ω + 2κνmC2
1δ−1

1 ‖j‖
2
Ω. (98)

It follows from (78) that

(δ0ν/2) < δ0ν− γ0M0
u − γ1(

√
κ/2)M0

H, (δ1νm/2) < δ1νm − γ1M0
u − γ1(

√
κ/2)M0

H. (99)

Using (99), we derive from (98) that

δ0ν‖u‖2
1,Ω + δ1νmκ‖H̃‖2

1,Ω ≤ 2κδ0νR2‖H0‖2
s+1/2,Ω + 8κνmC2

1δ−1
1 ‖j‖

2
Ω) (100)

where
R = 2

√
Ha2 + 2Pm(γ1/γ0)2Re2. (101)

From (100), we conclude that

‖u‖1,Ω ≤ (2κR2‖H0‖2
s+1/2,Ω +

8κνmC2
1δ−1

1
δ0ν

‖j‖2
Ω)1/2 ≤

≤
√

κR‖H0‖s+1/2,Ω + 2
C1

δ1

√
κ

Pm
‖j‖Ω, (102)

‖H̃‖1,Ω ≤ (2
δ0ν

δ1νm
R2‖H0‖2

s+1/2,Ω +
8C2

1
δ2

1
‖j‖2

Ω)1/2 ≤
√
PmR‖H0‖s+1/2,Ω + 2

C1
δ1
‖j‖Ω. (103)

Since H = H0 + H̃, from (102), (103), using (11), we obtain the needed estimates for
differences u and H:

‖u‖1,Ω ≤ Cu
√

κ(‖q‖Στ + ‖q‖Σν + ‖j‖Ω), (104)

‖H‖Hs+1/2
div (Ω)

≤ CH(‖q‖Στ + ‖q‖Σν + ‖j‖Ω). (105)

Here Cu and CH are dimensionless constants defined by

Cu = max{CΣR,
2C1

δ1
√
Pm
}, CH = max{CΣ(1 + C1

√
PmR), 2

C2
1

δ1
}. (106)

Based on (17), we now derive a similar estimate for the difference p = p1 − p2. In
view of (17) for function p and for any (small enough) number δ > 0, there exists a function
v0 ∈ H1

0(Ω)3, v0 6= 0 such that

−(divv0, p) ≥ β0‖v0‖1,Ω‖p‖Ω, β0 = (β− δ) > 0. (107)

Setting v = v0, Ψ = 0 in (86), we obtain

ν(∇u,∇v0) + [((u · ∇)u1, v0) + ((u2 · ∇)u, v0)]− κ[(rotH1 ×H, v0)+

+(rotH×H2, v0)]− (divv0, p) = 0. (108)

Using the previous estimate (107) for −(divv0, p) and (10), (13)–(15) from (108), we
deduce that

β0‖v0‖1,Ω‖p‖Ω ≤ −(divv0, p) ≤ ν‖v0‖1,Ω‖u‖1,Ω+

+2γ0M0
u‖v0‖1,Ω‖u‖1,Ω + 2κγ1M0

H‖v0‖1,Ω‖H‖Hs+1/2
div (Ω)

. (109)

Dividing (109) by ‖v0‖1,Ω 6= 0 and using (104), (105) yields

‖p‖Ω ≤ β−1
0 [(ν + 2γ0M0

u)‖u‖1,Ω + 2κγ1M0
H‖H‖Hs+1/2

div (Ω)
] =
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= β−1
0 δ0ν[(δ−1

0 + 2Re)‖u‖1,Ω + 2
√

κHa‖H‖Hs+1/2
div (Ω)

]. (110)

Taking into account (104) and (105), we obtain the following estimate:

‖p‖Ω ≤ Cpν
√

κ(‖q‖Στ + ‖q‖Σν + ‖j‖Ω). (111)

Here Cp is a dimensionless constant defined by

Cp ≡ δ0β−1
0 [(δ−1

0 + 2Re)Cu + 2HaCH]. (112)

Remark 3. We note two peculiarities of the mathematical apparatus used in this paper. On the
one hand, we use the dimensional MHD system (1)–(3) so that all formulae used or obtained in
the paper are dimensional. On the other hand, we essentially use three dimensionless parameters
Re,Ha, Pm defined in (79) and three dimensionless constants Cu, CH, Cp defined in (106), (112).
These constants depend on Re, Ha and Pm snf contain important information on the MHD
system (1), (2). In particular, using Cu, CH and Cp, we could write estimates of the norms of
differences u, H and p via norms of differences q, q and j in the simple form (104), (105) and (111).
We recall that these estimates hold under the condition (82). Based on these estimates and Theorem
6, in Section 5, we establish similar stability estimates for a number of specific control problems for
the MHD system (1)–(3) under study.

5. Analysis of Uniqueness and Stability for Solutions to Control Problems

We begin with consideration of the case when I = I1 in (40), i.e., we consider control
problem

J(x, u) ≡ µ0

2
‖u− ud‖2

Q +
µ1

2
‖q‖2

s,Στ
+

µ2

2
‖q‖2

s,Σν
+

µ3

2
‖j‖2

Ω → inf,

F(x, u) = 0, (x, u) ∈ X× K. (113)

Here x = (u, H, p), u = (q, q, j). Denote by (x1, u1) ≡ (u1, H1, p1, q1, q1, j1) a
solution to problem (113) that corresponds to the function ud ≡ u(1)

d ∈ L2(Q)3. By
(x2, u2) ≡ (u2, H2, p2, q2, q2, j2), we denote a solution to problem (113) that corresponds to
another function ũd ≡ u(2)

d ∈ L2(Q)3.

We define dimensionless parameterRe0 (Reynolds number for the data u(i)
d ) by

Re0 = (γ0/δ0νl)max(‖u(1)
d ‖Q, ‖u(2)

d ‖Q) (114)

where l is a dimensional constant defined in Section 2. We assume that the data for
problem (113) or parameters µ0, µ1, µ2 and µ3 are such that the following condition with
some sufficiently small ε > 0 takes place:

min{(1− ε)µ1, (1− ε)µ2, (1− ε)µ3} ≥ 12µ0κγ(Re +Re0)(γ0C2
u + γ1C2

H + γ1
√
PmCuCH). (115)

Here Cu, CH are dimensionless constants defined in (106).

Lemma 6. Let, under assumptions (i)–(iii), (j) and (82), a pair (xi, ui) = (ui, Hi, pi, qi, qi, ji) be
a solution to problem (113) corresponding to function u(i)

d ∈ L2(Q)3, i = 1, 2, where Q ⊂ Ω is
an arbitrary nonempty open subset. Assume that condition (115) is satisfied. Then the following
estimate for u ≡ u1 − u2 holds:

‖u1 − u2‖Q ≤ ∆ ≡ ‖u(1)
d − u(2)

d ‖Q. (116)
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Proof of Lemma 6. Setting ud = u(1)
d − u(2)

d , in addition to (85), we have that (I1)
′
p = 0,

(I1)
′
H = 0,

〈(I1)
′
u(xi), w〉 = 2(ui − u(i)

d , w)Q, 〈(I1)
′
u(x1)− ( Ĩ1)

′
u(x2), u〉 =

= 2(u− ud, u)Q = 2(‖u‖2
Q − (u, ud)Q). (117)

In view of (117), identities (83), (84) for adjoint states y∗i = (ξi, ηi, σi, ζ
(i)
1 , ζ

(i)
2 , ζ

(i)
3 ), i =

1, 2, corresponding to solutions (ui, Hi, pi, ui) and the main inequality (91) for differences u,
H, p, q, q, j defined in (85), take by Remark 2 the form

ν(∇w,∇ξi) + ν1(roth, rotηi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ[(rotηi ×Hi, w)+

+(rotηi × h, ui)]− κ[(rotHi × h, ξi) + (roth×Hi, ξi)]− (divw, σi) + 〈ζ
(i)
1 , w〉Σ+

+〈ζ(i)2 , h · n〉Στ + 〈ζ
(i)
3 , h× n〉Σν =

= −µ0(ui − u(i)
d , w)Q ∀(w, h) ∈ H1

T(Ω)×Hs+1/2
div (Ω); ξi ∈ V, i = 1, 2, (118)

((u · ∇)u, ξ1 + ξ2)− κ(rotH×H, ξ1 + ξ2) + κ(rot(η1 + η2)×H, u)+

+µ0(‖u‖2
Q − (u, ud)Q) ≤ −µ1‖q‖2

s,Στ
− µ2‖q‖2

s,Σν
− µ3‖j‖2

Ω. (119)

Our nearest purpose is to estimate adjoint state variables ξi and ηi via (Re +Re0). To
this end, we set w = ξi, h = ηi in (118). Using (16) and conditions divξi = 0 in Ω, ξi|Σ = 0,
ηi · n|Στ = 0 and ηi × n|Σν = 0, we obtain

ν(∇ξi,∇ξi) + ν1(rotηi, rotηi) + ((ξi · ∇)ui, ξi) + κ(rotηi × ηi, ui)−

−κ(rotHi × ηi, ξi) = −µ0(ui − u(i)
d , ξi)Q. (120)

Taking into account estimates (10)–(15), (77) and (79), (80), (114), we have

(∇ξi,∇ξi) ≥ δ0‖ξi‖2
1,Ω, |((ξi · ∇)ui, ξi)| ≤ γ0‖ui‖1,Ω‖ξi‖2

1,Ω ≤ γ0M0
u‖ξi‖2

1,Ω, (121)

κ|(rotHi × ηi, ξi)| ≤ γ1κM0
H‖ηi‖1,Ω‖ξi‖1,Ω ≤ γ1(

√
κ/2)M0

H(‖ξi‖2
1,Ω + κ‖ηi‖2

1,Ω), (122)

(rotηi, rotηi) ≥ δ1‖ηi‖2
1,Ω, |(rotηi × ηi, ui)| ≤ γ1M0

u‖ηi‖2
1,Ω, (123)

‖ui − u(i)
d ‖Q ≤ ‖ui‖Q + ‖u(i)

d ‖Q ≤ lM0
u + ‖u(i)

d ‖Q ≤ δ0νlγ−1
0 (Re +Re0). (124)

In virtue of (121)–(124) and (99), we infer from (120) that

(δ0ν/2)‖ξi‖2
1,Ω + (δ1νm/2)κ‖ηi‖2

1,Ω ≤ [δ0ν− γ0M0
u − γ1(

√
κ/2)M0

H]‖ξi‖2
1,Ω+

+[δ1νm − γ1M0
u − γ1(

√
κ/2)M0

H]κ‖ηi‖2
1,Ω ≤

≤ µ0l(lM0
u + ‖u(i)

d ‖Q)‖ξi‖1,Ω ≤ µ0δ0νγ(Re +Re0)‖ξi‖1,Ω

where γ = l2γ−1
0 . Using (79) and (124), we conclude from the last inequality that

‖ξi‖1,Ω ≤ 2µ0γ(Re +Re0),
√

κ‖ηi‖1,Ω ≤ 2µ0γ
√
Pm(Re +Re0), i = 1, 2. (125)

Using (13)–(15), (104), (105), (115) and (125), we have

|((u · ∇)u, ξ1 + ξ2)− κ(rotH×H, ξ1 + ξ2) + κ(rot(η1 + η2)×H, u)| ≤

≤ γ0‖u‖2
1,Ω(‖ξ1‖1,Ω + ‖ξ2‖1,Ω) + γ1κ‖H‖2

Hs+1/2
div (Ω)

(‖ξ1‖1,Ω + ‖ξ2‖1,Ω)+
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+γ1κ‖H‖Hs+1/2
div (Ω)

‖u‖1,Ω(‖η1‖1,Ω + ‖η2‖1,Ω) ≤

≤ 12µ0κγ(Re +Re0)(γ0C2
u + γ1C2

H + γ1
√
PmCuCH)(‖q‖2

s,Στ
+ ‖q‖2

s,Σν
+ ‖j‖2

Ω ≤

≤ (1− ε)µ1‖q‖2
s,Στ

+ (1− ε)µ2‖q‖2
s,Σν

+ (1− ε)µ3‖j‖2
Ω. (126)

Taking into account (126) from (119), we arrive at

µ0(‖u‖2
Q − (u, ud)Q) ≤ −((u · ∇)u, ξ1 + ξ2) + κ(rotH×H, ξ1 + ξ2)−

−κ(rot(η1 + η2)×H, u)− µ1‖q‖2
Στ
− µ2‖q‖2

Σν
− µ3‖j‖2

Ω ≤

≤ −εµ1‖q‖2
s,Στ
− εµ2‖q‖2

s,Σν
− εµ3‖j‖2

Ω. (127)

Omitting the nonpositive term−εµ1‖q‖2
s,Στ
−εµ2‖q‖2

s,Σν
−εµ3‖j‖2

Ω, we derive from (127)
that ‖u‖2

Q − ‖u‖Q‖ud‖Q ≤ 0 or
‖u‖Q ≤ ud‖Q. (128)

Since u = u1 − u2, ud = u(1)
d − u(2)

d , Lemma 6 is proved.

If Q = Ω, the estimate (116) is the stability estimate in L2(Ω)3 norm for the component
û of the solution (û, Ĥ, p̂, q̂, q̂, ĵ) of problem (113) with respect to small disturbances of
function ud ∈ L2(Ω)3 in the norm of L2(Ω)3. The same estimate was obtained in viscous
hydrodynamics [16]. Additionally, if u(1)

d = u(2)
d we conclude from (116) that u1 = u2 in Q.

This yields together with (127) and (86) that q1 = q2, q1 = q2, j1 = j2. In turn, it follows
from this fact and (104), (105), (111) that u1 = u2, H1 = H2, p1 = p2 in Ω. The latter is
equivalent to the uniqueness for the solution of (113).

We cannot prove the estimates for differences H = H1 −H2 and p = p1 − p2, which
are analogous to (116). Based on (128), however, one can obtain coarser stability estimates
for all differences u, H and p even in situations in which Q b Ω, i.e., Q is only a part of Ω.
Indeed, let us consider inequality (127). Using (128), we deduce from (127) that

εµ1‖q‖2
s,Στ

+ εµ2‖q‖2
s,Σν

+ εµ3‖j‖2
Ω ≤ µ0(−‖u‖2

Q + ‖u‖Q‖ud‖Q) ≤ µ0‖ud‖2
Q = µ0∆2 (129)

where ∆ is defined in (116). From (104), (105), (111) and (129), we arrive at

‖q1 − q2‖s,Στ ≤
√

µ0/εµ1∆, ‖q1 − q2‖s,Σν ≤
√

µ0/εµ2∆, ‖j1 − j2‖Ω ≤
√

µ0/εµ3∆,

‖u1 − u2‖1,Ω ≤ Cu
√

κ(
√

µ0/εµ1 +
√

µ0/εµ2 +
√

µ0/εµ3)∆,

‖H1 −H2‖Hs+1/2
div (Ω)

≤ CH(
√

µ0/εµ1 +
√

µ0/εµ2 +
√

µ0/εµ3)∆,

‖p1 − p2‖Ω ≤ Cpν
√

κ(
√

µ0/εµ1 +
√

µ0/εµ2 +
√

µ0/εµ3)∆. (130)

Let us describe the obtained result as the theorem:

Theorem 7. Let parameter Re0 be defined by relation (114) and let assumptions of Lemma 6 be
fulfilled. Then the stability estimates (130) for problem (113) hold where ∆ = ‖u(1)

d − u(2)
d ‖Q.

We now study the uniqueness and stability for solutions to the control problem (40) in
the case when I = I2, i.e., we consider control problem

J(x, u) ≡ µ0

2
‖H−Hd‖2

Q +
µ1

2
‖q‖2

s,Στ
+

µ2

2
‖q‖2

s,Σν
+

µ2

2
‖j‖2

Ω → inf,

F(x, u) = 0, (x, u) ∈ X× K. (131)

Here, as usual, x = (u, H, p), u = (q, q, j). Denote by (x1, u1) ≡ (u1, H1, p1, q1, q1, j1)

a solution to the problem (131) that corresponds to the function Hd ≡ H(1)
d ∈ L2(Q)3. By
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(x2, u2) ≡ (u2, H2, p2, q2, q2, j2), we denote the solution to problem (131) that corresponds
to another function H̃d ≡ H(2)

d ∈ L2(Q)3.

Let us define a parameter γ and dimensionless Hartman numberHa0 for the data H(i)
d by

γ = l2γ−1
1 , Ha0 = (γ1

√
κ/δ0νl)max(‖H(1)

d ‖Q, ‖H(2)
d ‖Q). (132)

We assume that the data for problem (131) or parameters µ0, µ1, µ2 and µ3 are such
that the following condition with some sufficiently small ε > 0 takes place:

min{(1− ε)µ1, (1− ε)µ2, (1− ε)µ3}

≥ 12µ0γ
√
Pm(Ha +Ha0)(γ0C2

u + γ1C2
H + γ1

√
PmCuCH). (133)

Lemma 7. Let, under assumptions (i)–(iii), (j) and (82), a pair (xi, ui) = (ui, Hi, pi, qi, qi, ji)

be a solution to problem (131) that corresponds to the function H(i)
d ∈ L2(Q)3, i = 1, 2, where

Q ⊂ Ω is an arbitrary nonempty open subset. Assume that the condition (133) is satisfied. Then
the following estimate for difference H ≡ H1 −H2 holds:

‖H1 −H2‖Q ≤ ∆, ∆ ≡ ‖H(1)
d −H(2)

d ‖Q. (134)

Proof of Lemma 7. Setting Hd = H(1)
d −H(2)

d , in addition to (85), we have that (I2)
′
u = 0,

(I2)
′
p = 0,

〈(I2)
′
H(xi), h〉 = 2(Hi −H(i)

d , h)Q, 〈(I2)
′
H(x1)− ( Ĩ2)

′
H(x2), H〉 = 2(‖H‖2

Q − (H, Hd)Q). (135)

In view of (135), identities (83), (84) and the main inequality (91) become

ν(∇w,∇ξi) + ν1(roth, rotηi) + ((ui · ∇)w, ξi) + ((w · ∇)ui, ξi) + κ[(rotηi ×Hi, w)+

+(rotηi × h, ui)]− κ[(rotHi × h, ξi) + (roth×Hi, ξi)]− (divw, σi) + 〈ζ
(i)
1 , w〉Σ+

+〈ζ(i)2 , h · n〉Στ + 〈ζ
(i)
3 , h× n〉Σν =

= −µ0(Hi −H(i)
d , h)Q ∀(w, h) ∈ H1

T(Ω)×Hs+1/2
div (Ω); ξi ∈ V, i = 1, 2, (136)

((u · ∇)u, ξ1 + ξ2)− κ(rotH×H, ξ1 + ξ2) + κ(rot(η1 + η2)×H, u)+

+µ0(‖H‖2
Q − (H, Hd)Q) ≤ −µ1‖q‖2

s,Στ
− µ2‖q‖2

s,Σν
− µ3‖j‖2

Ω. (137)

We firstly estimate adjoint state variables ξi and ηi via (Ha +Ha0). To this end, we
set w = ξi, h = ηi in (136). In virtue of (16) and conditions ξi|Σ = 0, ηi · n|Στ = 0 and
ηi × n|Σν = 0, we obtain

ν(∇ξi,∇ξi) + ν1(rotηi, rotηi) + ((ξi · ∇)ui, ξi) + κ(rotηi × ηi, ui)

−κ(rotHi × ηi, ξi) = −µ0(Hi −H(i)
d , ηi)Q. (138)

Using (79), (80), (132), we derive, in addition to (121)–(123), that

‖Hi −H(i)
d ‖Q ≤ l‖Hi‖Hs+1/2

div (Ω)
+ ‖H(i)

d ‖Q ≤ l(M0
H + l−1‖H(i)

d ‖Q) ≤

≤ δ0νl(Ha +Ha0)/(γ1
√

κ). (139)

Taking into account (99), (121)–(123) and (139), we infer from (138) that

(δ0ν/2)‖ξi‖2
1,Ω + (δ1νm/2)κ‖ηi‖2

1,Ω ≤ µ0(‖Hi‖Q) + ‖H
(i)
d ‖Q)‖ηi‖Q ≤
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≤ µ0l2(M0
H + l−1‖H(i)

d ‖Q)‖ηi‖1,Ω ≤ µ0δ0νγκ−1/2(Ha +Ha0)‖ηi‖1,Ω

where γ = l2γ−1
1 . Using (79) and (139), we conclude from the last inequality that

‖ξi‖1,Ω ≤ 2µ0γκ−1
√
Pm(Ha +Ha0),

√
κ‖ηi‖1,Ω ≤ 2µ0γκ−1Pm(Ha +Ha0). (140)

Combining (15), (104), (105), (115) and (140) gives the estimate

|((u · ∇)u, ξ1 + ξ2)− κ(rotH×H, ξ1 + ξ2) + κ(rot(η1 + η2)×H, u)| ≤

≤ 12µ0γ
√
Pm(Ha +Ha0)(γ0C2

u + γ1C2
H + γ1

√
PmCuCH)(‖q‖2

s,Στ
+ ‖q‖2

s,Σν
+ ‖j‖2

Ω) ≤

≤ (1− ε)µ1‖q‖2
s,Στ

+ (1− ε)µ2‖q‖2
s,Σν

+ (1− ε)µ3‖j‖2
Ω. (141)

Using (141) from (137), we arrive at

µ0(‖H‖2
Q − (H, Hd)Q) ≤ −((u · ∇)u, ξ1 + ξ2)+

+κ(rotH×H, ξ1 + ξ2)− κ(rot(η1 + η2)×H, u)− µ1‖q‖2
s,Στ
− µ2‖q‖2

s,Σν
− µ3‖j‖2

Ω ≤

≤ −εµ1‖q‖2
s,Στ
− εµ2‖q‖2

s,Σν
− εµ3‖j‖2

Ω. (142)

Omitting the nonpositive term−εµ1‖q‖2
s,Στ
− εµ2‖q‖2

s,Σν
− εµ3‖j‖2

Ω, we infer from (142)
that ‖H‖2

Q − ‖H‖Q‖Hd‖Q ≤ 0 or ‖H‖Q ≤ ‖Hd‖Q.

If Q = Ω, the estimate (134) is the stability estimate in the L2(Ω)3 norm for the
magnetic component Ĥ of the solution (û, Ĥ, p̂, q̂, q̂, ĵ) of problem (131) with respect to
small disturbances of function Hd ∈ L2(Ω)3 in (131). If, besides, H(1)

d = H(2)
d in Q it follows

from (134) that H1 = H2 in Q. This, together with (104), (105), (111) and (142), yields that
q1 = q2, q1 = q2, j1 = j2, u1 = u2, H1 = H2, p1 = p2. The latter is equivalent to the
uniqueness for the solution of (131).

Again, we note that we cannot prove the estimates for differences u = u1 − u2 and
p = p1 − p2, which are analogous to (134), but we can obtain coarser estimates for u, H and
p even if Q is only a part of Ω. Indeed, using (134), we infer from (142) that

εµ1‖q‖2
s,Στ

+ εµ2‖q‖s,Σν + εµ3‖j‖2
Ω ≤ µ0(−‖H‖2

Q + ‖H‖Q‖Hd‖Q)

≤ µ0(−‖H‖2
Q + ‖H‖Q‖Hd‖Q) ≤ µ0‖Hd‖2

Q = µ0∆2 (143)

where ∆ is defined in (134). From (104), (105), (111) and (143), we come to the required
stability estimates having the form (130). Thus, the following result was proved.

Theorem 8. Let parameters γ andHa0 be defined by relations (132) and let conditions of Lemma 7
be fulfilled. Then the stability estimates (130) for control problem (131) hold where
∆ = ‖H(1)

d −H(2)
d ‖Q.

Using an analogous scheme, similar theorems can be proved for control problems
corresponding to weak regularizers (µ1/2)‖q‖2

Στ
and (µ2/2)‖q‖2

Σν
as in (53), or to the

third cost functional Is(p) defined in (37). We leave the formulations and proofs of the
corresponding theorems to the reader.

6. Conclusions

In this paper, the optimal control problems for stationary magnetohydrodynamic
equations considered under the inhomogeneous mixed boundary conditions for a magnetic
field and the Dirichlet condition for velocity were analyzed. The normal and tangential
magnetic components at different parts of the boundary and the exterior current density
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within the flow region are the controls. A general theory of investigation of the control
problems with special tracking-type cost functionals has been developed and applied for
studying the uniqueness and stability for optimal solutions.

The use of this theory made it possible to prove the existence of solutions of control
problems in the wide class of cost functionals, to deduce an optimality system and, based
on its analysis, to prove theorems on local uniqueness and stability of optimal solutions
for a number of tracking-type functionals. In particular, for problems (113) and (131), it
is shown that the uniqueness as well as stability of their solutions occurs, provided the
conditions (115) or (133) for the data are accordingly fulfilled. This means that the presence
of summands with squared norms of controls, with positive coefficients µ1, µ2, µ3 in the
expressions of functionals to be minimized in (113) and in (131), contributes a regularizing
effect to the control problems under study.
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