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Abstract: Nanofluids are extremely beneficial to scientists because of their excellent heat transfer rates,
which have numerous medical and industrial applications. The current study deals with the peristaltic
flow of nanofluid (i.e., Casson nanofluid) in a symmetric elastic/compliant channel. Buongiorno’s
framework of nanofluids was utilized to create the equations for flow and thermal/mass transfer
along with the features of Brownian motion and thermophoresis. Slip conditions were applied to
the compliant channel walls. The thermal field incorporated the attributes of viscous dissipation,
ohmic heating, and thermal radiation. First-order chemical-reaction impacts were inserted in the
mass transport. The influences of the Hall current and mixed convection were also presented
within the momentum equations. Lubricant approximations were exploited to make the system of
equations more simplified for the proposed framework. The solution of a nonlinear system of ODEs
was accomplished via a numerical method. The influence of pertinent variables was examined by
constructing graphs of fluid velocity, temperature profile, and rate of heat transfer. The concentration
field was scrutinized via table. The velocity of the fluid declined with the increment of the Hartman
number. The effects of thermal radiation and thermal Grashof number on temperature showed
opposite behavior. Heat transfer rate was improved by raising the Casson fluid parameter and the
Brownian motion parameter.

Keywords: peristalsis; Casson fluid model; nanofluid; mixed convection; compliant walls; chemical reaction
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1. Introduction

Heat transfer research is extremely useful in a wide range of engineering disciplines,
such as evaporative cooling thrust bearing, drag reduction, and circular heat exchanger
prototypes. Fluids are frequently used as thermal carriers in applications such as auto-
motive cooling and heating and are a central role in the industrial process. Heat transfer
enhancement can enhance the effectiveness of a thermoelectric generator. Heat transfer
improvement can result in more compact cooling equipment, conserving fuel, space, and
wealth. Comparing nanofluids to their base fluids reveals that they are more effective at
transmitting heat and have better thermal conductivity. Consequently, it is widely acknowl-
edged and appreciated from both a philosophical and empirical standpoint that distributing
nanoparticles in a biofluid may enhance its thermophysical qualities. Nanofluids reduce
energy use, improve thermal efficiency, speed up operations, and lengthen the useful life
of the equipment. It was Choi [1] who initially suggested using nanofluids. Once these
fluids were accepted by the scientific world, they immediately assumed a key function.
Chon et al. [2] securitized how temperature and particle size are significant for enhancing
the thermal conductivity of the Al2O3 nanomaterial. Thermophoresis and random motion
spreading were named by Buongiorno [3] as the most crucial factors in enhancing common
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liquids’ capacity to transmit heat. Tripathi and Bég [4] elaborated on the peristalsis of
nanofluid in a drug delivery system in biomedical science. The peristaltic motion of a nano-
liquid with wall and slip characteristics was explored by Hayat et al. [5]. The hydrothermal
characteristics of magnetohydrodynamic (MHD) nanofluid flow and entropy formation
in a trapezoidal crevice were examined by Atashafrooz et al. [6]. The peristaltic motion of
Carreau–Yasuda nanomaterial with entropy was stated by Ahmed et al. [7]. The peristaltic
activity of nanofluid with the Hall effect and mixed convection was considered by Alsaedi
et al. [8]. Abbasi et al. [9] analyzed the peristaltic flow of nanofluid, considering the aspects
of variable thermal conductivity and entropy optimization. Considering the peristaltic
motion of nanofluid having activation energy and gyrotactic motile microbial organisms,
Akbar et al. [10] conducted a bioconvection investigation. Hina et al. [11] modeled the
peristalsis of the Carreau–Yasuda nanomaterial by incorporating electro-osmotic transport.
A few related studies are cited through [12–18].

The contraction and expansion of an expansible tube or channel characterizes the
pumping movement known as peristalsis. This is the movement of material in the wave’s
propagation direction. Many technical, industrial, and biological applications make use of
this feature. Several scientists are interested in peristaltic nanofluid flow due to its wide
array of potential uses. The peristaltic deploying process has been the subject of several
theoretical and empirical research studies. These investigations include ovum migration in
the fallopian tube, capillary roller pumps, chyme movement in the intestine, and flow from
the kidney to the bladder. Initially, Latham [19] examined the peristaltic activity inside a
pump. A peristaltic framework with a low Reynolds number and long wavelength was
described by Shapiro et al. [20]. Shugan and Smirnov [21] discussed the peristaltic flow
with mass transfer in a channel, considering their understanding of wall vibrations. Ellahi
et al. [22] reported the aspects of mass and thermal transport with peristalsis in a duct of
non-uniform geometry. The consequences of a magnetic field for peristaltic activity under
the influence of a double electrical layer were discussed by Tripathi et al. [23]. Aspects
of radiative heat (called thermal radiation, in other words) and activation energy for the
peristaltic movement of Eyring–Powell nanoliquid were scrutinized by Nisar et al. [24].
Peristalsis with a Maxwell fluid pattern incorporating convective properties was studied by
Iqbal et al. [25]. Khushi and Abbasi [26] examined the peristaltic motion of TiO2–Ag/EG
(hybrid nanofluids) with the Hall current. Nisar et al. [27] studied aspects of the peristalsis
of a non-Newtonian nanomaterial. Javed et al. [28] modeled the peristaltic activity of a
wavy micro-channel. Yasin et al. [29] inquired about the numerical inquiry for the peristaltic
mechanism of Eyring–Powell fluid with Joule heating and slip aspects. Zhang et al. [30]
explored the wall characteristics of the peristalsis of a bionic reactor. The compliant walls
and channel also have an impact on the sinusoidal wave’s shape. This led various studies
to look into how wall characteristics affect heat-exchange peristaltic transport. Few studies
in this direction have been seen through [31–34].

Due to numerous uses in sectors, including petroleum drilling, polymer production,
and others, non-Newtonian fluids are important. Various materials, such as blood, caramel,
sauces/ketchup, honey, blood, jellies, porridge, etc., exhibit this model’s shear-thinning
tendency. The most popular type of model for non-Newtonian properties is the Casson
fluid, which represents the polymeric material. Yield stress is demonstrated by this model.
When the shear stress is lower than the yield stress, Casson liquid acts like a solid. After
yield stress exceeds shear stress, it begins to flow like a melted substance. Casson [35] first
proposed the rheological model for the Casson fluid. Divya et al. [36] reported the aspects
of the peristaltic flow of Casson fluid with thermal properties. Abbas et al. [37] analyzed
the peristalsis of Casson liquid with wall characteristics. Priam et al. [38] accounted for the
numerical inquiry of the peristaltic flow of Casson fluid. Hafez et al. [39] assessed the mass
and thermal transport with the peristaltic flow of Casson material via the inclined channel.

The features of a chemical reaction from a peristaltic flow are important in biochemical
engineering. The process of mass transfer is impacted by the concentration disparity among
species that are chemically interacting. Chemical species travel from a highly concentrated
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location to a less concentrated one in certain circumstances. The manufacturing of food, the
initiation and diffusion of fog, the creation of ceramics and polymers, the freezing of crops
to cause damage, the hydrometallurgical industry, geothermal reservoirs, nuclear reactor
cooling, and the recovery of thermal oil are all examples of practical uses for chemical
reactions. A few findings in this field are quoted in the refs [40–46].

In this study, we examined the Casson fluid flow with the peristaltic phenomenon in
a symmetric channel. A first-order chemical reaction was taken in this study. Conditions
of slip were applied to the compliant/elastic channel. The Buongiorno version was used,
and it included the novel characteristics of thermophoretic and Brownian motion. Several
innovative features set apart the current study. It may have useful applications in disciplines
such as biomedical engineering, microfluidics, and heat transfer and has the potential
to advance our understanding of fluid dynamics in complicated systems. In addition,
viscous dissipations are an important aspect of engineering analysis and design, enabling
engineers to optimize fluid flow, heat transfer, and energy efficiency in a wide range of
applications, such as turbomachinery, aerodynamics, and mighty planets. To solve the
resulting problem, numerical techniques were employed. Graphs were plotted for the
velocity and thermal fields.

2. Statement

We consider the Casson nanofluid movement in a 2D elastic channel with a width of
2d1. The channel walls are subjected to the magnetic field (B0) in a perpendicular direction.
With low magnetic Reynolds numbers, the induced magnetic field disappears. Ohmic
heating, thermal radiation, and viscous dissipation are present in the thermal equation.
Further, slip conditions are applied on the channel walls (see Figure 1). The governing
expressions of an incompressible Casson nanofluid in terms of Cartesian coordinates are
given by:

y = ±η(x, t) = ±
[

d1 + a sin
2π

λ
(x− ct)

]
, (1)

where t and c are the time and speed of the wave, respectively. The current flow problem’s
rheological state equation is stated as

τij =

{
2
(

µβ + py/
√

2π
)

eij, π > πc

2
(
µβ + py/

√
2πc

)
eij, π < πc

(2)

where py is the fluid yield stress, µβ is the dynamic viscosity, π = eijeij, and eij represents
the (i, j)th factors of the rate of deformation while πc implies the significant value of this
product-based non-Newtonian material. The Lorentz force (denoted by F) is calculated
using Ohms law:

F =

(
σB2

0
(1 + m2)

(u−mv),
σB2

0
(1 + m2)

(v + mu), 0

)
(3)

Below are the equations that govern the particular flow problem.

∂u
∂x

+
∂v
∂y

= 0, (4)

ρ f

(
∂u
∂t + u ∂u

∂x + v ∂u
∂y

)
= − ∂p

∂x +
[
µ
{

1 + 1
β

}{
∂2u
∂x2 +

∂2u
∂y2

}]
− σB2

0
(1+m2)

(u−mv)
+gρ f βT(T − T0) + gρ f βC(C− C0),

(5)

ρ f

(
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂y
+ µ

(
1 +

1
β

)(
∂2v
∂x2 +

∂2v
∂y2

)
−

σB2
0

(1 + m2)
(v + mu), (6)
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ρ f c f

(
∂T
∂t + u ∂T

∂x + v ∂T
∂y

)
= k

(
∂2T
∂x2 + ∂2T

∂y2

)
+

[(
∂u
∂y + ∂v

∂x

)2
+ 4
(

∂u
∂x

)2
]

µ
(

1 + 1
β

)
+[

DT
Tm

{(
∂T
∂y

)2
+
(

∂T
∂x

)2
}
+ DB

{
∂C
∂y

∂T
∂y + ∂C

∂x
∂T
∂x

}]
ρpcp − ∂qr

∂y +
σB2

0
(1+m2)

(
u2 + v2), (7)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=

(
∂2C
∂x2 +

∂2C
∂y2

)
DB +

(
∂2T
∂x2 +

∂2T
∂y2

)
DT
Tm
− k1(C− C0). (8)
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Figure 1. Schematic of the problem.

The corresponding boundary conditions are displayed as

u± β1

(
1 +

1
β

)(
∂u
∂x

+
∂u
∂y

)
= 0, T ± β2

∂T
∂y

=

{
T1
T0

}
, C± β3

∂C
∂y

=

{
C1
C0

}
at y = ±η, (9)

[
−τ1

∂3

∂x3 + m1
∂3

∂x∂t2 + d ∂2

∂t∂x

]
η = ρ f

(
∂u
∂t + u ∂u

∂x + v ∂u
∂y

)
+ µ

(
1 + 1

β

)(
∂2u
∂x2 +

∂2u
∂y2

)
− σB2

0
(1+m2)

(u−mv) + gρ f βT(T − T0) + gρ f βC(C− C0), at y = ±η.
(10)

Here, (u, v) represent the elements of liquid velocity in (x, y) directions, ρ f is the
density of nanoliquid, p is the pressure, β is the Casson fluid variable, ν is the kinematic vis-
cosity, σ is the electric conductivity of liquid, and k is the thermal conductivity, Furthermore,
τ1 is the elastic tension, DB is the Brownian movement coefficient, DT is the thermophoretic
diffusion coefficient, m1 is the area per mass unit, Tm is the mean temperature, τ1 is the
elastic tension, d is the damping coefficient, and (T1, T0) represents the fluid temperature,
whose concentration is denoted by (C1, C0) on the upper and lower channel walls. The
mathematical illustration of radiative heat flux is demarcated as [26]:

qr = −
16σT3

0

3k
∂T
∂y

, (11)
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Now we define stream function u = ψy and v = −δψx. Non-dimensional variables
are defined as

u∗ = u
c , v∗ = v

c , x∗ = x
λ , y∗ = y

d1
, t∗ = ct

λ , β∗i = βi
d1

(i = 1− 3),

η∗ = η
d1

, p∗ = d2
1 p

cλµ , φ = C−C0
C1−C0

, θ = T−T0
T1−T0

,
(12)

using Equations (4)–(10). The resulting problem later utilizes (δ→ 0), which is the long
wavelength. In addition, (Re→ 0), which describes small Reynolds number suppositions,
is given by (

1 +
1
β

)
∂4ψ

∂y4 −
(

M2

1 + m2

)
∂2ψ

∂y2 + Gr
∂θ

∂y
+ Gc

∂φ

∂y
= 0, (13)

(1 + PrRn)
∂2θ

∂y2 + PrNb
∂θ

∂y
∂φ

∂y
+ PrNt

(
∂θ

∂y

)2
+ Br

[(
1 +

1
β

)(
∂2ψ

∂y2

)2

+ M2
(

∂ψ

∂y

)2
]
= 0, (14)

Nt
∂2θ

∂y2 + Nb
∂2φ

∂y2 − NbScζφ = 0. (15)

Boundary conditions are expressed as

∂ψ

∂y
± β1

[(
1 +

1
β

)(
∂2ψ

∂y2

)]
= 0 at y = ±η, (16)

[
E1

∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂x∂t

]
η =

(
1 +

1
β

)
∂3ψ

∂y3 −
M2

1 + m2
∂ψ

∂y
+ Grθ + Gcφ at y = ±η, (17)

θ ± β2
∂θ

∂y
=

{
1
0

}
, φ± β3

∂φ

∂y
=

{
1
0

}
at y = ±η. (18)

The continuation of Equation (3) is automatically satisfied where dimensionless pa-
rameters are defined by

δ = d1
λ , ε = a

d1
, Gc =

gρ f βC(C−C0)d2
1

µc , Ec = c2

c f (T1−T0)
, Pr = ν

α , Re = cρd1
µ ,

M =
√

σ
µ B0d1, Sc = ν

DB
, Nt = τDT(T1−T0)

Tmν , Nb = τDB(C1−C0)
ν , Gr =

gρ f βT(T−T0)d2
1

µc ,

β =
µβ

√
2πc

py
, Br = PrEc, E1 = − τd3

1
λ3µc , E2 =

m1cd3
1

λ3µ
, E3 =

dd3
1

λ2µ
, ζ = k1d2

1
ν .

(19)

3. Numerical Results and Analysis

The system of Equations (13)–(15) with subjective boundary conditions (16)–(18) was
numerically solved via the in-built algorithm NDSolve [5,7,8,14,24,27,29,44] in MATHE-
MATICA. This scheme is very advanced and useful for finding solutions to differential
equations. It handles a wide range of differential equations, including ordinary differential
equations (ODEs) and boundary value problems. It employs high-precision numerical
algorithms to obtain accurate solutions. It uses adaptive step-size control, error estimation,
and sophisticated numerical techniques to ensure reliable results. This segment was made
to analyze the effects of several embedded variables on the thermal field, velocity, heat
transfer rate, and concentration.

3.1. Velocity

Figures 2–8 were plotted to see aspects of pertinent variables for the velocity profile.
Figure 2 describes the temperature curves for the Casson fluid variable β. The velocity of the
fluid was enhanced via β. Figure 3 designates the consequence of velocity slip parameter β1
for velocity. Enhancing behavior was observed against velocity for velocity slip parameter
β1. This is because fluid particles which have the slip velocity in direct contact with the
surface can successfully transmit some of their momentum to the fluid particles close
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to them. The fluid velocity increases as a result. The influence of Hall parameter m is
displayed in Figure 4. In this particular graph, we noted that fluid velocity was enhanced
via Hall current variable m. The significance of the thermal Grashof number Gr for the
fluid velocity profile is shown in Figure 5. The velocity of the liquid was enhanced via a
larger thermal Grashof number Gr. When the thermal Grashof parameter was high, the
buoyant forces in a fluid flow dominated the viscous forces. Impressions of concentration
Grashof number Gc are exhibited in Figure 6. It indicates that higher values of the mass
Grashof number Gc give rise to an enhancement in velocity. The impacts of E1, E2, and
E3 on the velocity profile are portrayed in Figure 7. The velocity of the fluid heightened
for larger values of the viscous damping force and stiffness while decreasing for rigidity
variables. The behavior of the velocity profile in relation to the Hartmann number M is
seen in Figure 8. Near the middle of the channel, a clear decline in the velocity profile was
shown along with an enhancement in M. Subsequently, the imposed magnetic field created
a potent opposite force (the Lorentz force), and the fluid could not move. Additionally,
with high Hartmann numbers, the utmost velocity shifted to the lower boundary, causing
the fluid velocity to lose its symmetry close to the conduit’s midpoint.
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Mathematics 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Consequences of 𝛽₁  for 𝑢  where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑟 = 0.5, 𝐺𝑐 =0.7, 𝑁𝑏 = 𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 4. Consequences of 𝑚 for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝐺𝑟 = 0.5, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 5. Consequences of 𝐺𝑟 on 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

Figure 3. Consequences of β1 for u where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1, Gr = 0.5, Gc = 0.7,
Nb = Nt = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β2 = β3 = 0.1 and β = 0.5”.



Mathematics 2023, 11, 2673 7 of 17

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Consequences of 𝛽₁  for 𝑢  where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑟 = 0.5, 𝐺𝑐 =0.7, 𝑁𝑏 = 𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 4. Consequences of 𝑚 for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝐺𝑟 = 0.5, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 5. Consequences of 𝐺𝑟 on 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

Figure 4. Consequences of m for u where “x = ε = 0.2, t = 0.1, M = 0.5, Gr = 0.5, Gc = 0.7,
Nb = Nt = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β1 = β2 = β3 = 0.1 and β = 0.5”.

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 3. Consequences of 𝛽₁  for 𝑢  where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑟 = 0.5, 𝐺𝑐 =0.7, 𝑁𝑏 = 𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 4. Consequences of 𝑚 for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝐺𝑟 = 0.5, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 5. Consequences of 𝐺𝑟 on 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. Figure 5. Consequences of Gr on u where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1, Gc = 0.7,
Nb = Nt = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β1 = β2 = β3 = 0.1 and β = 0.5”.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 6. Consequences of 𝐺𝑐 for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑟 = 0.5, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 7. Consequences of 𝐸ଵ, 𝐸ଶ, and 𝐸ଷ for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑀 = 0.5, 𝑚 = 1, 𝐺𝑟 =0.5, 𝐺𝑐 = 0.7, 𝑁𝑏 = 𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 

 
Figure 8. Consequences of 𝑀 for 𝑢 where “𝑥 = 𝜖 = 0.2, 𝑡 = 0.1, 𝑚 = 1, 𝐺𝑟 = 0.5, 𝐺𝑐 = 0.7, 𝑁𝑏 =𝑁𝑡 = 0.5, 𝑅𝑛 = 1.5, 𝐸ଵ = 0.01, 𝐸ଶ = 0.01, 𝐸ଷ = 0.02, 𝛽ଵ = 𝛽ଶ = 𝛽ଷ = 0.1 and 𝛽 = 0.5”. 
3.2. Temperature 

Figures 9–16 depict how different variables affect the thermal field. The graphical 
representation of velocity for a few rising values of Casson liquid parameter 𝛽 is shown 

Figure 6. Consequences of Gc for u where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1, Gr = 0.5,
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3.2. Temperature

Figures 9–16 depict how different variables affect the thermal field. The graphical
representation of velocity for a few rising values of Casson liquid parameter β is shown
via Figure 9. The acclivitous β shows a growth in the temperature. The influence of
the temperature slip variable β2 is displayed via Figure 10. As we can see in this figure,
we observed an enhancement in the thermal profile of the fluid. Figure 11 depicts the
consequence of the Brinkman variable Br for temperature. The temperature of the liquid
increased with larger values of Br. This is because Br caused the flow to form a resistance
due to its shear, which caused increased generation of heat due to the effects of viscous
dissolution. As a result, the fluid’s temperature rose. Effects of thermal Grashof number Gr
are presented via Figure 12. From this curve, we noticed that the temperature was enhanced.
As the thermal Grashof parameter increased, the buoyancy forces became stronger, resulting
in faster fluid motion and increased temperature. Figure 13 demonstrates the effect of
Harman parameter M variation on θ. The graph clearly indicates that a rise in Harman
number M produces an increase in temperature. Figure 14 illustrates the impressions of
the radiation parameter Rn on the thermal field. The variable θ declines with radiation
parameter Rn. The combined consequences of Nt and Nb for the thermal field are displayed
via Figure 15. We observed that the temperature of the fluid was enhanced by increasing
both parameters simultaneously. When the Brownian motion rose, so did the kinetic
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energy of the fluid molecules. As a result, the frequency and strength of collisions between
fluid molecules and suspended particles increased. This raised the temperature. The wall
parameters E1, E2, and E3 are displayed in Figure 16 to show how they affect temperature.
We observed that the fluid thermal profile was an ever-increasing function of E1 and E2,
and it decayed for E3.
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Figure 11. Consequences of Br for θ where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1, Gr = 0.5,
Gc = 0.7, Nb = Nt = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β1 = β2 = β3 = 0.1
and β = 0.5”.
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Figure 14. Consequences of Rn for θ where “x = ε = 0.2, t = 0.1, x = ε = 0.1, M = 0.5, m = 1,
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and β = 0.5”.
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Figure 15. Consequences of Nb and Nt for θ where “x = ε = 0.2, t = 0.1, m = 1, Gr = 0.5,
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Figure 16. Consequences of E1, E2, and E3 for θ where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1,
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3.3. Heat Transfer Rate

Figures 17–23 are designed to see the behavior of Brownian motion variable Nb, Casson
fluid variable β, thermal slip parameter β2, Brinkman number Br, radiation parameter Rn,
Hall current variable m, and thermal Grashof number Gr with regards to the rate of heat
transfer at upper wall−θ′(η). When the thermal Grashof parameter is high, it indicates that
the buoyancy forces dominate over the viscous forces, leading to enhanced fluid motion and
heat transfer. Effects of Casson fluid variable β are represented via Figure 17. An increasing
trend against Casson fluid variable β was witnessed. Impacts of thermal slip parameter β2
are represented via Figure 18. In this figure, we noticed that the heat transfer rate increases
against thermal slip parameter β2. Figure 19 displays the features of Brinkman number
Br on −θ′(η). An increasing trend was noticed for −θ′(η) via Br. Figure 20 designates the
influence of thermal Grashof number Gr against heat transfer rate −θ′(η). An increase in
the Brinkman number implies a greater dominance of viscous dissipation over conductive
heat transfer, leading to an overall higher heat transfer rate. It can be seen that larger levels
of Gr increased the rate of heat transfer of nanoliquid acclivities. The behavior of Brownian
variable Nb is exhibited in Figure 21. The finding of this graph shows that heat transfer
rate was boosted. Figure 22 describes the aspects of the Hall current variable for −θ′(η). A
decreasing trend was detected for higher values of the Hall current parameter. Moreover,
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the consequences of radiation parameter Rn for −θ′(η) are shown in Figure 23. The heat
transfer rate of the fluid declined via Rn.
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3.4. Concentration Field 

Numerical values for concentration field 𝜙(0) are represented via Table 1 for differ-
ent physical variables. Variations of thermophoresis 𝑁𝑡 can be seen in Table 1. As we can 
notice, the magnitude value of the concentration declined via thermophoresis variable 𝑁𝑡. 
When the thermophoresis parameter increased, the particles migrated from regions of low 
temperature to regions of high temperature. In this case, the concentration of the fluid 
decreased. Impacts of concentration Grashof number 𝐺𝑐 on concentration field 𝜙(0) are 
seen in Table 1. Higher values of concentration Grashof number 𝐺𝑐 decreased the nano-
particle concentration. In fact, as this parameter increased, the buoyancy force enhanced, 
and the fluid motion became more turbulent. Turbulence caused the fluid to mix and dis-
perse the concentration more equally, minimizing concentration gradients in the liquid. 
Impressions of Casson liquid variable 𝛽 and mass slip parameter 𝛽ଷ on concentration 
field 𝜙(0) are presented via Table 1. A decreasing trend was noticed when increasing the 
values of these parameters. Larger values of chemical reaction variable 𝜁 gave a fall to the 
concentration field 𝜙(0) (see Table 1). As the reaction progressed, the concentration of 
the reactants decreased, leading to a decrease in the overall concentration of the fluid. 
Aspects of 𝑁𝑏 for concentration field 𝜙(0) can be witnessed in Table 1. In this, we can 
observe that the concentration field 𝜙(0)  intensified because Brownian motion influ-
enced the dispersion and stability of nanoparticles within the fluid. 

Figure 22. Consequences of m for−θ′(η) where “x = ε = 0.2, t = 0.1, M = 0.5, Gr = 2, Gc = 0.7,
Nb = Nt = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β1 = β2 = β3 = 0.1 and β = 0.5”.
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3.4. Concentration Field

Numerical values for concentration field φ(0) are represented via Table 1 for different
physical variables. Variations of thermophoresis Nt can be seen in Table 1. As we can
notice, the magnitude value of the concentration declined via thermophoresis variable
Nt. When the thermophoresis parameter increased, the particles migrated from regions
of low temperature to regions of high temperature. In this case, the concentration of
the fluid decreased. Impacts of concentration Grashof number Gc on concentration field
φ(0) are seen in Table 1. Higher values of concentration Grashof number Gc decreased
the nanoparticle concentration. In fact, as this parameter increased, the buoyancy force
enhanced, and the fluid motion became more turbulent. Turbulence caused the fluid to
mix and disperse the concentration more equally, minimizing concentration gradients
in the liquid. Impressions of Casson liquid variable β and mass slip parameter β3 on
concentration field φ(0) are presented via Table 1. A decreasing trend was noticed when
increasing the values of these parameters. Larger values of chemical reaction variable ζ
gave a fall to the concentration field φ(0) (see Table 1). As the reaction progressed, the
concentration of the reactants decreased, leading to a decrease in the overall concentration
of the fluid. Aspects of Nb for concentration field φ(0) can be witnessed in Table 1. In
this, we can observe that the concentration field φ(0) intensified because Brownian motion
influenced the dispersion and stability of nanoparticles within the fluid.

Table 1. Effects of physical parameters on φ(0) where “x = ε = 0.2, t = 0.1, M = 0.5, m = 1,
Gr = 1.5, Nb = 0.5, Rn = 1.5, E1 = 0.01, E2 = 0.01, E3 = 0.02, β1 = β2 = 0.1 and Br = 1”.

Parameters Concentration
Nt Gc β ζ β3 Nb φ(0)
0.1 0.7 0.5 1 0.1 0.5 0.2484573
0.3 0.7 0.5 1 0.1 0.5 0.1952146
0.1 1 0.5 1 0.1 0.5 0.2464970
0.1 1.5 0.5 1 0.1 0.5 0.2430272
0.1 0.7 0.9 1 0.1 0.5 0.2365245
0.1 0.7 1.5 1 0.1 0.5 0.2226838
0.1 0.7 0.5 2 0.1 0.5 0.1589335
0.1 0.7 0.5 3 0.1 0.5 0.1100197
0.1 0.7 0.5 1 0.2 0.5 0.2265843
0.1 0.7 0.5 1 0.3 0.5 0.2076794
0.1 0.7 0.5 1 0.1 0.7 0.2152228
0.1 0.7 0.5 1 0.1 1 0.2209559
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4. Results Validation

We produced Table 2 to create a validation check for our numerical result. This
comparison makes it clear that the current findings show excellent agreement with [5] for
Newtonian fluid and Gr = Gc = Rn = m = ζ = 0.

Table 2. Comparison of numerical results with ref. [5].

Parameters Present Work Hayat et al. [5]
Nb Nt M β2 β3 θy

∣∣y = η θy
∣∣y = η

0.10 0.10 0.10 0.10 0.10 −0.062447 −0.062441
0.20 0.10 0.10 0.10 0.10 −0.075485 −0.075478
0.10 0.30 0.10 0.10 0.10 −0.088061 −0.088054

5. Conclusions

The aim of the current analysis was to see the effects of mixed convection and Hall
current on the peristaltic flow of a Casson nanomaterial. Slip conditions were imposed
on an elastic channel. Further, the impacts of viscous dissipation and thermal radiation
were also present in thermal transport. The nonlinear system of equations was tackled
numerically. The key findings of the study are listed below.

• The velocity of the flowing fluid increased with velocity slip β1 and Casson fluid
parameters β.

• By enhancing the thermal Grashof number Gr, velocity was enhanced.
• Temperature raised for larger values of nanofluid parameters known as thermophore-

sis Nt and Brownian motion Nb.
• The opposite trend was noticed for radiation parameter Rn and Brinkman number Br

against temperature.
• The rate of heat transfer was enhanced for Casson fluid β and thermal Grashof num-

ber Gr.
• The role of Hall current number m and thermal slip parameter β2 in heat transfer rate

was inverse.
• Concentration declined via chemical reaction ζ and thermophoresis Nt.
• Temperature and concentration heightened for elastic parameters E1 and E2 and

lessened for E3.
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Nomenclature

(x, y) Cartesian coordinates g gravitational acceleration
(u, v) velocity components d coefficient of viscous damping
a wave amplitude τ1 elastic tension
t time m1 mass per unit area
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c wave speed Rn radiation parameter
d1 damping half channel width β Casson fluid parameter
ε amplitude ratio β1, β2, β3 Slip parameters
p pressure ψ stream function
ρ f Nanofluid density T1 Fluid temperature at the upper wall
α thermal diffusivity T0 Fluid temperature at the lower wall
k thermal conductivity C1 Fluid concentration at the upper wall
λ wavelength C0 Fluid concentration at the lower wall
σ electrical conductivity Tm mean temperature
B0 applied magnetic field Re Reynolds number
ν kinematic viscosity δ wave number
βT thermal expansion coefficients Ec Eckert number
βC concentration expansion coefficients Pr Prandtl number
DB Brownian motion coefficient M Hartman number
DT thermophoretic diffusion coefficient Gr thermal Grashof number
Nb Brownian motion parameter Gc concentration Grashof number
E1, E2, E3 wall parameters ζeta parameter. s aginast horesis parameter. Chemical reaction parameter
Nt thermophoresis parameter θ fluid temperature
φ fluid concentration
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