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Abstract: This paper presents a novel quasi-three-dimensional shear deformation theory called the
spectral displacement formulation (SDF) for analyzing the free vibration of functionally graded plates.
The SDF expresses the unknown displacement field as a unique form of the Chebyshev series in the
thickness direction. By increasing the truncation number in the Chebyshev series, the bending analysis
results can approach the three-dimensional elasticity solution and satisfy the traction-free boundary
conditions without requiring a shear correction factor. The SDF is an extension of the classical plate
theory, thereby naturally avoiding the shear-locking phenomenon. These characteristics enable the
SDF to apply to plates of arbitrary thickness while maintaining accuracy. The nonuniform rational
B-spline-based isogeometric approach is employed to enhance the applicability of this theory to free
vibration analysis of functionally graded plates with complex geometries and different boundary
conditions. Numerical examples are presented to demonstrate the accuracy and reliability of the
proposed method in analyzing the free vibration of functionally graded plates.
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Chebyshev series; free vibration
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1. Introduction

Functionally graded materials (FGMs) are multiphase composite materials charac-
terized by the variation in composition and structure over volume, resulting in their
thermodynamic and physical properties also exhibiting gradient changes across the vol-
ume. This unique characteristic enables FGMs to possess tailored and optimized properties
to meet specific engineering requirements. Due to their exceptional mechanical strength,
thermal shock resistance, and high-temperature durability, among other qualities, FGMs
are widely applicable in diverse fields, including aerospace equipment, electronic devices,
automotive engines, chemical components, and medical equipment [1,2].

The mechanical analysis of functionally graded material (FGM) plates has attracted
significant attention from researchers [3–5]. The classical plate theory (CPT) [4], based
on the Kirchhoff–Love assumptions, is commonly employed to analyze thin FGM plates.
Nevertheless, its applicability to moderately thick FGM plates may produce less accurate
results. The first-order shear deformation theory (FSDT) [4], which takes the shear effect into
account, is therefore developed to improve the CPT. However, a shear correction factor (SCF)
is necessary to modify the calculation of shear stresses, and determining the appropriate
value of SCF can be challenging as it varies between different problems. Additionally, FSDT
is susceptible to the shear-locking problem when the thickness to length ratio becomes
very small. Numerous types of higher-order shear deformation theories (HSDTs) [4] have
been developed to elucidate the nonlinear, parabolic changes in transverse shear stresses
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throughout the thickness, thereby obviating the need to calculate the SCF. HSDTs can be
categorized into models based on polynomial shape functions, such as the third-order shear
deformation theory (TSDT) [6], the fifth-order shear deformation theory [7], and the nth-
order shear deformation theory [8]. Alternatively, there are models based on nonpolynomial
shape functions, such as trigonometric HSDTs [9–12], exponential HSDTs [13,14], hyperbolic
HSDTs [15–18], and hybrid HSDTs [19–21]. Traction-free boundary conditions on the top
and bottom surfaces are automatically satisfied in these HSDTs, and the displacement and
stress results obtained from HSDTs are also more accurate than those obtained from CPT
and FSDT.

Carrera et al. [22] demonstrated the significance of the thickness stretching effect on
the response analysis of FGM plates and shells. Through multiple comparative studies,
they found that considering the thickness stretching effect is crucial in the computation of
moderately thick FGM plates and shells. Furthermore, they discovered that in the case of
sandwich structures, including thin plates and shells, the thickness stretching effect must
be taken into account. Quasi-three-dimensional (3D) theories are HSDTs with high-order
variations throughout the thickness for the transverse displacement [4]. By accounting for
higher-order variations in both in-plane and transverse displacements, the quasi-3D theory
takes into account the shear deformation effect and the thickness stretching effect. Generally,
Carrera’s unified formulation (CUF) proposed by Carrera [23] and extended by Demasi [24]
is commonly used for implementing quasi-3D theories. Numerous quasi-3D theories have
been proposed in the literature. Zenkour [25] developed a quasi-3D theory for FGM plates
using trigonometric functions. Matsunaga [26,27] constructed a quasi-3D theory by ex-
panding in-plane and transverse displacements using power series. Ferreira et al. [28]
employed CUF to develop a sinusoidal quasi-3D shear deformation theory. Neves and
Ferreira et al. [29,30] conducted similar work using hyperbolic or hybrid functions instead
of sinusoidal functions. Mantari and Soares et al. [19] introduced a general formulation that
allows for deriving various quasi-3D theories using polynomials, trigonometric, or hybrid
functions. They [31,32] optimized the number of unknowns in tangential-based quasi-3D
shear deformation theories by separating transverse displacement into bending and shear
compohnents, requiring only four unknowns to describe the unknown displacement field
model. Thai and Kim et al. [33] developed a quasi-3D theory with five unknowns using
sinusoidal functions, where the transverse displacement is divided into bending, shear, and
stretching parts. Following a similar approach, Thai et al. [16], Hebali et al. [17], Bessaim
et al. [34], and Bennoun et al. [35] employed hyperbolic functions to construct quasi-3D
theories. At the same time, Belabed et al. [36] and Mantari et al. [20,21] used combined ex-
ponential and hyperbolic functions and combined exponential and trigonometric functions
to develop quasi-3D theories. Quasi-3D theories, as modifications of HSDTs, typically yield
more accurate results in response analysis compared to conventional HSDTs.

The free vibration analysis of FGM plates based on quasi-3D shear deformation
theories has been extensively discussed. Talha and Singh [37] designed a nine-node C0

continuous isoparametric element with 13 degrees of freedom per node based on quasi-3D
theory. They investigated the influence of aspect ratio, thickness ratio, volume fraction
index, and boundary conditions on the bending and free vibration responses of FGM plates.
Matsunaga [26,27] considered the effects of transverse shear and normal stresses, as well
as rotational inertia on the natural frequencies and buckling stress of FGM plates and
shallow shells. Thai and Choi [38] studied the free vibration of FGM plates on a Pasternak
foundation using a new quasi-3D shear deformation theory with only four unknowns.
Hebali et al. [17] analyzed the bending and free vibration of FGM plates using a novel
hyperbolic quasi-3D theory. Abualnour et al. [39] developed a new trigonometric quasi-3D
theory to analyze the vibration problems of FGM plates, where the displacement field
includes undetermined integral terms. Mantari et al. [20,21] investigated the free vibration
analysis of FGM plates resting on elastic foundations by using a generalized quasi-3D
hybrid-type higher-order shear deformation theory (HSDT). The significant feature of
this formulation is that it considers only five unknowns instead of six unknowns in the
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well-known trigonometric plate theory (TPT). Zenkour and Sobhy [40] utilized quasi-3D
theory to analyze the statics, buckling, and free vibration of simply supported sandwich
plates. Li et al. [41] employed a new quasi-3D theory to analyze the free vibration of simply
supported FGM plates. This new quasi-3D theory introduces two reformulated transverse
shear strain functions to describe the distribution of transverse shear strains along the
plate thickness. Additionally, using an undetermined integral format of displacement
field enhances computational efficiency. Shahsavari et al. [42] presented a novel quasi-3D
hyperbolic theory for the free vibration analysis of FGM porous plates resting on elastic
foundations. A comprehensive parametric study is carried out to consider the effects of
porosity fraction index, stiffness of foundation parameters, and volume fraction index
on the frequencies of imperfect FGM plates. Hai Van et al. [43] investigated the free
vibration of nonuniform-thickness 2D-FGM sandwich porous plates using a quasi-3D
theory. The findings revealed that the mechanical behaviors of the porous sandwich plates
are significantly affected by the hygrothermal environment, the boundary conditions, and
the patterns of porosity. Jafari and Kiani [44] obtained a free vibration response of composite
plates which are reinforced with graphene platelets using a quasi-3D plate model. Pham
et al. [45] proposed the free vibration response from bi-directional FGM rectangular plates
in the fluid medium based on a quasi-3D plate theory. Kaddari et al. [46] investigated a new
quasi-3D hyperbolic shear deformation theory to discuss the statics and free vibration of
FGM porous plates resting on elastic foundations. The influences of the porosity parameter,
power-law index, aspect ratio, thickness ratio, and the foundation parameters on the
vibration of porous FGM plate are considered. Daikh and Zenkour [47] studied the free
vibration of porous FGM sandwich plates using a new and simple higher-order shear
deformation theory. The effect of porosity, sandwich plate geometry, and heterogeneity
parameters on the FGM sandwich plate’s free vibration was investigated.

As previously stated, considerable focus has been on analyzing the free vibration of
FGM plates. It is worth noting that in numerical analysis, HSDTs generally require C1

continuity, which can be easily achieved through the isogeometric method. Isogeometric
analysis (IGA), introduced by Hughes et al. [48], aims to seamlessly integrate finite element
analysis (FEA) with computer-aided design (CAD). By directly employing the widely
used nonuniform rational B-splines (NURBS) basis functions from CAD software in FEA,
IGA methods exhibit notable advantages, primarily due to their ability to accurately
represent geometric shapes. NURBS basis functions can precisely describe the geometry
of the research object, even with relatively sparse mesh discretization, thereby ensuring
high numerical accuracy. Moreover, NURBS-based IGA offers flexibility in satisfying
arbitrary order continuity requirements, which proves challenging in conventional FEA.
Consequently, IGA methods have found extensive application in analyzing FGM plates.

This paper presents a novel quasi-3D theory called the spectral deformation formula-
tion (SDF) [49,50], where the unknown displacement field is expanded as a unique form
using the Chebyshev series. Similar to CUF, this theory exhibits hierarchical refinement
capability, enabling a perfect match with the 3D elasticity solution. Additionally, the SDF
is an extension of CPT, thus naturally avoiding the shear-locking problem. Consequently,
this theory is applicable to both thin and thick plates while maintaining high accuracy [50].
This study analyzes the free vibration of FGM plates by incorporating this theory with
IGA methods. Numerical results are compared with existing literature, demonstrating
the reliability and accuracy of this quasi-3D theory in the analysis of free vibration in
FGM plates.

The paper is organized as follows. Section 2 describes the FGM plate model and the
quasi-3D deformation theory based on the SDF. The governing equations are derived using
the d’Alembert principle and the principle of virtual work, followed by discretization
using NURBS. Section 3 presents relevant numerical examples and discussions. Section 4
provides the corresponding conclusions.
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2. The Model and Discretization
2.1. Functionally Graded Plate

Consider an FGM plate composed of ceramic and metal, where the coordinates x and
y represent the in-plane directions, and z denotes the thickness direction (see Figure 1).
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Figure 1. Functionally graded plate.

The top surface of the plate (z = h/2) consists of ceramic material, while the bottom
surface (z = −h/2) transitions from ceramic to metal using a power-law distribution [3].
The relationship between the volume fractions of the ceramic and metal is defined as
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= (1/2 + z/h)g, z ∈ [−h/2, h/2] (1)

where

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

2. The Model and Discretization 

2.1. Functionally Graded Plate 

Consider an FGM plate composed of ceramic and metal, where the coordinates 𝑥 and 

𝑦 represent the in-plane directions, and 𝑧 denotes the thickness direction (see Figure 1). 

 

Figure 1. Functionally graded plate. 

The top surface of the plate (𝑧 = ℎ 2⁄ ) consists of ceramic material, while the bottom 

surface (𝑧 = −ℎ 2⁄ ) transitions from ceramic to metal using a power-law distribution [3]. 

The relationship between the volume fractions of the ceramic and metal is defined as 𝓋m +

𝓋c = 1, with 𝓋c is expressed as: 

𝓋c  =  (1 2⁄ + 𝑧 ℎ⁄ )𝑔,    𝑧 ∈ [−ℎ 2⁄ , ℎ 2⁄ ]  (1) 

where 𝓋c and 𝓋m are the volume fractions of the ceramic and the metal, respectively, and 

𝑔 is the gradient index [51]. 

Based on the rule of mixtures [2], the equivalent material properties of the FGM plate 

can be computed using the following expression: 

(𝐸, 𝜈, 𝜌) = (𝐸c, 𝜈c, 𝜌c)𝓋c + (𝐸m, 𝜈m, 𝜌m)𝓋m  (2) 

where 𝐸c, 𝜈c, 𝜌c and 𝐸m, 𝜈m, 𝜌m are the elastic modulus, Poisson’s ratio, and mass density 

of the ceramic and the metal, respectively. 𝐸, 𝜈, and 𝜌 are the equivalent elastic modulus, 

Poisson’s ratio, and mass density, respectively.  

2.2. Spectral Displacement Formulation 

Chebyshev polynomials possess the advantage of spectral convergence, allowing for 

high-precision approximation of target functions with few truncation terms [52]. In this study, 

the first kind of Chebyshev polynomials is employed as the spectral basis to expand the dis-

placement field of the FGM plate in the thickness direction as the following spectral series: 

𝐮 = 𝐮0 +∑ 𝐀𝑖(𝑧)𝐮𝑖
𝑀

𝑖=1
+∑ 𝐀𝑖(𝑧)𝐮𝑖

𝑁

𝑖=𝑀+1
 (3) 

where 𝐮 = [𝑢, 𝑣, 𝑤]T  and 𝑢 , 𝑣 , and 𝑤  are displacements in the 𝑥 , 𝑦 , and 𝑧  directions, re-

spectively. 𝑀 and 𝑁 are the truncation numbers for the transverse and the in-plane dis-

placement fields, respectively, with the condition that 𝑀 ≤ 𝑁. {𝐮𝑖}𝑖=0
𝑁  are the generalized 

displacements defined as follows: 

𝐮0 = [𝑢0, 𝑣0, 0]
T,   𝐀𝑖(𝑧) = diag[𝜅𝑖(𝑧), 𝜅𝑖(𝑧), 𝜅𝑖

′(𝑧)]

𝐮𝑖 = {
[𝑢𝑖 − 𝑤𝑖−1,𝑥 ,𝑣𝑖 −𝑤𝑖−1,𝑦 , 𝑤𝑖−1]

T
,   1 ≤ 𝑖 ≤ 𝑀

[𝑢𝑖 , 𝑣𝑖 , 0]
T,   (𝑀 + 1) ≤ 𝑖 ≤ 𝑁

 (4) 

and

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 20 
 

 

2. The Model and Discretization 

2.1. Functionally Graded Plate 

Consider an FGM plate composed of ceramic and metal, where the coordinates 𝑥 and 

𝑦 represent the in-plane directions, and 𝑧 denotes the thickness direction (see Figure 1). 

 

Figure 1. Functionally graded plate. 

The top surface of the plate (𝑧 = ℎ 2⁄ ) consists of ceramic material, while the bottom 

surface (𝑧 = −ℎ 2⁄ ) transitions from ceramic to metal using a power-law distribution [3]. 

The relationship between the volume fractions of the ceramic and metal is defined as 𝓋m +

𝓋c = 1, with 𝓋c is expressed as: 

𝓋c  =  (1 2⁄ + 𝑧 ℎ⁄ )𝑔,    𝑧 ∈ [−ℎ 2⁄ , ℎ 2⁄ ]  (1) 

where 𝓋c and 𝓋m are the volume fractions of the ceramic and the metal, respectively, and 

𝑔 is the gradient index [51]. 

Based on the rule of mixtures [2], the equivalent material properties of the FGM plate 

can be computed using the following expression: 

(𝐸, 𝜈, 𝜌) = (𝐸c, 𝜈c, 𝜌c)𝓋c + (𝐸m, 𝜈m, 𝜌m)𝓋m  (2) 

where 𝐸c, 𝜈c, 𝜌c and 𝐸m, 𝜈m, 𝜌m are the elastic modulus, Poisson’s ratio, and mass density 

of the ceramic and the metal, respectively. 𝐸, 𝜈, and 𝜌 are the equivalent elastic modulus, 

Poisson’s ratio, and mass density, respectively.  

2.2. Spectral Displacement Formulation 

Chebyshev polynomials possess the advantage of spectral convergence, allowing for 

high-precision approximation of target functions with few truncation terms [52]. In this study, 

the first kind of Chebyshev polynomials is employed as the spectral basis to expand the dis-

placement field of the FGM plate in the thickness direction as the following spectral series: 

𝐮 = 𝐮0 +∑ 𝐀𝑖(𝑧)𝐮𝑖
𝑀

𝑖=1
+∑ 𝐀𝑖(𝑧)𝐮𝑖

𝑁

𝑖=𝑀+1
 (3) 

where 𝐮 = [𝑢, 𝑣, 𝑤]T  and 𝑢 , 𝑣 , and 𝑤  are displacements in the 𝑥 , 𝑦 , and 𝑧  directions, re-

spectively. 𝑀 and 𝑁 are the truncation numbers for the transverse and the in-plane dis-

placement fields, respectively, with the condition that 𝑀 ≤ 𝑁. {𝐮𝑖}𝑖=0
𝑁  are the generalized 

displacements defined as follows: 

𝐮0 = [𝑢0, 𝑣0, 0]
T,   𝐀𝑖(𝑧) = diag[𝜅𝑖(𝑧), 𝜅𝑖(𝑧), 𝜅𝑖

′(𝑧)]

𝐮𝑖 = {
[𝑢𝑖 − 𝑤𝑖−1,𝑥 ,𝑣𝑖 −𝑤𝑖−1,𝑦 , 𝑤𝑖−1]

T
,   1 ≤ 𝑖 ≤ 𝑀

[𝑢𝑖 , 𝑣𝑖 , 0]
T,   (𝑀 + 1) ≤ 𝑖 ≤ 𝑁

 (4) 

are the volume fractions of the ceramic and the metal, respectively, and g
is the gradient index [51].

Based on the rule of mixtures [2], the equivalent material properties of the FGM plate
can be computed using the following expression:

(E, ν, ρ) = (Ec, νc, ρc)
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+ (Em, νm, ρm)
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(2)

where Ec, νc, ρc and Em, νm, ρm are the elastic modulus, Poisson’s ratio, and mass density
of the ceramic and the metal, respectively. E, ν, and ρ are the equivalent elastic modulus,
Poisson’s ratio, and mass density, respectively.

2.2. Spectral Displacement Formulation

Chebyshev polynomials possess the advantage of spectral convergence, allowing
for high-precision approximation of target functions with few truncation terms [52]. In
this study, the first kind of Chebyshev polynomials is employed as the spectral basis to
expand the displacement field of the FGM plate in the thickness direction as the following
spectral series:

u = u0 + ∑M
i=1 Ai(z)ui + ∑N

i=M+1 Ai(z)ui (3)

where u = [u, v, w]T and u, v, and w are displacements in the x, y, and z directions,
respectively. M and N are the truncation numbers for the transverse and the in-plane dis-
placement fields, respectively, with the condition that M ≤ N. {ui}N

i=0 are the generalized
displacements defined as follows:

u0 = [u0, v0, 0]T, Ai(z) = diag
[
κi(z), κi(z), κ′i(z)

]
ui =

{
[ui − wi−1,x, vi − wi−1,y, wi−1

]T , 1 ≤ i ≤ M

[ui, vi, 0]T, (M + 1) ≤ i ≤ N

(4)
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where {ui}N
i=0, {vi}N

i=0, and {wi}M−1
i=0 represent the basic unknowns, which are functions of

the in-plane coordinates (x, y). {κi(z)}N
i=1 are the spectral basis excluding the first constant

term [53]. ( )′ represents the first-order derivative, ( ),x and ( ),y indicate partial derivatives
with respect to x and y, respectively.

The relationship between strains and displacements can be expressed as [54]:

ε = ε0 + ∑M
i=1 Bi(z)εi + ∑N

i=M+1 Bi(z)εi (5)

where ε =
[
εxx, εyy, εzz, γyz, γxz, γxy

]T, {εi}N
i=0 are generalized strains in the following form:

ε0 =
[
u0,x, v0,y, 0, 0, 0, u0,y + v0,x

]T
Bi(z) = diag

[
κi(z), κi(z), κ

′′
i (z), κ′i(z), κ′i(z), κi(z)

]
εi =


[
ui,x − wi−1,xx, vi,y − wi−1,yy, wi−1,

vi, ui, ui,y + vi,x − 2wi−1,xy
]T , 1 ≤ i ≤ M

[
ui,x, vi,y, 0, vi, ui, ui,y + vi,x

]T, (M + 1) ≤ i ≤ N

(6)

where ( )′′ represents the second-order derivative; κ′i(z) and κ
′′
i (z) can be referenced in

Appendix A.
Considering the complete 3D elasticity constitutive [54], the stress field can be ex-

pressed based on Hooke’s law as follows:

σ = Dε = Dε0 + ∑M
i=1 DBi(z)εi + ∑N

i=M+1 DBi(z)εi

D =

[
Dn 0
0 Ds

]
, (Dn)ij = λ + 2µδij, (Ds)ij = µδij

(7)

where σ =
[
σxx, σyy, σzz, σyz, σxz, σxy

]T, λ = Eν/(1 + ν)/(1− 2ν), and µ = E/(1 + ν)/2
are Lamé parameters. δij is the Kronecker symbol.

According to the d’Alembert principle and the principle of virtual work, the integral
governing equations for the free vibration of the FGM plate are written as:∫

V δεTσdv =
∫

V δuT(−ρ
..
u
)
dv (8)

By combining Equations (3)–(7), Equation (8) can be rearranged into the following
two-dimensional (2D) format:∫

Ω
δ

~
ε

T ~
D

~
εda = ω2

∫
Ω

δ
~
u

T
Λ

~
uda (9)

where
~
D and Λ represent the modulus matrix and inertia matrix, respectively, ω denotes

the angular frequency, and

~
u =


u0
...

uN

,
~
ε =


ε0
...
εN

 , Λ =

 Λ00 . . . Λ0N
...

. . .
...

ΛN0 . . . ΛNN

,
~
D =


~
D00 · · ·

~
D0N

...
. . .

...
~
DN0 . . .

~
DNN


(
Λ00, Λ0j, Λij

)
=
∫ h/2
−h/2 ρ

(
I3×3, Aj(z), Ai(z)Aj(z)

)
dz, 1 ≤ i, j ≤ N( ~

D00,
~
D0j,

~
Dij

)
=
∫ h/2
−h/2

(
D, DBj(z), Bi(z)DBj(z)

)
dz, 1 ≤ i, j ≤ N

Λji =
(
Λij
)T

~
Dji =

( ~
Dij

)T , ∀i, j ∈ [0, N];

(10)
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2.3. Discrete Governing Equations

The NURBS-based isogeometric method fulfills the C1-continuity requirement for dis-
cretizing the generalized displacements. In the case of a surface geometry model of the FGM
plate, the model is discretized using 2D NURBS basis functions [48] as described below:

Ω =

x = (x, y)

∣∣∣∣∣∣x(ζ) =
Q

∑
die=1

xdieRdie(ζ), ζ = (ζ, η) ∈ Ω̂

 (11)

where i = (i1, i2), with i1 and i2 representing the sequence numbers of the ζ and η dimen-
sions of the NURBS basis functions, respectively, die denotes the lexicographical order
associated with i [55]. xdie represent the geometric control points, Q is the number of
NURBS basis functions, and Ω̂ is the mapping of the plate surface Ω in the 2D parameter
space. Rdie correspond to the 2D NURBS basis functions, as described in Appendix B. Their
further application in the discretization of the in-plane displacement fields is as follows:

q(ζ) =
Q

∑
die=1

qdieRdie(ζ) (12)

where q = [u0, . . . , uN , v0, . . . , vN , w0, . . . , wM−1]
T is a vector that contains all the basic

unknowns. qdie are the control vectors, and the displacement and the strain fields can be
expressed as:

~
u(ζ) = ∑Q

die=1 Udie(ζ)qdie
~
ε(ζ) = ∑Q

die=1 Edie(ζ)qdie
(13)

where Udie and Edie are sparse block coefficient matrices, as described in Appendix C for
the detailed expressions.

By combining Equation (13) with Equation (9) and rearranging, the discretized gov-
erning equations for the free vibration analysis of the FGM plate can be derived as follows:

∑Q
dje=1 Kdiedjeqdje = ω2 ∑Q

dje=1 Mdiedjeqdje, ∀i ∈ [1, Q]

Kdiedje =
∫

Ω̂ ET
die

~
DEdje Jadâ

Mdiedje =
∫

Ω̂ UT
dieΛUdje Jadâ

(14)

where Ja represents the Jacobian determinant [56], Kdiedje represent the block stiffness
matrices, and Mdiedje represent the block mass matrices. Equation (14) can be reformulated
in a global form as follows:

Kd = ω2Md (15)

where K, M, and d represent the global stiffness matrix, global mass matrix, and displace-
ment vector, respectively, which are assembled from Kdiedje, Mdiedje, and qdje. The local
support property of the NURBS basis functions ensures the sparsity of the stiffness matrix
K and the mass matrix M [48].

2.4. Boundary Conditions and Multiple Patches Coupling

NURBS basis functions generally exhibit noninterpolatory property, which limits
their direct applicability for enforcing boundary conditions and coupling adjacent NURBS
patches [57]. A general approach using penalty methods is employed in this paper to
impose boundary conditions and couple multiple patches [57]. For an FGM plate with
midplane geometry represented by 2D NURBS basis functions, as described in Equation
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(11), the boundary is typically composed of segmented isoparametric curves. As shown in
Figure 2, the constrained boundary ∂S is denoted as follows:

∂S =
{

x̀ = (x̀, ỳ)
∣∣∣x̀(ς) = ∑Q

die=1 xdieR̀die(ς), ς ∈ [ς1, ς2]
}

(16)

where ς represents the parameter coordinate corresponding to the boundary, [ς1, ς2] denotes
its range of variation. The

( `) signifies the parameter functions with fixed parameter
coordinate values.
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Figure 2. Illustration of the NURBS boundary.

Due to the linear independence of the spectral basis in the thickness direction, as shown
in Equation (3), constraining the displacement field is equivalent to imposing constraints
on the generalized displacement field {ui}N

i=0 individually. The discretized constrained
displacement field can be expressed as:

c(ζ) =
Q

∑
die=1

Ldie(ζ)qdie = L(ζ)d (17)

where Ldie are sparse block matrices of size 3 × (M + 2N + 2), and the definition of
their nonzero elements can be obtained by combining Equation (10) and referring to
Equation (A7) in Appendix C. The global matrix L is assembled from the block matrices
Ldie in lexicographical order.

Substituting the parameter coordinates value corresponding to the boundary into
Equation (17) yields the following expression:

c̀(ς) = L̀(ς)d , on ∂S (18)

By applying the Galerkin method, the homogeneous boundary conditions can be
discretized to yield the following expression:

Ωd = 0, Ω =

∫ ς2
ς1

L̀TL̀Jcdς Clamped∫ ς2
ς1

L̀TT
s sL̀Jcdς Simply supported

(19)

where Jc =‖ dx̀/dς ‖ represents the arc length coefficient, and ‖ ‖ denotes the Euclidean
norm [56]. Ω is a symmetric sparse matrix and it has the same size as the stiffness matrix
in the governing equations.

By multiplying Equation (19) by a penalty coefficient [58,59] and directly substituting
it into Equation (15), the boundary conditions can be enforced. The appropriate value of
the penalty coefficient should be determined through numerical testing.
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The penalty method can be extended to couple adjacent NURBS patches. As shown in
Figure 3, adjacent NURBS patches are coupled by satisfying the following conditions:

∂Sa 3 x̀a(ςa) = x̀b(ςb) ∈ ∂Sb (20a)
ùa

i (ς
a) = ùb

i
(
ςb), ∀i ∈ [0, N],∀ςa = ςb ∈ [ς1, ς2] (20b)

ὲa
i (ς

a) = ὲb
i
(
ςb), ∀i ∈ [0, N] (20c)

where ∂Sa and ∂Sb represent the coupling boundaries of patch a and patch b, ςa and ςb are
the parameter coordinates at ∂Sa and ∂Sb, respectively. Assuming that patch a and patch

b have the same truncation order as the SDF, {ùa
i }

N
i=0 and

{
ùb

i

}N

i=0
are the values of the

generalized displacement field at ∂Sa and ∂Sb, respectively. Similarly, {ὲa
i }

N
i=0 and

{
ὲb

i

}N

i=0
are the values of the generalized strain field at ∂Sa and ∂Sb, respectively.
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By combining Equations (3)–(6) and Equation (10), and referring to Appendix C, the
discretization of Equation (20b,c) follows a similar form as Equation (19). Subsequently, an
appropriate penalty coefficient is chosen [58,59] to enable the coupling of NURBS patches.

3. Numerical Results and Discussion

The NURBS midplane depicted in Figure 4 includes a square plate, a circular plate,
a square plate with a complicated cutout, and an L-shaped plate with multiple holes.
The square plate modeled uses a single NURBS patch, the circular plate is composed of
5 NURBS patches, the square plate with a complicated cutout consists of 8 NURBS patches,
and the L-shaped plate with multiple holes comprises 18 NURBS patches. The grid lines
forming the mesh are represented by solid red lines, and the control points are denoted by
solid blue dots.

Using the aforementioned four models as examples, this section compares the obtained
numerical results with existing literature to validate the accuracy and generality of the
proposed SDF-based IGA for the free vibration analysis of FGM plates. Numerical tests
indicate that fourth-order NURBS basis functions and truncation numbers M = 5, N = 6 in
the SDF-based IGA provide converged response results. In all cases, (p + 1)× (q + 1) Gaus-
sian integration points are used for the in-plane elements [48]. The number of integration
points in the thickness direction is determined according to the value of the gradient index.
The penalty coefficient is chosen as 104 times the maximum element value of the relevant
stiffness matrix. The material properties of the components involved in the examples are
listed in Table 1. The code is compiled using MATLAB 9.10 and executed on a computer
with an Intel(R) Core (TM) i7-9750H CPU (2.60 GHz), Windows 10 64-bit operating system,
32 GB RAM, and 12 threads. The equipment was sourced from Lenovo, headquartered in
Beijing, China.
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Table 1. Material properties of ceramics and metals.

Young’s Modulus (Gpa) Poisson’s Ratio Density (kg/m3)

Al 70 0.3 2707
Al2O3 380 0.3 3800
ZrO2 270 0.3 5700
SiC 427 0.17 3210

3.1. Square Plate (Al/Al2O3)

Consider a simply supported FGM square plate consisting of Al/Al2O3 with a power-
law distribution, as shown in Figure 4a. The material properties of the ceramic and metal
are provided in Table 1, and the side length of the plate is 1. For comparison purposes, the
dimensionless frequency is defined as ω = ωh

√
ρc/Ec, where ω represents the angular

frequency, h is the thickness of the plate, ρc is the density of the ceramic material, and Ec is
the elastic modulus of the ceramic material.

As shown in Table 2, the dimensionless natural frequency results for Al/Al2O3 square
plates obtained using the SDF-based IGA are compared with the results from existing
literature for different aspect ratios (a/h) and gradient indices (g). The quasi-3D solutions
provided by Matsunaga [26] are obtained based on Carrera’s unified formulation. The
HSDT results given by Thai [60] are obtained based on a simple higher-order shear defor-
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mation theory. The FSDT results [61] correspond to analytical solutions based on first-order
shear deformation theory. It can be observed that the SDF-based IGA results conform
very well with the quasi-3D results [26]. The FSDT results [61] slightly overestimate the
frequencies of FGM plates at a high value of gradient index due to the use of a constant SCF
for any values of gradient index. Conversely, the HSDT results [60] slightly underestimate
frequencies since the HSDT neglects the thickness stretching effect. This highlights the
necessity for considering the thickness stretching effect in the analysis of plate bending
vibrations. When the thickness decreases, the first three bending frequencies significantly
decrease. Additionally, when the gradient index increases, the frequencies also decrease.
However, the influence of the gradient index on the frequencies is not as significant as the
Influence of thickness. Figure 5 illustrates the corresponding bending vibration modes of
the Al/Al2O3 square plate for the aspect ratio a/h = 10 and the gradient index g = 10.
The 3D-mode shapes provide a clear visual representation of the stretching effect in the
plate’s thickness.

Table 2. The dimensionless frequencies ω of the Al/Al2O3 square plates.

g Method
ω1(1, 1) ω2(1, 2) ω3(2, 2)

a/h = 5 a/h = 10 a/h = 5 a/h = 10 a/h = 5 a/h = 10

1

Quasi-3D [26] 0.1640 0.0443 0.3644 0.1063 0.5444 0.1640
HSDT [60] 0.1631 0.0442 0.3607 0.1059 0.5254 0.1631
FSDT [61] 0.1631 0.0442 0.3604 0.1059 0.5245 0.1631

Present 0.1640 0.0443 0.3643 0.1063 0.5324 0.1640

10

Quasi-3D [26] 0.1306 0.0364 0.2790 0.0859 0.3981 0.1306
HSDT [60] 0.1301 0.0364 0.2771 0.0856 0.3948 0.1301
FSDT [61] 0.1324 0.0366 0.2856 0.0867 0.4097 0.1324

Present 0.1305 0.0364 0.2789 0.0859 0.3980 0.1305
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3.2. Circular Plate (Al/Al2O3)

Consider a clamped FGM circular plate composed of aluminum (Al) and aluminum
oxide (Al2O3), as shown in Figure 4b. For the purpose of comparison, a power-law dis-
tribution is adopted in this example, given by
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𝑖=𝑀+1
 (3) 

where 𝐮 = [𝑢, 𝑣, 𝑤]T  and 𝑢 , 𝑣 , and 𝑤  are displacements in the 𝑥 , 𝑦 , and 𝑧  directions, re-
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′(𝑧)]

𝐮𝑖 = {
[𝑢𝑖 − 𝑤𝑖−1,𝑥 ,𝑣𝑖 −𝑤𝑖−1,𝑦 , 𝑤𝑖−1]

T
,   1 ≤ 𝑖 ≤ 𝑀

[𝑢𝑖 , 𝑣𝑖 , 0]
T,   (𝑀 + 1) ≤ 𝑖 ≤ 𝑁

 (4) 

= (1/2− z/h)g,
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and the
radius is 1. The dimensionless frequency is defined as ω = 100ωh

√
ρc/Ec, where h is the

thickness of the plate.
In Table 3, the dimensionless natural frequency results for Al/Al2O3 circular plates are

listed for various thickness-to-radius ratios with a gradient index of 1. The converged results
obtained using the SDF-IGA method are compared with the semianalytical solution based
on the first-order shear deformation theory (FSDT) [62], the Abaqus results based on 3D
elasticity theory (Abaqus) [63], together with the IGA solutions based on the modified first-
order shear deformation theory (sFSDT-IGA) [64] and the higher-order shear deformation
theory (HSDT-IGA) [65]. These comparisons demonstrate good agreement between the
SDF-IGA results and the reference solutions for both thick and thin FGM plates. Reducing
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the thickness of the circular plate leads to a significant decrease in the plate’s natural
frequencies. The first six mode shapes of the Al/Al2O3 circular plates with a thickness-to-
radius ratio h/r = 0.1 are shown in Figure 6. The sixth bending mode shape exhibits an
irregular shape.

Table 3. The dimensionless frequencies ω of the Al/Al2O3 circular plates (g = 1).

h/r Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

0.2

FSDT [62] 8.6535 16.7666 25.6486 28.7574 34.0756 35.0981
Abaqus [63] 8.6403 16.7890 25.7661 28.9152 34.1893 35.3618

sFSDT-IGA [64] 8.6486 17.0016 26.2512 28.7691 34.1216 36.1557
HSDT-IGA [65] 8.6787 16.8595 25.8479 29.0092 34.0581 35.4875

Present 8.6916 16.8787 25.8735 29.0259 34.1437 35.4900

0.1

FSDT [62] 2.3053 4.6934 7.5146 8.5181 10.7128 12.6197
Abaqus [63] 2.2888 4.6661 7.4808 8.4829 10.6776 12.5877

sFSDT-IGA [64] 2.3040 4.7137 7.5773 8.5244 10.8524 12.7017
HSDT-IGA [65] 2.3076 4.7005 7.5318 8.5380 10.7483 12.6636

Present 2.3079 4.7021 7.5341 8.5421 10.7507 12.6709

0.01

FSDT [62] 0.0236 0.0491 0.0805 0.0918 0.1178 0.1404
Abaqus [63] 0.0234 0.0486 0.0798 0.0909 0.1167 0.1391

sFSDT-IGA [64] 0.0236 0.0491 0.0805 0.0919 0.1180 0.1408
HSDT-IGA [65] 0.0236 0.0492 0.0807 0.0924 0.1191 0.1431

Present 0.0236 0.0491 0.0805 0.0918 0.1178 0.1404
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3.3. Square Plate with a Complicated Cutout (Al/ZrO2)

A symmetric Al/ZrO2 square plate with a complicated cutout is considered to verify
the accuracy of the proposed SDF-IGA method in the analysis of free vibrations of irregular-
shaped structures. The geometric model is shown in Figure 4c, where the outer edges are
either simply supported or clamped. The length-to-thickness ratio is chosen as h/L = 0.05,
and the other detailed original geometric information can be found in the paper by Nguyen
and Nguyen-Xuan [66]. For observation and comparison, the dimensionless frequency is
defined as vω = ωL2

√
ρc/Ec/h.
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The dimensionless natural frequency results for the square plates with a complicated
cutout under simply supported or clamped boundary conditions are listed in Tables 4 and 5.
These results are compared with the converged IGA results based on the 3D elasticity theory
(3D-IGA) [66] and the semianalytical results obtained using the IGA and scaled boundary
element method based on the 3D elasticity theory (3D-IGSBFEM) [67]. The results from the
SDF-based IGA show good agreement with the reference solutions for different gradient
indices. Increasing the gradient index decreases the natural frequencies of the plates, but
the effect is insignificant. Additionally, when the boundary conditions change from simply
supported to clamped, the natural frequencies of the plates significantly increase. The
first six mode shapes of the square plate with a complicated cutout under the clamped
boundary condition, with a gradient index equal to 1, are displayed in Figure 7. The mode
shapes exhibit noticeable symmetry.

Table 4. The dimensionless frequencies ω of the Al/ZrO2 square plates with a complicated cutout
under a simply supported boundary condition (h/L = 0.05).

Mode. Method g = 0.5 g = 1 g = 5 g = 20 g = 50

1
3D-IGA [66] 6.75 6.58 6.71 6.46 6.19

3D-IGSBFEM [67] 6.7340 6.5896 6.7108 6.5198 6.2596
Present 6.7695 6.5825 6.7086 6.5565 6.2618

2
3D-IGA [66] 11.00 10.73 10.88 10.48 10.07

3D-IGSBFEM [67] 10.9747 10.7355 10.8690 10.5745 10.1763
Present 11.0038 10.7032 10.8487 10.6100 10.3118

3
3D-IGA [66] 12.36 12.06 12.24 11.79 11.32

3D-IGSBFEM [67] 12.3640 12.0954 12.2590 11.9235 11.4698
Present 12.4138 12.0769 12.2524 11.9814 11.6415

4
3D-IGA [66] 19.84 19.35 19.60 18.89 18.15

3D-IGSBFEM [67] 19.8134 19.3808 19.6133 19.0241 18.3701
Present 19.8995 19.3596 19.6091 19.0445 18.6461

5
3D-IGA [66] 21.28 20.77 19.73 19.05 18.81

3D-IGSBFEM [67] 21.2322 20.7737 19.6994 19.0857 18.8038
Present 21.0078 20.7304 19.6922 19.1810 18.8638

6
3D-IGA [66] 21.33 20.92 21.00 20.25 19.48

3D-IGSBFEM [67] 21.2879 20.8954 20.9776 20.4249 19.6844
Present 21.3682 20.8862 20.9538 20.5002 19.9453

7
3D-IGA [66] 30.20 29.45 29.72 28.68 27.59

3D-IGSBFEM [67] 30.1039 29.4393 29.6770 28.9066 27.8665
Present 30.2406 29.4271 29.6927 29.0596 28.2820

8
3D-IGA [66] 31.76 30.97 31.28 30.18 29.03

3D-IGSBFEM [67] 31.6935 30.9945 31.2640 30.4492 29.3458
Present 31.7979 30.9716 31.2701 30.6023 29.7779

9
3D-IGA [66] 35.63 34.74 34.74 33.53 32.55

3D-IGSBFEM [67] 35.6922 34.9013 34.6652 33.4726 33.0217
Present 35.7754 34.8132 34.6536 33.5100 33.1911

10
3D-IGA [66] 37.49 36.80 35.03 33.82 33.10

3D-IGSBFEM [67] 37.4047 36.7308 35.1432 33.9928 33.0836
Present 37.0479 36.7255 35.0856 33.9272 33.4448

3.4. L-Shaped Plate with Multiple Holes (Al/SiC)

Consider a symmetric L-shaped plate with multiple holes made of aluminum (Al) and
silicon carbide (SiC), as shown in Figure 4d. The geometric parameters of the L-shaped
plate are defined as follows: a = 1, b = 1.3, and r = φ = 0.3. The outer edges of the plate
are clamped. For observation and comparison, the dimensionless frequency is defined as
−
ω = ωL2

√
ρc/Ec/h, where L is the length of the outer edges.
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Table 5. The dimensionless frequencies ω of the Al/ZrO2 square plates with a complicated cutout
under a clamped boundary condition (h/L = 0.05).

Mode Method g = 0.5 g = 1 g = 5 g = 20 g = 50

1
3D-IGA [66] 14.98 14.62 14.79 14.41 13.84

3D-IGSBFEM [67] 14.9928 14.6649 14.8201 14.4257 13.8929
Present 15.0061 14.5983 14.7673 14.4459 14.0490

2
3D-IGA [66] 25.79 25.17 25.38 24.74 23.79

3D-IGSBFEM [67] 25.8817 25.3108 25.5007 24.8407 23.9522
Present 25.9223 25.2352 25.4412 24.8977 24.2389

3
3D-IGA [66] 25.95 25.32 25.54 24.9 23.93

3D-IGSBFEM [67] 26.0072 25.4339 25.6269 24.9629 24.0689
Present 26.0312 25.3438 25.5532 25.0065 24.3441

4
3D-IGA [66] 31.44 30.68 30.83 30.07 28.95

3D-IGSBFEM [67] 31.4801 30.7790 30.9001 30.1256 29.0898
Present 31.5092 30.6864 30.8316 30.1862 29.4175

5
3D-IGA [66] 32.45 31.67 31.8 31.02 29.87

3D-IGSBFEM [67] 32.4235 31.6999 31.8004 31.0085 29.9515
Present 32.4472 31.5919 31.7224 31.0604 30.2748

6
3D-IGA [66] 39.04 38.1 38.16 37.23 35.9

3D-IGSBFEM [67] 39.0165 38.1390 38.1562 37.2304 36.0014
Present 39.0812 38.0654 38.1203 37.3388 36.4234

7
3D-IGA [66] 42.44 41.42 41.46 40.46 39.02

3D-IGSBFEM [67] 42.5408 41.5822 41.5650 40.5645 39.2392
Present 42.4714 41.5087 41.5359 40.6890 39.7011

8
3D-IGA [66] 46.02 44.91 44.87 43.8 42.27

3D-IGSBFEM [67] 46.3903 45.3397 45.2177 44.1488 42.7473
Present 46.0243 45.2794 45.2382 44.3260 43.2688

9
3D-IGA [66] 52.6 51.33 51.2 49.99 48.28

3D-IGSBFEM [67] 52.5765 51.3800 51.1881 49.9993 48.4299
Present 52.5841 51.2439 51.1134 50.0930 48.9238

10
3D-IGA [66] 53.99 52.69 52.5 51.26 49.53

3D-IGSBFEM [67] 53.9887 52.7576 52.5155 51.3034 49.7107
Present 54.0316 52.6317 52.4478 51.4045 50.2191

The first four natural frequency results for the square plates with multiple holes under
thickness h = 0.1 and h = 0.2 are listed in Tables 6 and 7, respectively. The reference
results are obtained by ANSYS software, utilizing Shell181 elements based on the FSDT
and employing 100 uniform layers in the thickness direction. It can be observed that the
variation in the gradient index significantly affects the dynamic characteristics of the Al/SiC
L-shaped plates with multiple holes, with an increase in the gradient index resulting in
a notable decrease in the fundamental frequency of the plates. Some slight differences
between the results obtained in this study and those from ANSYS can be attributed to the
use of different shear deformation theories. Moreover, as the gradient index increases, the
frequencies decrease. Significant differences exist in the frequencies of homogeneous plates
(g = 0) and FGM plates (g 6= 0). Figure 8 displays the first four mode shapes of the plate for
the case of h = 0.1 and g = 4. The mode shapes exhibit the expected shape characteristics
of symmetrical structures.
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Table 6. The dimensionless frequencies ω of the Al/SiC L-shaped plates with multiple holes (h = 0.2).

Mode Method g = 0 g = 2 g = 4 g = 6 g = 8 g = 10

1
Ansys 11.1813 6.9654 6.4343 6.2463 6.1241 6.0254

Present 11.2659 7.2427 6.7304 6.5612 6.4437 6.3450

2
Ansys 12.0884 7.4777 6.8902 6.6787 6.5424 6.4343

Present 12.1871 7.7832 7.2145 7.0171 6.8902 6.7821

3
Ansys 16.5205 10.0533 9.1979 8.8924 8.6950 8.5493

Present 16.6615 10.5421 9.7149 9.4282 9.2449 9.0992

4
Ansys 21.4461 12.7840 11.6231 11.1907 10.9322 10.7395

Present 21.6858 13.6018 12.4738 12.0696 11.8205 11.6278

Table 7. The dimensionless frequencies ω of the Al/SiC L-shaped plates with multiple holes (h = 0.1).

Mode Method g = 0 g = 2 g = 4 g = 6 g = 8 g = 10

1
Ansys 11.4680 7.3884 6.8996 6.7398 6.6270 6.5236

Present 11.5432 7.4636 6.9842 6.8244 6.7116 6.6176

2
Ansys 12.5302 7.9994 7.4636 7.2850 7.1628 7.0500

Present 12.6054 8.0934 7.5576 7.379 7.2568 7.1440

3
Ansys 17.296 10.9792 10.1990 9.9358 9.7572 9.6068

Present 17.4370 11.1202 10.3494 10.0956 9.9170 9.7666

4
Ansys 22.8514 14.5512 13.3104 16.6380 12.7088 12.5114

Present 23.0864 14.6170 13.5642 16.9388 12.9814 12.7746
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Figure 8. The first four mode shapes of the L-shaped plate with multiple holes (h = 0.1, g = 4):
(a) mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

4. Conclusions

In the classical plate theory (CPT), there is no independent variable for the angles of
rotation, which naturally avoids the shear-locking phenomenon. The spectral displacement
formulation (SDF) is an extension of the CPT and naturally possesses the advantage
of avoiding shear locking. Chebyshev polynomials offer several advantages, such as
orthogonality and spectral convergence, which make them well suited for approximating
complex functions with high accuracy using a small number of terms. Combining the
Chebyshev polynomials and complete 3D elasticity constitutive equations ensures the
high precision of the SDF. Isogeometric analysis (IGA) is incorporated to analyze the free
vibrations of functionally graded material (FGM) plates with complex geometries and
different boundary conditions.

Numerical examples involving various types of plates, such as square plates, circular
plates, square plates with complicated cutouts, and L-shaped plates with multiple holes,
have been utilized to validate the effectiveness of the SDF-based IGA method in analyzing
FGM plates. The results demonstrate that the proposed method accurately calculates the
free vibrations of both thick and thin plates. The investigations in this study have also
highlighted the significant influences of thickness and boundary conditions on the natural
frequencies of the plates. Additionally, the gradient index of the FGM plates has been
shown to affect the natural frequencies. These findings further emphasize the importance
of considering these factors in the design and analysis of FGM plates.

With its demonstrated accuracy, the proposed SDF-based IGA method offers a practical
and efficient approach for predicting the natural frequencies and mode shapes of FGM
plates. Future research can expand upon this method by considering additional factors
such as porosity, voids, and microstructural defects, as they may impact the vibrational
behavior of FGM plates. Furthermore, generalizing this method to analyze nonlinear, forced
vibrations, and other dynamic behaviors of FGM plates can provide valuable insights for
designing and optimizing structures in various engineering applications.
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Appendix A. Chebyshev Polynomials

Chebyshev polynomials of the first kind on [−h/2, h/2] are recursively defined as [53]:

T0(z) = 1, T1(z) = 2z
h

Ti(z) = 4z
h Ti−1(z)− Ti−2(z), i ≥ 2

(A1)

Chebyshev polynomials of the second kind are defined as [53]:

U0(z) = 1, U1(z) = 4z
h

Ui(z) = 4z
h Ui−1(z)−Ui−2(z), i ≥ 2

(A2)

Their graphical representation can be seen in Figure A1:
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The formulas for the first two derivatives of the Chebyshev polynomials of the first
kind are as follows [53]:

T′i (z) =
2i
h Ui−1(z), i ≥ 1

T′′i (z) =


4i[ihTi(z)−2zUi−1(z)]

h(4z2−h2)
, z 6= ± h

2

(±1)i 4(i4−i2)
3h2 , z = ± h

2

, i ≥ 1
(A3)

Appendix B. NURBS Surface in 2D Parameter Space

The 2D NURBS basis functions are constructed through tensor product operations of
one-dimensional (1D) NURBS basis functions. The expression of the NURBS basis functions
in the 2D parameter space is given as follows [48]:

Rp1,p2
i1,i2

(ζ, η) =
ωi1 i2 Ni1,p1

(ζ)Ni2,p2 (η)

∑
n1
k=1 ∑

n2
l=1 ωklNk,p1

(ξ)Nl,p2
(η)

i1 = 1, . . . , n1; . . . ; i2 = 1, . . . , n2

(A4)
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where Ni1,p1(ζ) is a 1D NURBS basis function defined by the knot vector Σ1 =
{

ζ1, . . . , ζn1+p1+1
}

and the order p1; Ni2,p2(η) is a 1D NURBS basis function defined by the knot vector
Σ2 =

{
η1, . . . , ηn1+p1+1

}
and the order p2. ωi1i2 represents the weights of the 2D NURBS

basis functions.
The NURBS surface defined in the 2D parameter space, using the NURBS basis

functionsRp1,p2
i1,i2

(ζ, η), can be expressed as [48]:

S(ζ, η) =
n1

∑
i1=1

n2

∑
i2=1

Si1,i2R
p1,p2
i1,i2

(ζ, η) (A5)

where
{

Si1,i2
}

represents the geometric control points, and

S(ζ, η) =
N

∑
die=1

SdieRdie(ζ, η) (A6)

where Rdie(ζ, η) represent the 2D NURBS basis functions rearranged in lexicographical
order [55].

Appendix C. Matrices Udie and Edie
Udie and Edie are block coefficient matrices, and the nonzero elements of these matrices

are listed as follows:(
Udie

)
11

=
(

Udie
)

2,N+2
= Rdie;(

Udie
)

3i+1,i+1
=
(

Udie
)

3i+2,N+i+2
=
(

Udie
)

3i+3,2N+i+2
= Rdie,(

Udie
)

3i+1,2N+i+2
= −Ri,x,

(
Udie

)
3i+2,2N+i+2

= −Rdie,y, 1 ≤ i ≤ M;(
Udie

)
3i+1,i+1

=
(

Udie
)

3i+2,N+i+2
= Rdie, M + 1 ≤ i ≤ N.

(A7)

and (
Edie

)
11

=
(

Edie
)

6,N+2
= Rdie,x,

(
Edie

)
2,N+2

=
(

Edie
)

61
= Rdie,y;(

Edie
)

6i+1,i+1
=
(

Edie
)

6i+6,N+i+2
= Rdie,x,

(
Edie

)
6i+1,2N+i+2

= −Rdie,xx,(
Edie

)
6i+2,N+i+2

=
(

Edie
)

6i+6,i+1
= Rdie,y,

(
Edie

)
6i+2,2N+i+2

= −Rdie,yy,(
Edie

)
6i+3,2N+i+2

=
(

Edie
)

6i+4,N+i+2
=
(

Edie
)

6i+5,i+1
= Rdie(

Edie
)

6i+6,2N+i+2
= −2Rdie,xy, 1 ≤ i ≤ M;(

Edie
)

6i+1,i+1
=
(

Edie
)

6i+6,N+i+2
= Rdie,x,(

Edie
)

6i+2,N+i+2
=
(

Edie
)

6i+6,i+1
= Rdie,y,(

Edie
)

6i+4,N+i+2
=
(

Edie
)

6i+5,i+1
= Rdie, M + 1 ≤ i ≤ N.

(A8)
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