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Abstract: This paper studies a parameter estimation problem for the non-linear diffusion equation
within multiphase porous media flow, which has important applications in the field of oil reservoir
simulation. First, the given problem is transformed into an optimization problem by using optimal
control framework and the constraints such as well logs, which can restrain noise and improve the
quality of inversion, are introduced. Then we propose the widely convergent homotopy method,
which makes natural use of constraints and incorporates Tikhonov regularization. The effectiveness
of the proposed approach is demonstrated on illustrative examples.
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1. Introduction

The non-linear diffusion equation, which can approximatively describe the multiphase
porous media flow processes, has received considerable attention in recent years due to
increasing applications in science and engineering. An oil reservoir simulation based on
the inverse problem for this equation has many important applications in fields, such as oil
and gas exploration and management of petroleum reservoirs. For example, it can help
reservoir engineers make important decisions about the type of the recovery method, fluid
production and injection rates, and well locations. From then on, a variety of effective
numerical methods have appeared in the literatures of the inverse problem for non-linear
diffusion problems [1–6]. This inverse problem can be viewed as a parametric data-fitting
problem. It is possible to formalize such a problem in the optimal control framework where
a control functional defined in terms of discrepancy between measurement and computed
data is minimized over a model space. Generally speaking, this inverse problem is very
difficult to solve, because of its own ill-posedness and non-linearity. The ill-posed property
makes the parameter field susceptible to the noise in the measurement data, while the
non-linear dependence of the measurement data with respect to the parameter field causes
the presence of numerous local minima. For the non-linear ill-posed problem, conven-
tional linearized methods, such as the Gauss–Newton method [7], Landweber method [8],
Levenberg–Marquardt method [9], are locally convergent. The recent popular methods
(e.g., trust region algorithm [10], neural networks algorithm [11], genetic algorithm [12],
simulated annealing algorithm [13]) have global convergence properties, but the efficiency
is much worse than before, along with the searching space decreasing. When the level of
the noise in the measurement data is high, all these methods fail to converge. Consequently,
the shortcomings of the above methods motivate us to construct a globally convergent,
efficient, and stable algorithm.
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The novel and effective homotopy method has been successfully used to solve non-
linear problems, such as time- or space-fractional heat equations [14], fractional-order
convection–reaction–diffusion equations [15], fractional-order Kolmogorov and Rosenau–
Hyman equations [16], second kind integral equations [17], and so on. A remarkable
advantage of this method is that it exhibits global convergence under certain weak as-
sumptions [18]. Lately, the homotopy method has also been extended for dealing with
inverse problems. Many authors studied the homotopy solution of geophysical inverse
problems [19–21]. Słota et al. [22,23] and Hetmaniok et al. [24] presented the applications
of the homotopy method for solving inverse Stefan problems. Hu et al. [25] considered the
homotopy algorithm to improve PEM identification of ARMAX models. Zhang et al. [26]
proposed the non-linear and non-convex image reconstruction algorithm based on the ho-
motopy method. Biswal et al. [27], Hetmaniok et al. [28,29], and Shakeri and Dehghan [30],
respectively, considered the Jeffery–Hamel flow inverse problem, the inverse heat conduc-
tion problem and the diffusion equation inverse problem by the homotopy perturbation
method. Liu [31,32] formulated the multigrid-homotopy approach directly in a frame-
work of non-linear inverse problems, and formulated the wavelet multiscale-homotopy
algorithm for the solution of partial differential equation parameter identification problems.

Generally speaking, a parameter inversion for non-linear diffusion problems estimates
parameters only using the measurement data, which usually have a low signal-to-noise
ratio. In order to restrain the noise and improve the quality of inversion, the constraint
condition has a wide application in the inversion fields, such as atmospheric research [33],
petrophysics [34], remote sensing of environment [35], and geological exploration [36]. This
is because the constraint condition, recorded from the interior of the object to be measured,
has a high signal-to-noise ratio.

In this article, a well-log constraint is introduced for the parameter estimation for non-
linear diffusion problems, and an optimization problem is formed by the finite difference
discretization. This problem is a typical ill-posed problem, so the Tikhonov regularization
needs to be imposed. In order to overcome the weakness of the local convergence of
conventional methods, the homotopy method is applied to the normal equation of the
regularized control functional, and then the constrained homotopy method is constructed.
Numerical simulations conducted with two synthetic examples illustrate the effectiveness
of this method.

2. Mathematical Model

The non-linear diffusion equation, describing, approximatively, the multiphase porous
media flow processes, has one of the following two forms

ut −∇ · (υ(x, y)N(∇u)∇u) = ϕ(x, y, t), t ∈ (0, T), (1)

or
ut −∇ · (υ(x, y)N(u)∇u) = ϕ(x, y, t), t ∈ (0, T), (2)

where u(x, y, t) is the concentration at (x, y) and at time t, υ(x, y) is the permeability at
(x, y) in the medium, ϕ(x, y, t) is a piecewise smooth source function, N is the positive
non-linear function of ∇u or u, which is used to model the main characteristics of the
non-linearity associated with the permeability parameter in the multiphase porous media
flow. For simplicity, the problem is studied in the unit square domain Ω = [0, 1]× [0, 1]
under the initial-boundary conditions

u(x, y, 0) = ψ(x, y), (x, y) ∈ Ω,

u(x, y, t) = η(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T).
(3)

Equation (1) or Equation (2) with (3) form the direct problem of the non-linear diffusion
equation, however, permeability υ is not known in engineering practice. What we know is
only some measurement data, for example,
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u(xm, ym, t) = φm(t), m = 1, 2, . . . , M, t ∈ (0, T). (4)

Then, the unknown permeability υ can be estimated from Equation (1) or Equation (2)
with (3) and (4). The permeability υ(x∗, y) at all depths of constraint point x∗ can be obtained
from the measurement data of well logs, which is necessary for the constrained inversion.

3. Parameter Estimation Framework

By the finite difference scheme, Equations (1)–(4) can be discretized as follows

uk
i,j−uk−1

i,j
∆t −∇ · (υi,jNk

i,j∇uk
i,j) = ϕ(i∆x, j∆y, k∆t),

i = 1, 2, . . . , I − 1; j = 1, 2, . . . , J − 1; k = 1, 2, . . . , K,
u0

i,j = ψ(i∆x, j∆y), i = 0, 1, . . . , I; j = 0, 1, . . . , J,
uk

0,j = η(0, j∆y, k∆t), j = 0, 1, . . . , J; k = 1, 2, . . . , K,
uk

1,j = η(1, j∆y, k∆t), j = 0, 1, . . . , J; k = 1, 2, . . . , K,
uk

i,0 = η(i∆x, 0, k∆t), i = 0, 1, . . . , I; k = 1, 2, . . . , K,
uk

i,1 = η(i∆x, 1, k∆t), i = 0, 1, . . . , I; k = 1, 2, . . . , K,
uk

xm ,ym = φm(k∆t), m = 1, 2, . . . , M; k = 1, 2, . . . , K,

(5)

where
uk

i,j = u(i∆x, j∆y, k∆t), υi,j = υ(i∆x, j∆y),

Nk
i,j = N(∇uk

i,j)/N(uk
i,j), I = 1/∆x, J = 1/∆y, K = T/∆t.

∆x, ∆y are the spatial step sizes, and ∆t is the time step size. The concrete expression for
∇ · (υi,jNk

i,j∇uk
i,j) is not the focus of this article, so we do not describe it here. For interested

readers, see [37].
Equation (5) can define a non-linear operator equation

A(Υ) = Φ, (6)

where
Υ> = (υ1,1, υ1,2, . . . , υ1,J , υ2,1, υ2,2, . . . , υ2,J , . . . , υI,1, υI,2, . . . , υI,J),

Φ> = (φ1(∆t), φ1(2∆t), . . . , φ1(K∆t), φ2(∆t), φ2(2∆t), . . . , φ2(K∆t),

. . . , φM(∆t), φM(2∆t), . . . , φM(K∆t)).

Let φ̂m(t) denote the measurement data and form the vector Φ̂ in the same sequence
as Φ, and let

Υ>i = (υi,1, υi,2, . . . , υi,J),

Υ̂>i∗ = (υi∗ ,1, υi∗ ,2, . . . , υi∗ ,J),

where Υ̂>i∗ is the permeability from the well logs of a well located at point i∗ in the
x−direction. Now we define the admissible set

Π = (Υ, Υi∗ = Υ̂i∗)

and the optimal control problem as follows. Find Υ∗ ∈ Π satisfying

Υ∗ = arg min
Υ∈Π
{‖A(Υ)− Φ̂‖2}.

It is difficult to solve this problem directly so usually one transforms it into another
easier-to-solve form.

Let us assume
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Υ̂> = (0, 0, . . . , 0︸ ︷︷ ︸
(i∗−1)×J

, υi∗ ,1, υi∗ ,2, . . . , υi∗ ,J , 0, 0, . . . , 0),

G =



0
0

. . .
0

1
1

. . .
1

0
0

. . .
0


(I×J)×(I×J)

.

Obviously
‖GΥ− Υ̂‖2 = 0, ∀Υ ∈ Π.

Therefore, the above optimal control problem can be rewritten, without constraint, as

min{‖A(Υ)− Φ̂‖2 + β‖GΥ− Υ̂‖2}, (7)

where β is a constraint parameter to determine the strength of the constraint. This uncon-
strained optimal control problem (7) will be used to approximate the solution of the original
constrained optimal control problem. The minimum of Equation (7) and Υ∗ are close to each
other when β is large enough, and consequently in the specific inversion process, β must be
specified large enough, such that the solution of Equation (7) can well approximate Υ∗.

4. Inversion Method
4.1. Basic Iterative Method

Due to the ill-posed property of Equation (7), Tikhonov regularization needs to be imposed

min{‖A(Υ)− Φ̂‖2 + β‖GΥ− Υ̂‖2 + α1‖B1(Υ− Υ0)‖2 + α2‖B2(Υ− Υ0)‖2}, (8)

where α1, α2 are the regularization parameters, B1, B2 are, respectively, the second-order
smooth matrices in the x− and y−direction (see [37]), and Υ0 is an initial estimate.

It is obvious that Equation (8) is equivalent to the corresponding normal equation

A′(Υ)>(A(Υ)− Φ̂) + βG>(GΥ− Υ̂) + (α1B>1 B1 + α2B>2 B2)(Υ− Υ0) = 0, (9)

where ′ represents derivative of A with respect to Υ. The second derivative appears in the
Newton iterative method, so we use a successive linearization method to solve Equation (9).

If we make the hypothesis that the kth approximation Υk of Υ∗ has been obtained, then
in order to avoid the impact of the second derivative, the linear function
Lk(Υ) = A′(Υk)(Υ− Υk) + A(Υk) is used to replace A(Υ), where Lk(Υ) is the linear ap-
proximation of A(Υ) at point Υk. The regularized control functional in Equation (8) is
transformed into

‖Lk(Υ)− Φ̂‖2 + β‖GΥ− Υ̂‖2 + α1‖B1(Υ− Υ0)‖2 + α2‖B2(Υ− Υ0)‖2, (10)

and its normal equation is

A′(Υk)>(A′(Υk)(Υ− Υk) + A(Υk)− Φ̂) + βG>(GΥ− Υ̂)

+ (α1B>1 B1 + α2B>2 B2)(Υ− Υ0) = 0,
(11)
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the solution of which is exactly the next approximation Υk+1 to Υ∗:

Υk+1 = Υk − [A′(Υk)>A′(Υk) + βG>G + α1B>1 B1 + α2B>2 B2]
−1

× [A′(Υk)>(A(Υk)− Φ̂) + βG>(GΥk − Υ̂)

+ (α1B>1 B1 + α2B>2 B2)(Υk − Υ0)], k = 0, 1, 2, . . .

(12)

This iterative method is actually a variant of the iteratively regularized Gauss–Newton
method [38], and has the same fast convergence speed and good stability as the latter,
however it is a locally convergent method.

4.2. Homotopy Method

To improve the local convergence of Equation (12), the homotopy method is introduced
to solve Equation (9). We take into account the following fixed-point homotopy equation

P(Υ, χ) = χ[A′(Υ)>(A(Υ)− Φ̂) + βG>(GΥ− Υ̂)

+ (α1B>1 B1 + α2B>2 B2)(Υ− Υ0)] + (1− χ)[Υ− Υ0] = 0,
(13)

where χ ∈ [0, 1] is the homotopy parameter.
To obtain Υ∗, we first rearrange Equation (13) as

χ[A′(Υ)>(A(Υ)− Φ̂) + βG>(GΥ− Υ̂)]

+ [(1− χ)I + χ(α1B>1 B1 + α2B>2 B2)](Υ− Υ0) = 0,
(14)

and then divide the interval [0, 1] into 0 = χ0 < χ1 < · · · < χD = 1. For χ = χd, the
iterative method similar to Equation (12) is applied to Equation (14) in sequence from d = 1
to d = D. For P(Υ, χ1), the initial estimate can be chosen as Υ0, which is already known.
The initial estimate of P(Υ, χd+1) is chosen as Υd, which is obtained by solving P(Υ, χd).
Therefore, we can have the iterative formula

Υd
h+1 = Υd

h − [χd A′(Υd
h)
>A′(Υd

h) + χdβG>G + (1− χd)I

+ χd(α1B>1 B1 + α2B>2 B2)]
−1 × {χd A′(Υd

h)
>(A(Υd

h)− Φ̂)

+ χdβG>(GΥd
h − Υ̂) + [(1− χd)I + χd(α1B>1 B1

+ α2B>2 B2)](Υd
h − Υ0)}, h = 0, 1, . . . , dT ,

Υd
0 = Υd−1, Υd = Υd

dT+1, d = 1, 2, . . . , D.

(15)

The stopping point dT is defined here as the point at which the modification is equal
to or less than a threshold value.

Equation (15) has a fast convergence rate similar to the variant of the regularized
Gauss–Newton method (12), so a good approximation to Υd can be obtained by only one
iteration when χd − χd−1 is small enough. In order to save unnecessary computational cost,
we can let

dT = 0, χd =
d
D

, d = 1, 2, . . . , D,

where dT = 0 means that we use Equation (15) to iterate one step to obtain Υd
1, and then

have Υd = Υd
1. In this way, Equation (15) is simplified as follows:

Υd+1 = Υd − [
d
D

A′(Υd)>A′(Υd) +
d
D

βG>G + (1− d
D
)I

+
d
D
(α1B>1 B1 + α2B>2 B2)]

−1 × { d
D

A′(Υd)>(A(Υd)− Φ̂)

+
d
D

βG>(GΥd − Υ̂) + [(1− d
D
)I +

d
D
(α1B>1 B1

+ α2B>2 B2)](Υd − Υ0)}, d = 0, 1, . . . , D− 1.

(16)
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Then, consider the iterative result ΥD of Equation (16) as the initial estimate for
Equation (12), and compute the solution Υ∗ of Equation (9) by iterating Equation (12). That
is, Equations (16) and (12) are combined into the constrained homotopy method, which has
not only fast convergence speed and good stability, but also a global region of convergence.

When β = 0, Equation (8) is the habitual parameter inversion for non-linear diffusion
problems, and Equations (16) and (12) can, respectively, be re-expressed as

Υd+1 = Υd − [
d
D

A′(Υd)>A′(Υd) + (1− d
D
)I

+
d
D
(α1B>1 B1 + α2B>2 B2)]

−1 × { d
D

A′(Υd)>(A(Υd)− Φ̂)

+ [(1− d
D
)I +

d
D
(α1B>1 B1 + α2B>2 B2)](Υd − Υ0)},

d = 0, 1, . . . , D− 1.

(17)

and
Υk+1 = Υk − [A′(Υk)>A′(Υk) + α1B>1 B1 + α2B>2 B2]

−1

× [A′(Υk)>(A(Υk)− Φ̂) + (α1B>1 B1 + α2B>2 B2)(Υk − Υ0)],

k = 0, 1, 2, . . .

(18)

From the expressions of Equations (17) and (18) (Equation (18) is just the iteratively
regularized Gauss–Newton method), we can see that Equation (17) has the same calculation
amount and storage requirement as Equation (18) at each step. What is important is the
application of the first-order derivative, the evaluation of the adjoint operator, and the
forward-modeling run. However, the most important is that Equation (17) has a wider
convergence region than Equation (18).

4.3. Global Convergence of Homotopy Method

Equation (13) can actually be seen as the normal equation of the following optimal
control problem:

min Jχ(Υ) = {χ[‖A(Υ)− Φ̂‖2 + β‖GΥ− Υ̂‖2 + α1‖B1(Υ− Υ0)‖2

+ α2‖B2(Υ− Υ0)‖2] + (1− χ)‖Υ− Υ0‖2}.
(19)

Let
Jχd(Υ) = χd[‖A(Υ)− Φ̂‖2 + β‖GΥ− Υ̂‖2 + α1‖B1(Υ− Υ0)‖2

+ α2‖B2(Υ− Υ0)‖2] + (1− χd)‖Υ− Υ0‖2,
(20)

then our next result, similar to the Theorem 3.1 of [39], gives certain conditions that validate
the global convergence of homotopy method.

Theorem 1. For any d ∈ {0, 1, . . . , D}, assume that Υd
∗ is the global minimum of Jχd(Υ) and

Jχ(Υ) is differentiable with respect to χ. Assume, also, that there exist a δ > 0 such that Jχd(Υ) has
no local minimum in the region Jχd(Υ) < δ + Jχd(Υ

d
∗). Then, all the global minima Υd

∗ of Jχd(Υ)
(d = 0, 1, . . . , D) can be computed by sequentially minimizing Jχd(Υ), with a sufficiently small
∆χ = χd+1 − χd.

Proof of Theorem 1. Since Jχ(Υ) is differentiable with respect to χ, denote ‖ ∂
∂χ Jχ(Υ)‖ ≤ L,

where L is a positive constant.
Then

Jχd+1(Υ
d
∗) ≤ Jχd(Υ

d
∗) + L∆χ ≤ Jχd(Υ

d+1
∗ ) + L∆χ

≤ Jχd+1(Υ
d+1
∗ ) + 2L∆χ ≤ Jχd+1(Υ

d+1
∗ ) + δ,

with ∆χ = δ
2L .
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It follows from the assumption that the initial estimate Υd
∗ is in a region where there is

no additional local minimum.

5. Numerical Experiments and Results

We have performed two numerical experiments to test the merits of our method. In
all experiments, some basic parameters are

ϕ(x, y, t) = 0, ψ(x, y) = sin(πx) sin(πy), η(x, y, t) = 0,

T = 0.06, ∆t = 0.002, ∆x = ∆y = 1/24, Υ0 ≡ 5,

β = 104, α1 = α2 = 10−6, x∗ = 12/24, D = 5,

where the values of the regularization parameters α1, α2 are chosen by trial and error.
In the first numerical experiment, we consider a horizontal stratified medium con-

taining two interfaces, as shown in Figure 1, and take N(u) = u2 − u + 1. To illustrate
the noise sensitivity, 40, 30, 20, and 10 dB Gaussian noises are, respectively, added to the
measurement data, and then, the parameter is estimated from noisy data. The inversion
results of the homotopy method with 40 and 30 dB Gaussian noises added are shown in
Figure 2, and the inversion results of the constrained homotopy method with 40, 30, 20,
and 10 dB Gaussian noises added are shown in Figure 3. To compare differences among the
three methods, the constrained homotopy method (Equations (12) and (16)), the homotopy
method (Equations (17) and (18)), and the constrained method (Equation (12)), Table 1
tabulates the relative errors and CPU times of the inversion results by these methods.

In the second numerical experiment, we take N(∇u) = 1
1−0.1|∇u|2 , and consider

the model of two anomalous bodies in a homogeneous medium with a permeability
of 5.82. The anomalous bodies have the permeability of 1.88 and 8.13, respectively.
Figures 4 and 5, respectively, show this model and inversion results of the homotopy
method with 40 and 30 dB Gaussian noises added. Figure 6 shows the inversion results of
the constrained homotopy method with 40, 30, 20, and 10 dB Gaussian noises added. For
comparison, Table 2 tabulates the relative errors and CPU times of the inversion results by
the constrained homotopy method, the homotopy method, and the constrained method.

Tables 1 and 2 show that:

(1) The constrained homotopy method has global convergence, fast convergence speed,
and good stability;

(2) Both the constrained homotopy method and the homotopy method have wider region
of convergence than the constrained method;

(3) The constrained homotopy method has a stronger noise suppression ability than the
homotopy method.
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Figure 1. True model in the first experiment.
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Figure 2. The inversion results of the homotopy method in the first experiment. (a,b) are the inversion
results with 40 and 30 dB Gaussian noises, respectively.
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Figure 3. The inversion results of the constrained homotopy method in the first experiment. (a–d)
are the inversion results with 40, 30, 20, and 10 dB Gaussian noises, respectively.
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Figure 4. True model in the second experiment.
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Figure 5. The inversion results of the homotopy method in the second experiment. (a,b) are the
inversion results with 40 and 30 dB Gaussian noises, respectively.
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Figure 6. The inversion results of the constrained homotopy method in the second experiment. (a–d)
are the inversion results with 40, 30, 20, and 10 dB Gaussian noises, respectively.

Table 1. Comparison of the three methods in the first experiment.

Noise Level Inversion Method Relative Error CPU Run Time (s)

40 dB Constrained
homotopy method 0.0835 228.9241

Homotopy method 0.0890 256.4925
Constrained method No convergence No convergence
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Table 1. Cont.

Noise Level Inversion Method Relative Error CPU Run Time (s)

30 dB Constrained
homotopy method 0.0849 230.9774

Homotopy method 0.1062 257.6150
Constrained method No convergence No convergence

20 dB Constrained
homotopy method 0.0921 259.9313

Homotopy method No convergence No convergence
Constrained method No convergence No convergence

10 dB Constrained
homotopy method 0.1018 284.2159

Homotopy method No convergence No convergence
Constrained method No convergence No convergence

Table 2. Comparison of the three methods in the second experiment.

Noise Level Inversion Method Relative Error CPU Run Time (s)

40 dB Constrained
homotopy method 0.0633 223.1658

Homotopy method 0.0799 224.1277
Constrained method No convergence No convergence

30 dB Constrained
homotopy method 0.0674 224.3204

Homotopy method 0.0805 249.1969
Constrained method No convergence No convergence

20 dB Constrained
homotopy method 0.0827 225.0038

Homotopy method No convergence No convergence
Constrained method No convergence No convergence

10 dB Constrained
homotopy method 0.0871 251.2146

Homotopy method No convergence No convergence
Constrained method No convergence No convergence

6. Conclusions

This paper presents an application of constrained homotopy method to the parameter
estimation for non-linear diffusion problems. Numerical results shows the feasibility and
effectiveness of this method. Compared with the constrained method and the homotopy
method, our approach has wider region of convergence and stronger noise suppression ability.
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