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Abstract: Compressed sensing is an alternative to Shannon/Nyquist sampling for acquiring sparse
or compressible signals. Sparse coding represents a signal as a sparse linear combination of atoms,
which are elementary signals derived from a predefined dictionary. Compressed sensing, sparse
approximation, and dictionary learning are topics similar to sparse coding. Matrix completion is the
process of recovering a data matrix from a subset of its entries, and it extends the principles of com-
pressed sensing and sparse approximation. The nonnegative matrix factorization is a low-rank matrix
factorization technique for nonnegative data. All of these low-rank matrix factorization techniques
are unsupervised learning techniques, and can be used for data analysis tasks, such as dimension
reduction, feature extraction, blind source separation, data compression, and knowledge discovery. In
this paper, we survey a few emerging matrix factorization techniques that are receiving wide attention
in machine learning, signal processing, and statistics. The treated topics are compressed sensing,
dictionary learning, sparse representation, matrix completion and matrix recovery, nonnegative
matrix factorization, the Nyström method, and CUR matrix decomposition in the machine learning
framework. Some related topics, such as matrix factorization using metaheuristics or neurodynamics,
are also introduced. A few topics are suggested for future investigation in this article.

Keywords: compressed sensing; dictionary learning; sparse approximation; matrix completion;
nonnegative matrix factorization

MSC: 68T02; 62D02

1. Introduction

Matrix factorization is widely used for inferring the structure in multivariate data.
Given a noisy measurement of the product of two matrices, the matrix factorization problem
aims to estimate the original matrices. It represents an observed data matrix Y ∈ Rm×n as

Y = LTF + E, (1)

where L ∈ Rk×m, F ∈ Rk×n, and the residual matrix is denoted as E ∈ Rm×n, which is
usually assumed to have normally distributed entries. For factor analysis, L is referred to
as the loadings, and F is referred to as the factors.

Matrix factorization is a bilinear inverse problem in individual matrices. Model (1)
has many applications. For the matrix completion problem, the estimations of L and F
from partially observed Y provide a natural and simple way to estimate the missing entries;
this is a typical scenario in matrix completion tasks. Another wide range of applications
involve inferring and summarizing the structures in multivariate data in Y, where each
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row of Y is approximated by a linear combination of the rows of F, which are referred
to as factors, corresponding to factor analysis, the principal component analysis (PCA),
or dictionary learning.

The dictionary A, corresponding to LT in (1), is subject to some constraints. A promi-
nent example is PCA [1], where A has orthogonal columns, representing the subspace
where the signal in the given class is contained. Another example is sparse coding, where
A typically consists of normalized columns that form an overcomplete basis of the signal
space, and the signal x ∈ Rk, corresponding to F degenerating into a column vector (i.e.,
n = 1), is assumed to be sparse. Matrix factorization is more commonly, represented by

Y = AX + E, (2)

where Y ∈ Rm×n is the data matrix, A ∈ Rm×k is the dictionary matrix, and X ∈ Rk×n is
the code matrix. Each column of Y is approximated by a linear combination of the columns
of A, where the coefficients are given by the corresponding column of matrix X. This is
illustrated in Figure 1.

Figure 1. Illustration of matrix factorization.

Matrix factorization provides a low-rank approximation of a matrix. It arises in many
machine learning and signal processing applications [2], such as singular value decom-
position (SVD), factor analysis, PCA, blind source separation, independent component
analysis (ICA), blind matrix calibration, dictionary learning, low-rank matrix completion,
nonnegative matrix factorization (NMF), C-means clustering [3], unsupervised representa-
tion learning, and so on. A penalty or prior distribution is usually used to achieve sparse
representations (e.g., sparse factor analysis and sparse PCA). As a related concept, matrix
decomposition aims to recover, from a matrix, a low-rank matrix and a sparse matrix.
These techniques fall under the category of unsupervised learning in the machine learning
framework [4].

Representation learning is a concept behind many machine learning applications,
including the deep learning framework. In the context of representation learning, dictionary
learning is sometimes referred to as sparse coding. Sparse coding has been proposed as
a theory for modeling the visual cortex and as an unsupervised algorithm for learning
representations. These methods are widely used for feature extraction and knowledge
discovery. Low-rank matrix approximation is a ubiquitous problem in data processing.

Compressed sensing is a powerful framework used for acquiring sparse signals.
Learning a sparsifying dictionary or transforming from compressive measurements [5,6]
requires fewer equations to determine the unknowns, compared to matrix factorization.
Dictionary learning aims to find a good sparse representation for a dataset. It is a matrix
factorization problem with a sparsity constraint. Compressive blind source separation [7]
is another matrix factorization problem with a sparsity constraint. These problems can be
solved by recovering a sparse and low-rank matrix from its linear measurements. NMF can
be made equivalent to some clustering problems by reframing them slightly [8]. NMF and
spectral clustering are two popular clustering techniques. However, NMF cannot deal with
nonlinear data, and spectral clustering relies on post-processing.
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Crowdsourcing is a scalable approach to collecting data from humans. Through
crowdsourcing platforms such as Amazon Mechanical Turk, a large number of data tasks
are assigned to workers for binary or multiclass labeling. The goal is to estimate the
unknown ground truth from the input of the various workers. The unknown labels can be
estimated through aggregation, such as majority voting or weighted majority voting.

Sparsity is a natural property that consists of many real signals. In the human brain,
very few neurons (1–4%) are active at any time [9]. Many observed response properties
in the primary visual cortex (V1), such as the classical receptive field structure [10] and
nonclassical response modulations [11], are accounted for by using the sparse coding
model of the primary visual cortex. In the sparse coding model, most natural images are
encoded by very few learned dictionary elements, and high-dimensional visual inputs can
be represented by a small number of active cortical neurons [10].

Sparse coding involves learning an overcomplete set of basis vectors, where each data
point is represented as a sparse combination of the basis vectors. On the contrary, sparse
recovery aims to reconstruct sparse signals from an underdetermined set of compressed
linear measurements.

The recovery of sparse signals corrupted by additive noise covers a wide range of
applications, such as image inpainting, super-resolution, signal separation, and recovery of
signals that are impaired by clipping, impulse noise, or narrowband interference.

For linear inverse or compressed sensing problems, a series of representer theorems
give the generic form of the solution, which depends on whether L1- or L2-norm regular-
ization is under consideration [12]. L1-norm solutions are proven to be intrinsically sparse,
and the use of the L1-norm regularization is much more favorable for incorporating prior
knowledge compared to the L2-norm scenario. L1-norm has long been used for pruning
neural network architecture [13].

Compressed sensing, also known as compressive sampling, is a recent sampling
method [14,15]. If a signal is sufficiently sparse, it can be exactly reconstructed from very
few random measurements. Compressed sensing serves as an alternative to classical Shan-
non/Nyquist sampling for sparse or compressible signals, allowing for the perfect recovery
of sparse signals using only a small number of random measurements. Compressible sig-
nals can be well approximated by sparse signals. A non-sparse signal can be compressed by
using compressive covariance sensing [16], and its second-order statistics can be recovered
from the compressed signal without sparsity constraint.

Low-rank representation is usually used to recover data from corruption or outliers.
PCA is the best low-rank representation in terms of L2 errors. By minimizing the L2-norm
error, data are projected onto the fixed-rank low-dimensional space. Robust PCA [17] and
GoDec [18,19] decompose data into low-rank components and sparse components that
capture corruptions.

Matrix completion [20] recovers a matrix from a subset of its entries. It had been
prevalent in computer vision, statistics, collaborative filtering, and manifold learning in the
last decade. It is an ill-posed problem. A common constraint is applied to the underlying
matrix. The task is formulated as a low-rank matrix approximation problem. The method
is related to compressed sensing. The values of matrix entries may be discrete or quantized,
such as in the Netflix problem and recommender systems.

Many real-life data or physical signals are represented by nonnegative numbers. When
analyzing mixtures of such data, nonnegativity constraints on the individual components
are applied. Nonnegative PCA, nonnegative ICA, and NMF [21] are techniques used for
the analysis of such data, where nonnegative data are represented as nonnegative linear
combinations of nonnegative bases. Nonnegativity is inspired by neuronal properties, such
as the firing rate representation and signed synaptic weight [21].

The inferior temporal cortex is a critical region in the primate visual cortex for object
recognition. Object representation in this region has two prominent features. An object is
represented by a combination of the activities of columnar clusters of neurons, where each
cluster represents component features or parts of objects [22].
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NMF [21,23] factorizes a matrix as a product of two matrices, whose elements are all
nonnegative. Nonnegativity prevents mutual cancellation between basis functions and,
thus, generates a parts-based representation, in agreement with human thinking. NMF
can be used for tasks such as blind source separation (BSS) of images and nonnegative
signals [24], spectra recovery [25], feature extraction, and clustering [26].

Canonical correlation analysis, SVD, PCA, and ICA are classical matrix factorization
methods, derived by the low-rank approximation to a matrix by minimizing the squared
error. Latent semantic indexing [27] is an application that uses SVD for automatic indexing
and retrieval. We do not describe them here. In this paper, we provide a survey on the
recent matrix factorization techniques that are prevalent in machine learning and signal
processing. In Section 2, we describe compressed sensing. Section 3 introduces sparse
coding and dictionary learning. Section 4 extends sparse coding to matrix completion.
In Section 5, low-rank representation is reviewed. In Section 6, NMF is introduced. Section 7
introduces techniques for symmetric positive semidefinite matrix approximation, including
the Nyström method. Section 8 describes the CX Decomposition and CUR decomposition.
Finally, a summary is given in Section 9.

2. Compressed Sensing

Compressed sensing seeks to recover sparse or compressible signals from undersam-
pled linear measurements [15,28]. A sparse or compressible high-dimensional signal can be
projected onto a low-dimensional space when applying a random observation matrix. Com-
pressibility of data and acquisition of incoherent measurements are the two fundamental
properties underlying compressed sensing.

Given a signal ~x, if~α = ΦT~x is sparsely distributed for any dictionary Φ, ~x is said to
be compressible.

2.1. Signal Model

In compressed sensing, a signal with N samples, ~x ∈ RN , is derived from a set of
linear measurements

~y = A~x +~n, (3)

where A ∈ RM×N denotes a random sampling, sensing, or measurement matrix, ~y ∈ RM is
a measurement vector with M measurements, M < N, and~n ∈ RM is noise.

The problem (3) is underdetermined. When the norm of each column of A is unity, all
of the columns form an incomplete basis with M� N.

In order to preserve the information in sparse or compressible signals ~x, and to ensure
the stable recovery of such signals, A has to satisfy the so-called restricted isometry property
(RIP) [14].

A should also satisfy the incoherence property. M = O(k ln N) measurements are
sufficient for perfectly reconstructing a k-sparse vector ~x, if A is perfectly incoherent (e.g.,
uniformly random Gaussian measurements).

Compressed sensing achieves the stable recovery of compressible, noisy signals by
solving the L0-norm regularized inverse problem, or the corresponding computationally
tractable L1-norm problem

min
~x
‖~x‖1 or ‖~x‖0 subject to ‖A~x−~y‖2

2 ≤ ε2, (4)

where L0-norm ‖~x‖0 counts the nonzero entries in ~x, L1-norm is the convex envelope of
L0-norm, ‖~x‖1 = ∑N

i=1 |xi|, and ε is a tolerance.
The L0/L1-regularized least squares (LS) approach is used to deal with linear inverse

problems under sparsity constraints. Linear programming (LP) has the best sparsity–
undersampling trade-off, at a cost of high computation complexity. The approximate
message-passing algorithm [29] is an iterative thresholding algorithm corresponding to the
LP procedure, but is dramatically faster.
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The east absolute selection and shrinkage operator (LASSO) [30] and approximate
message passing [29] are low-complexity reconstruction procedures. By minimizing a
weighted sum of the residual norm and a regularization term ‖~x‖1, LASSO can reconstruct
sparse solutions and recover the sparsity pattern exactly as the number of observations
increases, asymptotically with probability one.

Standard compressed sensing guarantees robust signal recovery from O(k log N
k ) mea-

surements with provable performance guarantees [31]. Based on a model-based compressed
sensing theory, two recovery algorithms incorporating wavelet trees and block sparsity are
proven to offer robust recovery from O(k) measurements [31].

In [32], sensing vectors are selected independently at random from a probability
distributionF . IfF obeys an incoherence property and an isotropy property, approximately
sparse signals can be faithfully recovered from a minimum number of noisy measurements.
The recovery does not require the RIP to hold near the sparsity level, and it also does not
need a random model for the signal. A k-sparse signal can be faithfully recovered from
about k log N noisy Fourier coefficients.

When the measurements are obtained using a matrix with i.i.d. Gaussian entries, the
weighted L1-norm minimization recovers the sparse signal with overwhelmingly high
probability [33]. For any stationary process satisfying certain mixing conditions, if the
sampling rate is greater than the information dimension of the source process, the mini-
mum entropy pursuit (MEP) optimization approach for universal compressed sensing can
reliably recover the source vector almost losslessly, without any prior information about its
distribution [34].

2.2. RIP, ERC, and MIP

Conditions used in the compressed sensing literature include the RIP [28], exact
recovery condition (ERC) [35], and mutual inheritance property (MIP).

2.2.1. RIP

The RIP of sampling matrices is a sufficient condition for the reliable reconstruction
of sparse signals [15]. RIP matrices can be constructed from binary vectors [36]. Both
the algorithmic and constructive aspects were pursued to connect to error correction
codes [37,38].

A k-sparse vector ~x has, at most, k nonzero entries, ‖~x‖0 ≤ k. For any k-sparse vector
~x ∈ RN , if there exists a constant δ ∈ (0, 1), such that [14,39]

(1− δ)‖~x‖2
2 ≤ ‖A~x‖2

2 ≤ (1 + δ)‖~x‖2
2, (5)

a sensing matrix A ∈ RM×N is said to satisfy the k-restricted isometry property (k-RIP).
The minimum of all δ ∈ (0, 1), denoted as δk, is referred to as the kth-order restricted

isometry constant (RIC), or simply RIC, of A. A smaller RIC corresponds to a transformation
closer to an isometry. The RIC has monotonicity properties, δk ≤ δ2k. Via a RIP analysis, one
can find the maximum sparsity order k that guarantees the recovery of all sparse vectors.

k-RIP ensures that all M × k submatrices of A approximately satisfy the isometry
property and, hence, distance preserving. When M is close to k, maximal signal compression
is achieved. RIP can be used to measure the orthogonality of column vectors of a dictionary.
The problem of determining whether A has RIP for any accuracy is proven to be NP-
hard [40]. Constructing RIP matrices deterministically is a hard problem [41], but RIP
matrices can be generated with high probability by simple random methods [42,43].

The RIP analysis shows that Gaussian measurement matrices are information-
theoretically optimal since the required number of measurements for sparse recovery
is minimal [28,44]. A k-RIP matrix must have at least M = Ω(k log N

k ) rows. That is,
M = Ω(k log N

k ) samples are required for any recovery algorithm to approximate the signal
~x with an accuracy expressed by the L1- or L2-norm [45,46]. This bound is applicable to non-
k-sparse signals. Random Gaussian or Bernoulli matrices provide, with high probability,
the best-known accuracy for recovery that matches this lower bound [28,47,48].
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When most M× k submatrices define a near-isometric map of Rk into RM, a matrix
has a statistical RIP of order k [49]. Statistical RIP is particularly useful for the sparse signal
recovery of deterministic sensing matrices. For many existing deterministic sampling
matrices, M = O(k) rows guarantee k-statistical RIP [49]. With the conditions of statistical
RIP and statistical incoherence, stable sparse recovery by a basis pursuit can be proved [49].

The k-RIP concept is extended to the case of the Lp-norm [50]. For every 1 ≤ p < ∞,
almost tight bounds on the minimum number of rows, M, which are necessary for the
RIP to hold, as well as almost tight bounds for the column sparsity of RIP matrices, are
obtained [50].

2.2.2. ERC

The ERC is a necessary and sufficient condition for exact support recovery in a worst-case
analysis [35]. If a subset of atoms satisfies the ERC, then it can be recovered from any linear
combination of the atoms in, at most, k steps. The ERC necessarily holds when the latter
conditions are fulfilled since the ERC is a worst-case necessary condition for exact recovery.

When the ERC is met, the orthogonal least squares (OLS) algorithm is guaranteed to
exactly recover unknown support in, at most, k iterations, where k denotes the support
cardinality [51]. The authors of [51] provide a closer look at the analysis of both orthogonal
matching pursuit (OMP) and OLS when the ERC is not fulfilled. The existence of dictionar-
ies for which some subsets are never recovered by OMP is proved. This phenomenon also
appears with basis pursuit, where support recovery depends on the sign patterns, but it
does not occur for OLS. None of the OMP, OLS, and basis pursuit algorithms is uniformly
better than the others, but for correlated dictionaries, OLS may achieve guaranteed exact
recovery in fewer iterations compared to OMP.

2.2.3. MIP

The conditioning of the dictionary characterizes how different its atoms are [52].
The performance of a sparse recovery algorithm is affected by the conditioning. The condi-
tioning of a matrix is commonly measured by its condition number, which characterizes
the sensitivity of the solution of a system of linear equations to noise.

Mutual coherence and the RIP constant can be seen as two measures of the conditioning
of the dictionary. A large mutual coherence corresponds to two similar atoms, implying a
bad conditioning in the dictionary and, hence, difficulties in finding the sparse solution.

One common assumption in studying the statistical performance of the estimators is the
MIP that requires the mutual incoherence µ(A) to be small [53–55]. Mutual coherence [55,56]
is defined as the maximum value among all the correlation coefficients of normalized columns
of a dictionary A,

µ(A) = max
i 6=j
| <~ai,~aj > |, (6)

where~ai and~aj are two columns of A.
If the L0-norm problem has a k-sparse solution ~x0, for which k < 1

2 (1 + µ(A)−1), then
it is the unique solution for both the L1-norm and L0-norm minimization problems [55,56].
This condition can be replaced by ERC, but ERC is not easy to check because it depends on
unknown support. The condition k < 1

2 (1 + µ−1) is a sufficient condition for ERC [35] to
hold, and is easy to check.

The MIP implies RIP and ERC but the converse is not true. For OMP, support recovery
was considered in the noiseless case [35], where the MIP condition µ < 1

2k−1 is a sufficient
condition for exactly recovering a k-sparse signal ~x in the noiseless case. This condition is,
in fact, sharp [57]. Under the MIP condition µ < 1

2k−1 and a condition on the minimum
magnitude of the nonzero coordinates of ~x, the support of ~x can be recovered exactly by
the OMP algorithm in the bounded noise cases and with high probability in the Gaussian
case [58].
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2.3. Sparse Recovery

A high-dimensional k-sparse signal ~x ∈ RN can be expressed as a linear combination
of M atoms (2k ≤ M ≤ N), defined by the sensing matrix A = [~a1,~a2, . . . ,~aM]T ∈ RM×N ,
as given by (3).

Nonlinear reconstruction algorithms are derived from the L0-norm regularized problem,

min
~x∈RN

Ψ(~x) =
1
2
‖A~x−~y‖2 subject to ‖~x‖0 ≤ k. (7)

When ~y is a k-sparse signal, the problem is known as the k-exact-sparse problem.
The L0-norm regularized problem (4) is non-convex and NP-hard. It has many local

minima; when there is zero noise, a unique global minimum is the k-sparse vector ~x∗ [59].
Many suboptimal algorithms approximate its solution. They recover the true value of ~x∗

when ~x is sufficiently sparse and the columns of A are incoherent.
The L0-norm problem (7) is usually formulated as

min
~x∈RN

‖~x‖0 subject to A~x = ~y. (8)

The L0-norm problem (8) is NP-hard [60]. It is usually relaxed, and is reconstructed
via the L1-norm minimization problem [15,61]:

min
~x∈RN

‖~x‖1 subject to A~x = ~y. (9)

This is the basis pursuit method [62]. By imposing appropriate constraints on A, the basis
pursuit generates the exact recovery of ~x.

Sparsity is a basic type of regularization. Sparse approximation finds a k-sparse
signal ~x∗ to approximate ~y = A~x while k � N. Compressed sensing is a type of sparse
approximation problem.

Compared with L1-norm regularization, sparsity is better achieved with L0-norm
penalties based on experiments [63]. Under the RIP condition, the solutions by L1-norm
and L0-norm regularization are equal [44]. However, L1-norm regularization over-penalizes
large coefficients, yielding biased estimation [64,65].

Lp-norm (0 < p < 1) is non-convex. Alternatively, Lp-norm (0 < p < 1) is an
approximation to the L0-norm,

min
~x∈RN

‖~x‖p
p subject to A~x = ~y. (10)

Regarding the random Gaussian matrix A, the recovering ability of the Lp-norm
minimization (p ∈ [0, 1)) was investigated in [66]. When α = M

N → 1, the sharp threshold of
the sparsity ratio differentiates the success and failure via Lp-norm minimization. Lp-norm
minimization succeeds below the threshold. For strong recovery, the threshold decreases
strictly from 0.5 to 0.239 as p rises from 0 to 1, whereas for weak recovery, the threshold is
2/3 for p ∈ [0, 1). The threshold is 1 for L1-norm minimization. Lp-norm minimization can
return a denser solution compared to L1-norm minimization. For any α ∈ (0, 1), thresholds
of the sparsity ratio for strong recovery and weak recovery are, respectively, provided
in [66]. For strong recovery, Lp-norm minimization has a higher threshold with smaller
p; for sectional recovery, the threshold is the same for all p; for weak recovery, L1-norm
minimization can outperform Lp-norm minimization. L1-norm minimization generally
outperforms Lp-norm minimization for sparse recovery.

Suboptimal signal recovery methods are categorized into greedy pursuit, thresholding,
and convex relaxation methods. Greedy pursuit methods, such as matching pursuit [67],
OMP [68], OLS [69], subspace pursuit [70], and compressive sampling matching pursuit
(CoSaMP) [71], tackle the L0-norm problem directly. Iterative hard thresholding (IHT) is
a thresholding method for the L0-norm problem [72]. Convex relaxation methods, such
as gradient projection [73,74], accelerated proximal gradient [75], iterative reweighted
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method [76], homotopy method [77], and least angle regression [78], solve the L1-norm
problem, and there are also relaxation methods for the Lp-norm problem [79].

Basis pursuit [62] is a greedy sparse approximation technique used for solving the L1-
norm problem. For a given set of basis vectors, the method solves the optimization problem
by greedily searching for vectors to add or remove. OMP [68], also known as the fully
corrective forward greedy selection or simply the forward selection [60], is a simple and
effective greedy algorithm for sparse recovery/approximation. The atom selection steps in
matching pursuit and the Frank–Wolfe algorithm are very similar [80]. If k is small enough,
then at each iteration, both matching pursuit and OMP select an atom indexed by the
support, thus ensuring recovery properties [35,81]. Under the condition k < 1

2 (1 + µ−1), it
has been proven that matching pursuit shows an exponential rate of convergence, and that
OMP reaches convergence after exactly k iterations [35]. Under this same condition, it was
proved that the Frank–Wolfe algorithm converges exponentially beyond a certain iteration,
even though the function is not strongly convex [80].

CoSaMP and subspace pursuit improve upon OMP by selecting multiple coordinates
and incorporating a pruning step at each iteration, and sparse signal recovery was based on
RIP [28]. This selection strategy results in an optimal sample complexity. At each iteration,
CoSaMP first prunes the gradient, then solves an LS program restricted on a small support
set; finally, hard thresholding is implemented to form a k-sparse iterate for future updates.
As a greedy method, the hard thresholding pursuit adds and prunes indices on a list [82].

Compared to batch solvers, L1-norm-based stochastic algorithms struggle to preserve
the sparse structure of the solution [83].

If the optimal solution is sufficiently sparse, the problems (9) and (8) have approx-
imately the same solution [44,48,62,68]. The problem (9) can be effectively solved by
LP methods.

For the Lp-norm problem, projected gradient [84], iterative reweighted method [85],
and approximate operator [86,87] can be used. These methods converge to a global mini-
mum for proper initial points, which is easier to choose for larger p [84].

For compressed sensing, a sparse signal is represented in a finite discrete dictionary.
The true parameters, however, may be from a continuous dictionary. Thus, the loss of
sparsity arises from spectral leakage along the Dirichlet kernel [88]. From a small random
subset of its N time-domain samples, spectrally compressed sensing can recover a spectrally
sparse signal. It is assumed that a signal can be represented as the sum of k complex
multidimensional sinusoids.

Assuming that the signal frequencies are on a grid, it is guaranteed that the spectrally
sparse signal can be faithfully recovered from O(k log N) random time-domain samples by
using compressed sensing algorithms derived from L1-norm minimization [44,61], even in
the presence of bounded noise [47] or sparse outliers [89]. Additionally, a total-variation
norm minimization method can recover a sparse signal from low-frequency samples [90].

In [91], a greedy method for the sparse recovery of linear measurements corrupted by
highly impulsive noise is designed to solve a minimum dispersion optimization problem
by adopting the family of symmetric alpha-stable distributions.

Sparse recovery algorithms with invariance properties are less affected when the
sensing matrix (i.e., the dictionary) is ill-conditioned [52]. There implicitly exists an equiv-
alent well-conditioned problem. Some sparse recovery algorithms, such as smoothed
L0-norm [92], basis pursuit, FOCUSS [93], and hard thresholding algorithms, are invariant,
while others, such as matching pursuit and the spectral projected gradient for L1-norm
minimization (SPGL1) [94], are not.

2.4. Iterative Hard Thresholding

A simple greedy technique known as IHT [72,95] can generate the steepest descent
steps that are feasible for the L1-norm problem (9). This is achieved by utilizing hard
thresholding to project steps along the negative gradient direction of Ψ onto the L0-norm
constraint. In the hard thresholding method, all but the k largest magnitude elements of
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a vector are set to zero. IHT utilizes a proximal-point technique at each iteration, and it
implements gradient projection with a constant step size. In normalized IHT [96], a self-
adaptive step size is adopted to guarantee stability and performance.

In case the spectral norm of A is less than one, IHT converges to a fixed point of
(9) [72]. IHT guarantees stable recovery, provided that A has RIP [95]. There are also
other RIP-based recovery conditions for IHT [82] and normalized IHT [96]. The theory
for compressed sensing assumes that samples are taken from linear measurements. Un-
der similar conditions, IHT accurately recovers sparse or structured signals from a few
nonlinear observations [97]. Global linear convergence for IHT is guaranteed from theory
works based on matrix completion, which is based on standard properties of incoherence
and uniform sampling.

For any A, sufficient conditions for the convergence of IHT to a fixed point, as well
as necessary conditions for the existence of fixed points, are given in [98]. Sparse signal
recovery analysis can be performed using these conditions. The analysis has been extended
to normalized IHT. A theoretical analysis of normalized IHT, when both A and ~y are
quantized, is given in [99], and it is proved that a low-precision normalized IHT can
provide recovery guarantees under mild conditions.

IHT [72] and iterative soft-thresholding [100] algorithms are for the L0- and L1-norm
problems, respectively. Half thresholding [86] is given for p = 1

2 . These iterative threshold-
ing algorithms are efficient for high-dimensional problems, and it is also relatively easy to
specify the regularization parameter.

In the proximal gradient homotopy method, the solutions of the regularized problem
are computed and traced along a continuous homotopy path, and the selection of a regu-
larization parameter is not needed. IHT, when combined with the homotopy technique,
avoids the requirement of choosing a regularization parameter [101].

The hard thresholding pursuit [82] is an iterative greedy selection procedure used
for the sparse recovery of the L0-norm problem. As a combination of CoSaMP and IHT,
it outperforms both methods in terms of the RIP. The exact recovery of sparse signals
is theoretically justified under conditions of restricted strong condition number bound-
ing [102]. In [103], the hard thresholding pursuit is generalized to sparsity-constrained
convex optimization. The algorithm includes iterations of a gradient descent step and a
hard thresholding step.

Iterative thresholding algorithms have much lower computational complexity per
iteration and lower storage requirements than interior point methods. The recursions are
modifications of the gradient method used to solve a linear system but consist of a (hard
or soft) shrinkage operator to promote the sparsity of the estimate at each iteration. Hard
thresholding algorithms are always orders of magnitude faster than convex programs [104].

A theoretical analysis of hard thresholding algorithms is given in [105]. A tight bound
used for characterizing hard thresholding algorithms is derived, and RIP and sparsity
parameters are related. Parsimonious solutions are guaranteed by following a stochastic
hard thresholding procedure. Global linear convergence is proved under certain mild
assumptions [105].

IHT is a first-order greedy selection method that minimizes the primal formulation.
The original non-convex problem can be equivalently or approximately solved in a concave
dual formulation under certain conditions. The dual IHT algorithm [106] is a super-gradient
ascent method used to solve the non-smooth dual problem. Dual IHT is superior to IHT in
model estimation accuracy and computational efficiency.

The GradMP algorithm [107] generalizes the idea of CoSaMP [71]. Stochastic IHT and
stochastic GradMP [108] are two stochastic variants of greedy algorithms. The expected
linear convergence towards the solution within a specified tolerance is proven, providing
methods that often outperform their deterministic counterparts. In stochastic GradMP [108],
at each iteration, only the gradient of a function is evaluated, a subspace is searched based
on the previous estimate, and then a new solution is obtained via solving a convex low-
dimensional sub-optimization problem.
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Sparse convex optimization solves the optimization of a convex function subject to a
sparsity constraint k ≤ k∗γ, where k∗ is a target sparsity and γ ≥ 1 is an approximation
factor. The adaptively regularized hard thresholding (ARHT) algorithm [109] brings the
bound down to γ = O(κ), with κ being the restricted condition number, which is tight for
a general class of algorithms, including IHT, OMP, and LASSO. ARHT is comparable to
the most efficient greedy algorithms in terms of runtime, as it requires a single function
minimization per iteration. ARHT provides a strong trade-off between the RIP condition
and the solution sparsity.

Newton step-based IHT and Newton step-based hard thresholding pursuit adopt
the Newton-like search direction instead of the steepest descent direction [110]. Sufficient
guarantees for these algorithms are established in terms of the RIP of a sensing matrix.

A class of distributed iterative thresholding algorithms for L0/L1-regularized LS
optimization problems is presented in [111]. By introducing a suitably distributed and
regularized LS functional, it has been demonstrated that the algorithms reach their minima
based on the dynamical systems theory [111].

2.5. Orthogonal Matching Pursuit

OMP [68], also known as forward stepwise regression, is a fast greedy algorithm. At each
iteration, the algorithm selects the column from matrix A that is maximally correlated with
the current residual and adds it to the set of selected columns. That is, at each iteration,
one new element of the dictionary is added and one orthogonal projection is made. The
residuals are updated by projecting the observations ~y onto the linear subspace that is
spanned by the columns already selected, and then the algorithm iterates. The stopping
rule depends on the noise structure.

OMP can recover a k-sparse signal ~x ∈ RN from incomplete measurements ~y ∈ RM

obeying (3), with k � M � N. OMP recovers the true signal with high probability
for random matrices, including Gaussian, but it may fail for some deterministic sensing
matrices [35,112].

OMP, such as OLS, constructs the dictionary in an incremental way. By adding one
index to the list at a time, the support of the underlying sparse signal is identified, and the
sparse coefficients over the enlarged support are estimated. In OLS, a candidate that leads
to the most significant decrease in residual power is selected. In comparison, in OMP, a
column that is the most strongly correlated to the residual is chosen. OLS outperforms
OMP in terms of convergence, at a cost of higher computational complexity [51].

Some greedy methods, such as stagewise OMP [113], regularized OMP [114], and gen-
eralized OMP [115] (also referred to as the orthogonal super greedy algorithm [116]) add
multiple indices per iteration. At each iteration, candidates are identified according to
correlations between the residual vector and columns of A. The multipath matching pur-
suit [117] extends OMP by recovering sparse signals with a tree-searching strategy. At each
iteration, multiple candidate paths are traced and extended, and the candidate that mini-
mizes the residual power is chosen. Multiple OLS [118] extends OLS by selecting multiple
indices at each iteration, leading to convergence in fewer iterations. Stable sparse recovery
can be guaranteed, provided that the signal-to-noise ratio (SNR) grows linearly with the
sparsity level k of the input signals.

When MIP or SNR satisfies certain conditions, OLS and multiple OLS methods reliably
recover k-sparse signals in, at most, k iterations, while block OLS succeeds in, at most, k/d
iterations, where d is the block length [119]. The theoretical analysis for block OLS utilizes
the block-MIP to deal with block sparsity. An MIP-based theoretical analysis shows OLS
and multiple OLS methods in [119].

Signal space matching pursuit [120] sequentially adjusts the support of jointly sparse
vectors to minimize the subspace distance to the residual space. The method accurately
reconstructs any row k-sparse matrix of rank r in the full row rank scenario when the
maximum number of linearly independent columns in A is not less than k+ 1. The selection
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rule reduces to that of multiple OLS when r = 1, and to that of OLS when r = L = 1, where
L is the number of indices chosen in each iteration.

OMP with replacement [121] is known as partial hard thresholding with parameter
r = 1 [122], which is a generalization of IHT. It is essentially a variant of OLS that includes
replacement steps. Block OMP [123] recovers block sparse signals whose nonzero entries oc-
cur in a few blocks by assuming a uniform block size and known block boundaries. In [124],
block OMP is implemented by using coarse-fine block localization of a nonzero cluster.
OMP is used to reconstruct a class of structured sparse signals modeled by trigonometric
polynomials in [125].

Regarding sparse approximation, a single sufficient condition, where both basis pur-
suit and OMP could reliably recover a sparse signal, was developed in [35]. OMP can faith-
fully recover a k-sparse signal ~x ∈ RN given O(k ln N) random linear measurements [112].
OMP yields exact support recovery under certain RIP assumptions [126], and several
improvements to the condition were proposed [116,127].

2.6. LASSO

LASSO [30,128], originally proposed for estimation in the linear model ~y = A~x +~n,
has become a popular supervised learning technique for the recovery of sparse signals
from high-dimensional measurements and an unsupervised learning technique for the
feature selection of high-dimensional samples. The L1-norm regularizer in LASSO tends to
generate sparse regression coefficients.

In the context of supervised learning, the LASSO formulation is equivalent to the SVM
formulation [129]. For unsupervised learning, the LASSO regression has been applied in
biclustering tasks [130].

LASSO minimizes the sum of squared errors, subject to a bound on the sum of the
modulus of the regression coefficients. It can be formulated as an L1-norm regularized LS
problem. The convex optimization problem, (4) or (9), can be represented by an LS problem
subject to L1-norm penalty, which has the same formulation as LASSO [30]

~x = arg min~̃x∈RN{‖A~̃x−~y‖2
2 + λ‖~̃x‖1}, (11)

where ~x ∈ RN is a regression coefficient vector, and λ > 0 is a regularization parameter.
There are many methods used for solving (11), such as stochastic gradient descent and
stochastic coordinate descent [83,131]. Software packages for LASSO are publicly available.

The LASSO estimator satisfies the well-known prediction bound

λ ≥ 2‖AT~n‖∞

N
=⇒ 1

N
‖A(~x− ~̂xλ)‖2

2 ≤ 2λ‖~x‖1. (12)

We call 2‖AT~n‖∞
N LASSO’s effective noise. Such bounds are referred to as oracle inequal-

ities. The effective noise plays an important role in finite-sample bounds for LASSO,
the calibration of LASSO’s tuning parameter, and inference on the coefficient vector ~x.
A bootstrap-based estimator of the quantiles of the effective noise was developed in [132].
The estimator is fully data-driven, i.e., it does not need any additional tuning parameters.
The estimator is equipped with finite-sample guarantees and is applied to the calibration
of tuning parameters for LASSO as well as to high-dimensional inference ~x.

To estimates the regression vector ~x in the generic linear model with ~n = N (0, σ2I),
when the variance σ2 is unknown, two LASSO-type methods that jointly estimate ~x and
the variance are minimizers of the L1-norm-penalized LS functional, where the relaxation
parameter is tuned according to two strategies [133].

LASSO implicitly performs model selection and shares many connections with forward
stepwise regression. The least angle regression [78] performs stepwise variable selection.
At each iteration, the variable that is correlated with all of the residuals obtained thus far
the most is put in the set of active variables, and the current update is in a direction that
is equiangular with all other active variables. Unlike OMP, which maintains a variable



Mathematics 2023, 11, 2674 12 of 50

permanently, the least angle regression continually modifies the coefficient of the most
correlated variable until that variable is no longer the one that is most correlated with the
recent residual. The entire LASSO regularization path is generated with a computational
cost that is similar to that of standard LS via QR decomposition.

In order to handle nonlinearity, instance-wise nonlinear LASSO [134] applies a nonlin-
ear function on an instance ~x to give a sparse solution, in terms of instances. On the other
hand, the feature-wise nonlinear LASSO, also referred to as the feature vector machine [135],
imposes a nonlinear transformation ‘feature-wisely’ to obtain sparsity in terms of features.
Both methods use the kernel trick.

For large-scale LASSO regression problems, the Frank–Wolfe method [136] uses the
randomized iteration, and it is superior to the coordinate descent method. It achieves a
convergence rate of O(1/k) (in terms of the expected value). The solutions are significantly
more sparse compared with the competing methods while retaining the same accuracy.

Sparsity-inducing algorithms, such as LASSO, are not algorithmically stable [137]. To
put it differently, each iteration of the leave-one-out cross-validation of the LASSO estimator
may—each time—produce disparate results. The tuning parameter and the model have to
be estimated separately by using the data twice. The LASSO estimator can be risk-consistent
when a tuning parameter is chosen through cross-validation under certain restrictions [138].
For LASSO, the robust optimization formulation is related to kernel density estimation [139].
According to the no-free-lunch theorem, sparsity and algorithmic stability are contradictory
requirements, thus LASSO is not stable [139]. Compared with the unbounded asymptotic
variance of the LASSO estimator, some robust LASSO estimators have stabilized asymptotic
variances in the presence of large variance noise [140].

Group LASSO [141] selects variables at the group level. The penalty is in an inter-
mediate mode between the L1-norm and L2-norm penalties. Group LASSO minimizes
the square loss plus a penalty term proportional to the sum of the Euclidean norms of
groups of coefficients. Group square-root LASSO [142] minimizes the square root of the
residual sum of squares plus the same penalty term for group LASSO. It is independent of
the variance of the error terms. Square-root LASSO, with or without groups, achieves the
same correct pattern recovery and prediction accuracy under similar conditions, but with
a simplified tuning strategy, compared to the LASSO or group-LASSO methods. Group
square-root LASSO, with proven convergence properties, scales well with the dimension of
the problem.

LASSO belongs to a family of regularized linear regression methods, which also in-
cludes ridge regression [143] and elastic net [144]. LASSO is an L1-regularized LS method.
Ridge regression substitutes the L1-norm by the squared L2-norm ridge regularization on
the coefficients. LASSO not only reduces the variance of coefficient estimates but also selects
variables by setting those coefficients below a threshold to zero. elastic net regularization
uses a linearly mixed penalty of L1- and L2-norms [144]. By regressing each dependent vari-
able separately on each covariate, marginal regression is roughly two orders of magnitude
faster than LASSO for sparse and high-dimensional regression problems [145].

2.7. Other Sparse Algorithms

PCA is a classic method, and we do not describe it in this paper. Sparse PCA is targeted
to find a sparse basis in order to make the result easy to interpret. A trade-off needs to be
made between statistical fidelity and interpretability.

The orthogonality of loadings is considered in the simplified component technique-
LASSO (SCoTLASS) [146], loading rotation [147], simple thresholding [148], and aug-
mented Lagrangian sparse PCA [149]. SCoTLASS [146] optimizes the objective function
of PCA subject to a sparsity constraint on each loading. The loading rotation [147] ro-
tates the PCA loadings using various criteria in order to find a simple structure. Simple
thresholding [148] obtains sparse loadings by setting PCA loadings to zero. Augmented La-
grangian sparse PCA [149] solves an augmented Lagrangian optimization problem, where
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the explained variance, orthogonality, and correlation between principal components are
simultaneously considered.

Examples of deflation methods are the greedy methods [150], SCoTLASS, rSVD [151,152],
GPower [153], and TPower [154]. Greedy search and branch-and-bound methods can solve
small problems exactly, but with the complexity of O(N4) [150]. PathSPCA [151] is an
approximate alternative to the solution of [150], leading to a reduced complexity of O(N3).
rSVD [152] solves a sequence of rank-1 matrix approximations, subject to a sparsity penalty, to
obtain sparse loadings. GPower [153] maximizes a convex objective and solves it by the power
method. TPower [154] and a related power method, referred to as iterative thresholding
sparse PCA [155], are targeted at the recovery of the sparse principal subspace.

In [156], sparse PCA is formulated as a regression-type optimization so as to use
LASSO or elastic net techniques. Direct sparse PCA [157] relaxes the problem into a
semidefinite convex problem, which has a computational complexity of O(N4(log N)1/2)
for N variables. A variable elimination method [158] reduces the complexity to O(N3). A
methodology for uncertainty quantification is proposed in [159] based on an M-estimator
with the LASSO penalty. It achieves minimax optimal rates and is used to construct a
de-biased sparse PCA estimator. The estimator has a Gaussian limiting distribution and can
be used for hypothesis testing or support recovery of the first eigenvector. It outperforms
PCA in moderately high-dimensional regimes.

The sparse LMS algorithm [160] penalizes the quadratic cost function of the LMS
algorithm by two sparsity constraints. Recursive L1-regularized LS [161] estimates a sparse
tap-weight vector for adaptive filtering by using an EM-type algorithm. The method
outperforms the RLS algorithm in terms of both MSE and computational complexity.

Sparse SVD [162] is based on iterative thresholding of singular vectors, and is robust
to tuning parameters. The penalized matrix decomposition [163] penalizes the likelihood
with the L1-norm penalty on factors and/or loadings. softImpute [164] fits a regularized
low-rank matrix using a nuclear norm penalty.

The sparse factor analysis [165] and nonparametric Bayesian sparse factor analy-
sis [166] are Bayesian approaches with different prior specifications. These Bayesian
methods are self-tuning. A general empirical Bayes approach to matrix factorization [167]
estimates the sparsity by estimating prior distributions from the observed data, and uses a
variational approximation to effectively solve a simpler so-called normal means problem.

2.8. Restricted Isometry Property for Signal Recovery Methods

For the linear regression problem, when δ2k <
√

2− 1 ≈ 0.41, the L0-norm and L1-norm
problems are equivalent [39]. The LASSO algorithm can recover a solution [15,28,39,47].
In [168], the condition improved to δ2k < 0.493. Many of the later results either provided
related guarantees for LASSO while improving the RIP upper bound [168–170], reaching a
bound of δ2k < 0.6248, or obtained similar results by using greedy algorithms under more
strict RIP conditions, but typically converging faster than LASSO [71,82,95,114,121,171].

For linear regression, CoSaMP [71] achieves a bound that is similar to that in [39],
but the implementation is more efficient. Their method is valid for the more restricted
RIP upper bound of δ2k < 0.025, or δ4k < 0.4782, as improved by [172]. IHT achieves a
bound similar to that of CoSaMP [95], with the condition δ3k < 0.067, which is improved to
δ2k <

1
3 by [121] and to δ3k < 0.5774 by [82].

We consider sufficient conditions for perfect signal recovery using OMP. In the noiseless
case, OMP can exactly identify the support of a k-sparse signal in k iterations, provided that
A satisfies the k + 1th-order RIP with δk+1 < 1

3
√

k
[126]. Since a smaller RIC leads to better

reconstruction, sparse signal recovery with interference-nulling achieves better performance
than what is predicted in [173]. The sufficient condition is relaxed to δk+1 < 1√

k+1
[115,127,174].

Sufficient conditions specified with the RIC bound δk+1 < 1√
k+1

and certain require-
ments on the minimal magnitude of signal entries guarantee exact support identification
under measurement noise [175]. In the noisy case, a relaxed upper bound δk+1 <

√
4k+1−1

2k
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as well, as relaxed requirements on the minimal magnitude of the signal entries, guarantee
perfect support recovery by using OMP [176]. In the noiseless case, the relaxed bound
guarantees exact support recovery in k iterations.

If A satisfies RIP with δk+1 < 1√
k+1

, then OMP faithfully recovers a k-sparse signal ~x in
k iterations under constraints on the minimum magnitude of nonzero entries of ~x [177,178].
This sufficient condition on δk+1 is sharp. If A satisfies RIP with δk+1 < 1√

k+1
, then OLS

also exactly recovers ~x in k iterations [179].
In [180], an OMP-like algorithm is analyzed based on RIP. Based on the technique

in [180], sparse approximation by greedy algorithms is studied in [181]. With high proba-
bility, the exact recovery of random k-sparse signals within k(1 + ε) iterations of OMP is
proved. Thus, OMP is almost optimal for the exact recovery in a probabilistic sense [181].

It has been proven that for a k-sparse ~x and matrices with a rank of at most k, if the

RIC of A, δtk ≤
√

t−1
t , where t ≥ 4

3 , then the L1-norm problem can recover ~x exactly in the

noiseless case and stably in the noisy case [182]. δtk < t
4−t was connected to be a sharp

condition for 0 < t < 4
3 , and it was only partially proved in [182]. The conjecture on the RIP

constant δtk < t
4−t (0 < t < 4

3 ) is completely proven in [183]. Thus, in the noiseless case,
a complete characterization of sharp RIP constants δtk for all t > 0 is obtained, ensuring the
exact recovery of all k-sparse signals and matrices with a rank of at most k through L1-norm
minimization and nuclear norm minimization, respectively. Noisy cases and approximately
sparse cases are also considered.

Multiple OLS (L > 1) [118] recovers k-sparse signals faithfully in, at most, k iterations, if A
obeys the RIP with δLk <

√
L√

k+2
√

L
. OLS (L = 1) guarantees exact recovery under δk+1 < 1√

k+2
.

This bound is tight since even a slight relaxation disables OLS from guaranteeing exact recovery.
Multipath matching pursuit faithfully recovers all k-sparse signals, provided that

A satisfies the k + L-order RIP with δk+L <
√

L√
k+2
√

L
, In the case of L child paths per

candidate [117]. This bound is further improved to δk+L <
√

L
k+L [184].

For the subspace pursuit, RIP-based exact recovery guarantees in both noiseless
and noisy cases are given in [70,185]. For block OMP, block RIP is used to derive some
sufficient conditions for the exact or stable recovery of block sparse signals in [186]. In [124],
the convergence of the coarse-fine block OMP is analyzed by defining a pseudoblock-
interleaved block RIP and then imposing upper bounds on the corresponding RIC.

Signal space matching pursuit guarantees exact reconstruction in at most k− r + d r
L e it-

erations, if A satisfies the RIP of order L(k − r) + r + 1 with δL(k−r)+r+1 <

max
{ √

r√
k+ r

4+
√

r
4

,
√

L√
k+1.15

√
L

}
[120]. The RIC requirement becomes less restrictive as

r increases, and is less restrictive than those for OLS and multiple OLS. In case of r = 1
and more than k iterations, the performance guarantee can be improved to δb7.8kc ≤ 0.155.
Under a suitable RIP condition, the reconstruction error is upper bounded by a constant
multiple of the noise power [120].

The Lp-norm problem is investigated based on RIP [187,188]. For 0 < p ≤ 1, any
k-sparse signal can be recovered if δ2k < δ(p), with δ(p) > 0 being a constant decided by
p [188]. Sufficient conditions for the exact recovery were derived in terms of the RIC for
Lp-norm minimization [169], CoSaMP [71], and regularized OMP [114].

In addition to RIP, notions such as the restricted orthogonality constant (ROC) [28] and
null space property [189] have been used for the analysis of sparse recovery. The L1-norm
and Lp-norm problems have been studied by using the null space property [189–192]. A
null space constant of less than 1 is a sufficient and necessary condition for guaranteeing
the Lp-norm problem to exactly recover any k-sparse signal [189]. Based on the null
space property, if the Lp-norm problem (p = p1) can recover any k-sparse signal, then
the Lp-norm problem (p ≤ p1) can also work [190]. Lp-minimization with a sufficiently
small p is equivalent to L0-minimization for sparse recovery [191]. The Lp-norm problem
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(p < p∗), with p∗ from an upper bound on the null space constant, is guaranteed for exact
recovery [192].

2.9. Related Topics

One-bit compressed sensing [193] adopts the compressed sensing model, but only
the sign of each measurement is retained. k-sparse signals in RN can be estimated (up to
normalization) from Ω(k log N

k ) one-bit measurements. Recovery algorithms can be based
on nonlinear programming [194], linear programming [195], convex programming [196],
and modifications of IHT [197]. A uniform L2-reconstruction error of at most γ > 0 can be
achieved with M ≥ 1

γ k log N
k one-bit measurements [196,197]. The optimal quantization

scheme is obtained with respect to the mean square error (MSE) of the LASSO reconstruc-
tion [198]. In [199], the decay of the error is optimized as a function of the oversampling
factor λ = M

k log N
k

. The error in reconstructed signals from one-bit measurements is bounded

below by Ω( 1
λ ). The adaptive thresholding used for quantization can lower the error rate

to e−Ω(λ), which improves upon other adaptive thresholding methods, such as the sigma-
delta quantization. A general recursive strategy achieves this exponential decay, realized
by two specific polynomial-time algorithms, one based on convex programming and one
on hard thresholding.

For a deterministic finite alphabet vector ~x, two convex optimization methods, namely,
the regularization-based method and transform method, have been introduced for the
recovery of finite alphabet signals via L1-norm minimization [200]. When the alphabet
sizes p = 2 and (M, N) grow proportionally, the conditions for high-probability signal
recovery are the same for both methods.

Without prior knowledge of the sparsity basis in both the sampling and recovery
processes, blind compressed sensing is ill-posed in general [5]. Some constraints on the
sparsity basis can be added to guarantee a unique solution. The methods can achieve results
similar to those of standard compressed sensing, as long as the signals are sparse enough.

3. Dictionary Learning

Sparse coding, also referred to as dictionary learning, represents a dense signal using
only a few elements from an overcomplete dictionary [10]. Dictionary learning is targeted
to recover the elementary signals (atoms, exemplars, words), collectively referred to as
a dictionary, which efficiently represents a set of homogeneous signals. This is generally
performed by imposing certain sparseness constraints on the representative coefficients.
Dictionary learning is usually used to find a sparse, patch-level representation of an
image [201]. It is useful in image de-noising.

3.1. Problem Formulation

Sparse approximation has a formulation similar to that of compressed sensing but
with a different objective. A target signal ~y ∈ RM is represented by a linear combination of
atoms in an overcomplete dictionary A ∈ RM×N ,

~y = A~x, (13)

where the basis matrix A = [~a1,~a2, . . . ,~aN ] (N � M),~ai ∈ RM represents a word with the
unit norm, ‖~ai‖2 = 1, and ~x ∈ RN is a representation of ~y. Any vector ~y can be represented
as a linear combination of words in the overcomplete dictionary.

The recovery of both A and ~x given ~y is an underdetermined problem. For random
and sparse ~x, both A and ~x can be recovered from ~y with a high probability for sufficiently
large M [202]. A polynomial-time algorithm, referred to as the exact recovery of sparsely-
used dictionaries (ER-SpUD), consists of an ER-SpUD step and a greedy step. ER-SpUD is
proved to probably recover the dictionary and coefficient matrices for the sufficiently sparse
coefficient matrix [202]. The method is valid for M ≥ CN2 log2 N, C > 0 is a constant, and it
was conjectured that M ≥ CN log N suffices from an information-theoretical view [202].
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This bound improves to M ≥ CN log4 N [203]. In [204], an improved Er-SpUD algorithm
faithfully recovers A and ~x with high probability when M ≥ CN log N.

The set of linear Equations (13) has no unique solution. A sufficiently sparse ~x can be
uniquely obtained by solving the L0-norm minimization problem given by (8) [15]. Under
weak conditions of A, the L0-norm minimization problem (8) has a solution equal to that
of the L1-norm minimization problem (9) [44]. Solutions to the L0-norm and L1-norm
problems have been discussed and solved in the previous section. As such, the problem of
recovering sparse signals from compressed measurements is the same as that of constructing
sparse approximation.

3.2. Dictionary Learning Methods

Some examples of dictionary learning methods are sparse coding [205], nonnegative
sparse coding [206,207], Lp-sparse coding [208], K-SVD [201], hierarchical sparse cod-
ing [209], fused-LASSO-based dictionary learning [210], and elastic net-based dictionary
learning [211].

The leading dictionary learning methods are convex optimization algorithms, such
as the alternating direction method of multipliers (ADMM), which was used for solving
(8), and greedy algorithms, such as matching pursuit [67] and OMP [68]), which were also
used for solving (9).

ADMM alternatively minimizes the coefficients and atoms separately. The K-SVD
method [201] is a popular ADMM algorithm used for solving L0-norm-based problems.
It sequentially updates atoms in the dictionary A by SVD and finds sparse coefficients ~x
by OMP by alternating iterations. However, the computational cost of OMP is nontrivial,
and K-SVD is not always convergent.

Proximal alternating methods [212,213] can be used for a class of non-convex optimiza-
tion problems, leading to global convergence. Accelerated plain dictionary learning [214]
is a multi-block alternating scheme for L0-norm sparse coding, with global convergence.
A multi-block hybrid proximal alternating scheme [214] combines ideas from multi-block
coordinate descent, proximal alternating methods, and the K-SVD method.

Motivated by the K-SVD algorithm, dictionary learning over positive definite ma-
trices is solved by the alternating minimization approach [215]. Coordinate descent is
implemented, and it is much faster than generic interior point methods.

For the recovery of sparse signals represented by a general dictionary that is corrupted
by additive noise, the derived deterministic recovery guarantees depend on the signal and
noise sparsity levels, on the coherence parameters of the involved dictionaries, and on the
amount of prior knowledge about the signal and noise support sets [216]. When both signal
and noise are sparse but in different domains, signal recovery is a non-convex and NP-hard
problem. In [217], the problem is solved either by replacing L0-norm with L1-norm and
then applying ADMM, or replacing L0-norm with a smoothed L0-norm and then applying
the gradient projection method.

Sparse coding with latent variables described by discrete prior distributions was
investigated in [218]. The sparse latent variables can take a value from a finite set of values
and the prior probability of any value is learned from the data. Discrete sparse coding
algorithms can scale efficiently with datasets.

Assume that the signals are generated as i.i.d.-random linear combinations of the K
atoms from a complete reference dictionary D∗ ∈ RK×K, where the linear combination
coefficients are from either a Bernoulli-type model or an exact sparse model. A necessary
and sufficient norm condition for D∗ to be the unique sharp local minimum of the expected
L1-norm objective function is obtained, thus establishing the global property of L1-norm
dictionary learning [219]. The algorithm is based on block coordinate descent, guaranteeing
a monotonic decrease in the objective function.

By casting dictionary learning as a classical (or frequentist) estimation problem, lower
bounds on the worst-case MSE are derived by applying different generative models for
the observed signals [220]. A lower bound on the worst-case MSE in terms of the SNR was
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obtained. The lower bounds are used to derive the required number of observations, such
that dictionary learning is feasible.

Many signals cannot be sparsely represented using an orthonormal basis, but have
sparse representations in a redundant dictionary D. Standard compressive sensing methods
can be extended to handle this case, provided that the dictionary is sufficiently incoherent or
well conditioned, but fail in the case of a truly redundant or overcomplete dictionary [221].
The projected Landweber algorithm [222] extends IHT [95], and signal-space CoSaMP [223]
extends CoSaMP, in order to operate in the signal space. They are oriented to recover the
signal rather than its dictionary coefficients. D-RIP [221] is a condition on the sensing matrix
analogous to RIP. Both works assume that A satisfies the D-RIP, which is a less-restrictive
condition to satisfy than requiring AD to satisfy RIP. Implementing both algorithms requires
the ability to compute projections of vectors in the signal space onto a sparse representation
in the model family.

A non-convex generalization of the online matrix factorization algorithm for the i.i.d.
data stream [224] is demonstrated to converge almost surely in the network dictionary
learning algorithm [225]. A network dictionary learning algorithm [225] combines the
online NMF and an MCMC algorithm for sampling motifs from networks. It extracts
network dictionary patches from a given network. The convergence guarantee of the
network dictionary learning algorithm is given.

The uniform spread of information is enforced over representative coefficients in
robust encoding for digital communications. The L∞-norm penalty is used to naturally
express anti-sparse regularization. A fully Bayesian formulation of anti-sparse coding
is derived by using a prior known as the democratic prior to enhance anti-sparsity in a
Gaussian linear model [226].

4. Matrix Completion

Matrix completion is a special case of the more general matrix recovery problem,
which aims to reconstruct a matrix from generic and often random linear measurements.

Let Y represent the measured data that are corrupted by errors E. The task is to
recover a low-rank matrix X ∈ Rm1×n1 from Y = F(X) + E ∈ Rm×n with the linear operator
F : Rm1×n1 → Rm×n,

min
X,E

rank(X) + λ‖E‖ subject to Y = F(X) + E, (14)

where λ is a regularization parameter, and ‖ · ‖ is the L0-norm [17] or L2.0-norm [227]
for sparsity.

When F(.) is an identity operator, the model (14) is used for the low-rank and sparse
matrix decomposition [17]. When F(X) = AX and A is a dictionary, it pertains to the low-
rank representation [227,228]. When F(.) is a sampling operator, it pertains to the low-rank
matrix completion [229]. The matrix completion is a special case of the matrix recovery
problem, which aims to recover a matrix from generic, random linear measurements. The
problem (14) is NP-hard, owing to the discrete and non-convex nature of the rank function
and L0-norm (or L2,0-norm) [229].

The rank function counts the number of nonzero singular values. A popular convex
relaxation of the rank functional is the nuclear norm, also referred to as the trace norm,
which is the sum of all singular values of a matrix [230]. The nuclear norm is the convex
envelope of the rank function, and is the tightest convex lower bound of the rank function
of a matrix [231]. Since the nuclear norm is a convex function, it can be efficiently opti-
mized by semidefinite programming. Similar to the nuclear norm for the rank function,
a convex relaxation of L0-norm (or L2,0-norm) is L1-norm (or L2,1-norm). The L∞-norm is a
convex relaxation of the rank function for matrix completion under a uniform sampling
distribution [232]. The rank function can also be relaxed by the Schatten p-norm.
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Given an incomplete low-rank data matrix X = [Xij] ∈ Rm×n, the matrix completion
problem can be formulated as follows:

min rank(Y) subject to Yij = Xij, (i, j) ∈ Ω, (15)

where Y = [Yij] ∈ Rm×n is the decision variable, and Ω is the set of locations of the observed
entries, with each (i, j) ∈ Ω generated by the Bernoulli distribution, i.e., independently
with probability p.

Problem (15) seeks to find the simplest explanation fitting the observed data. It is
ill-posed in general. The missing entries of Y can be faithfully recovered with high probability
under certain constraints of the matrix rank, missing rate, and sampling scheme [229,233,234].

Rank minimization-based methods [229,235,236] and matrix factorization-based meth-
ods [237] are two major categories of low-rank matrix completion methods. Matrix
factorization-based methods factorize Y ∈ Rm×n of rank-r (r < min(m, n)) into the prod-
ucts of two smaller matrices of size LT ∈ Rm×r and F ∈ Rr×n. The missing entries are
recovered by finding such pairwise matrices [237]. The low-rank matrix completion can also
be approached by the accelerated proximal gradient [238], augmented Lagrange multiplier
method [239], spectral methods [240], and singular value thresholding [241].

Many weighted low-rank matrix approximation methods with missing data are pre-
sented based on L1-norm and a Laplacian noise model [239,242,243]. They are computa-
tionally expensive, and it is difficult to obtain a good solution due to the non-convexity and
non-smoothness of the L1-norm-based cost function. In [242], convex programming and
weighted median methods are derived via the alternating minimization approach of the
L1-norm optimization problem. Convex LP is used in [243]. In [239], a robust PCA that is
based on L1-norm and nuclear norm for a non-fixed rank problem is approached by the
augmented Lagrange method. The procedure performs SVD at each iteration.

The matrix completion using a non-convex surrogate for the rank function, motivated by
optimizing an upper bound of the rank, can be performed with closed-form solutions, such
that it converges within dozens of iterations with proven convergence [244]. By exploiting the
column-wise correlation, an adaptive correlation learning technique was developed.

4.1. Nuclear Norm Minimization

By nuclear norm minimization, a matrix with missing values can be exactly recovered
under some general conditions [229,245–247]. When the observed values are noiseless,
it is possible to perfectly recover a low-rank matrix [229]. For noisy measurements, re-
covery is constrained by an error bound that is proportional to the noise level, with high
probability [246].

The nuclear norm minimization problem is formulated as in [230,231,241,246]:

min
Y
‖Y‖∗ =

min(m,n)

∑
k=1

σk(Y) subject to Yij = Xij, (i, j) ∈ Ω, (16)

where ‖ · ‖∗ is the nuclear norm, and σk(Y) is the kth largest singular value of Y.
The problem can be transformed into a quadratically constrained minimization problem:

min
Y
‖Y‖∗ =

min(m,n)

∑
k=1

σk(Y) subject to ∑
(i,j)∈Ω

(
Yij − Xij

)2 ≤ ε, (17)

or a regularized unconstrained problem:

min
Y
‖Y‖∗ + λ ∑

(i,j)∈Ω

(
Yij − Xij

)2. (18)

The nuclear norm problem (16) has to be solved iteratively and it involves SVD at
each iteration, leading to high computational costs. Alternating minimization strategies
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are popular for matrix completion [236,248,249]. The global convergence of the gradient
search method for low-rank matrix approximation is proven in [250] by optimizing the
Grassmann manifold and Fubini–Study distance on this space. Some nuclear norm-based
methods include singular value thresholding [241], robust PCA [17,251], and nuclear norm
regularized LS [235].

Problems (16) and (17) can be formulated as semidefinite programs and then solved to
global optima by standard semidefinite program solvers when the dimensions are smaller
than 500. First-order algorithms, including singular value thresholding, have been proposed
in (16) [241]. The proximal gradient method was implemented in (18) [235]. It has linear
convergence for (18) under certain conditions [252], but the per-iteration costs for SVD and
the matrix memory are high for large matrices. The alternating minimization approach
can be easily parallelized, but it requires higher per-iteration computations compared to
stochastic gradient descent. There are also parallelizable variants of stochastic gradient
descent [253,254] and block coordinate descent [255,256].

Singular value thresholding is a gradient descent method that applies the Uzawa
method in [241]

min
Y
‖Y‖∗ + α‖Y‖2

F subject to PΩ(Y) = PΩ(X), (19)

where ‖Y‖F = (∑i,j Y2
ij)

1
2 is the Frobenius norm (or L2-norm equivalently), PΩ(·) is a

function extracting a submatrix from a matrix, with a set of locations Ω, and α is a regular-
ization parameter.

The nuclear norm regularized LS problem is formulated as [235,257]

min
Y

1
2
‖PΩ(Y)− PΩ(X)‖2

F + µ‖Y‖∗, (20)

where µ is a regularization parameter. This problem is solved by accelerated proximal
gradient optimization [235,257]. The primal error is smaller than ε after O(1/

√
ε) itera-

tions [235,257].
In robust PCA, the nuclear norm is used for the recovery of the subspace structure

from the data that are corrupted by noises or occlusions [17]. The matrix bifactorization
method [258] can efficiently approximate the nuclear norm minimization problem so as
to mitigate the computation costs of SVD. The method can solve a large variety of low-
rank matrix recovery and completion problems, and two linearized proximal alternating
optimization algorithms were developed for solving these problems [258].

The nuclear norm, however, is not an ideal approximation for the rank function.
In practice, the incoherence property of the nuclear norm heuristic is difficult to meet [229].
For nuclear norm minimization, all singular values are simultaneously minimized, thus
the rank cannot be suitably approximated. The truncated nuclear norm is superior to the
nuclear norm since it can better approximate the rank of a matrix [259]. The truncated
nuclear norm minimization method outperforms its nuclear norm counterpart in terms of
convergence speed.

The truncated nuclear norm ‖Y‖r is defined as the nuclear norm ‖Y‖∗ subtracted by
the r-largest singular values, i.e., the sum of the min(m, n)− r minimum singular values,

‖Y‖r =
min(m,n)

∑
i=r+1

σi(Y). (21)

‖Y‖r is non-convex. Thus, the truncated nuclear norm minimization [259] was formulated
by replacing ‖Y‖∗ in (16) with ‖Y‖r. In [259], an iterative two-step scheme was imple-
mented, where the convex subproblem in the second step was solved by ADMM with
excellent convergence accuracy. The method is not robust to r, and it requires many itera-
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tions to converge. The convergence is accelerated by using an adaptive penalty parameter
for ADMM.

Low-rank matrix recovery can be implemented by spectral regularization, which takes
the form of regularization on the singular values of the matrix. The singular values are,
in most cases, iteratively computed by applying SVD on a dense matrix. A generalized
unitarily invariant gauge function for low-rank matrix recovery does not act on the singular
values but generalizes some spectral functions, including the rank function, Schatten
p-norm, and log-sum of singular values [260].

4.2. Matrix Factorization-Based Methods

The matrix completion problem considers a matrix X ∈ Rm×n, with known elements
Ω = {(i, j)}. The model is given by (15). Matrix completion can also be solved based on
matrix factorization [261]. When recovering a rank-k matrix Y = UVT that minimizes the
distance between Y and X on the known entries of X, we have

min
Y

∑
(i,j)∈Ω

(Yij − Xij)
2 subject to rank(Y) = k. (22)

This matrix factorization model has long been used in PCA.
A maximum-margin factorization method [237] solves the problem

min
U,V

∑
(i,j)∈Ω

(Xij − (UVT)ij)
2 + β(‖U‖2

F + ‖V‖2
F), (23)

where β is a regularization parameter.
The problem (23) and its extensions were investigated in [237,262,263]. In [237], the

biconvex method was always stuck at a suboptimal minimum for small rank r, and the
computational complexity became very high, as r, m, and n became large.

The maximum-margin matrix factorization method and nuclear norm minimization
method have been combined, and the algorithm outperformed both methods for large
matrix factorization and completion [264]. It is a stylized variant of the block coordinate
descent. A scalable divide-and-conquer framework for noisy matrix factorization and
completion achieves near-linear to superlinear speed-ups [265]. The task is randomly
divided into subproblems, being solved in parallel using a nuclear norm-based matrix
factorization algorithm, and the solutions are combined by using techniques from the
randomized matrix approximation. In [266], two low-rank factorization methods are given
for the L1-based low-rank matrix approximation. By using the alternating rectified gradient
method, proper projection and coefficient matrices are found at low computational and
storage costs. An updated direction is first found, and then a step size is selected for
updating a matrix. The weighted median algorithm is performed on the matrix at once,
while in [242], it is applied column-wise.

The low-rank matrix estimation can be implemented through matrix factorization,
which optimizes two low-rank factors via iterative methods, such as gradient descent and
the alternating minimization approach. Despite non-convexity, these methods achieve lin-
ear convergence when initialized properly. However, for ill-conditioned matrices, the con-
vergence of gradient descent depends linearly on the condition number κ of the low-rank
matrix, while the per-iteration cost of the alternating minimization approach is often pro-
hibitive for large matrices. Scaled gradient descent (ScaledGD) and its alternating variants
have been proposed for low-rank matrix completion [267]. ScaledGD is an adaptively
preconditioned or diagonally-scaled gradient descent with a minimal computational over-
head, unveiling the implicit regularization properties of ScaledGD. In [268], ScaledGD
is confirmed to achieve linear convergence, independent of κ, when initialized using the
standard spectral method, for solving the low-rank matrix sensing, robust PCA, and matrix
completion, while maintaining the low per-iteration cost of gradient descent, which is lower
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than that of the projected gradient descent. ScaledGD achieves ε-accuracy in O(log( 1
ε ))

iterations when initialized by the spectra method.
Power factorization [269] is an efficient alternating minimization algorithm used for

recovering general low-rank matrices, and its performance guarantee under a rank RIP
assumption is given in [270]. When initialized with the leading right singular vector
of the proxy matrix, power factorization stably recovers a rank-r matrix under rank-2r
RIP. Sparse power factorization [271] modifies the updates in the power factorization for
compressed sensing of sparse rank-one matrices to exploit their sparsity priors. For the
recovery of sparse vectors under RIP, the hard thresholding pursuit provides guarantees
on both the estimation error and convergence rate [271]. Sparse power factorization con-
verges linearly under the RIP assumption. In the rank-one case, subspace-concatenated
sparse power factorization and sparse power factorization have similar near-optimal per-
formance guarantees [271]. For rank-r matrices with a conditioning number of at most
κ, the subspace-concatenated sparse power factorization succeeds with m = O(κ2rn)
measurements, substantially improving on the results of m = O(κ4r3n) for power factor-
ization [270].

The Bayesian matrix factorization can produce low-rank representations of matrices,
predict missing values, and provide confidence intervals. A distributed approach is realized
by a hierarchical decomposition of the joint posterior distribution, which couples the
subset inferences [272]. The Bayesian deep matrix factorization network [273] is a robust
and fast low-rank matrix factorization model used for multi-image denoising. It uses a
deep neural network to model the low-rank components and the model is optimized via
stochastic gradient variational Bayes. A hierarchical kernelized sparse Bayesian matrix
factorization model [274] integrates side information, and infers the parameters and latent
variables, including the reduced rank through variational Bayesian inference. The model
simultaneously achieves a low rank through sparse Bayesian learning and column-wise
sparsity through an enforced constraint on latent factor matrices.

A low-rank positive semidefinite matrix can be factorized into a product of two matri-
ces. By using a Courant penalty that penalizes the differences between certain components,
the semidefinite program is formulated as a biconvex optimization problem [275]. This
allows using multi-convex optimization techniques for defining simple surrogates, which
can be easily minimized by using a block coordinate descent algorithm. The algorithm is as
accurate as other semidefinite program algorithms but is much faster.

When factorizing a large square matrix into a number of matrices of much lower
ranks, the low-rank constraint cannot be applied if the approximated matrix is intrinsically
high-rank or close to full rank. In [276], a large square matrix is approximated with a
product of sparse full-rank matrices, using only N(log N)2 nonzero numbers for an N × N
full matrix.

Matrix Completion with Side Information

Given all of the side information with a matrix B, and V = BS, with B = (~b1,~b2, . . . ,~bn)T ∈
Rn×p,~bj = (Bj1, . . . , Bjp)

T ∈ Rp (p ≥ k), we have

min
S,U

∑
(i,j)∈Ω

(Yij − Xij)
2 subject to Y = USTBT , ‖S‖F = 1, (24)

where the matrix of feature exposures is denoted as U ∈ Rm×k and S ∈ Rp×k. In Netflix,
column j corresponds to movie j; thus,~bj contains information on movie j.

Given perfectly predictive side information, the theoretical bound of sample complex-
ity O(log n) to retrieve the full matrix can be achieved [277]. In [278], the side information
is corrupted with noise, while in [279,280], a nonlinear combination of factors in the side
information is explored.

Prior knowledge of the column and row spaces of a matrix can be incorporated
by minimizing a weighted nuclear norm [281]. Theoretically, reliable prior knowledge
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reduces the sample complexity of matrix completion by a logarithmic factor. Similar results
for matrix recovery from generic linear measurements are presented in [281]. Without
the incoherence assumption, a two-phase sampling algorithm does not need knowledge
about the underlying structure of a matrix [233]. In the case where the observed entries
are non-uniformly distributed, exact recovery guarantees for the weighted nuclear norm
minimization method are provided in [233].

For matrix completion with and without side information, fastImpute [282] is a non-
convex gradient descent method for the exact sparse problem. Factorization can be im-
plemented on the matrix of the features in the side information. The method converges
to a global minimum that faithfully recovers the underlying matrix and it scales well to
matrices of sizes beyond 105 × 105. When a high number of entries is missing, fastImpute
outperforms other methods [283] in terms of error and convergence times.

4.3. Theoretical Guarantees on the Exact Matrix Completion

Given the compact SVD of Y = UΣVT , U ∈ Rm×r, Σ ∈ Rr×r, V ∈ Rn×r, Y is µ-
incoherent if [229]

r

∑
k=1

U2
ik ≤

µr
m

,
r

∑
k=1

V2
jk ≤

µr
n

, ∀i = 1, . . . , m; j = 1, . . . , n, (25)

where the coherence µ ∈ [1, max(m,n)
r ] measures how spiky a matrix is. This is the standard

incoherence condition for matrix completion, and it prevents information from being
concentrated in a few rows or columns.

The joint or strong incoherence condition with parameter µ1 is defined as

max
i,j

∣∣∣(UVT)ij

∣∣∣ ≤ √µ1r
mn

. (26)

Joint incoherence requires the left and right singular vectors to not be aligned. It is pointed
out in [284] that the standard and joint incoherence conditions are, respectively, related to the
(statistical) information and computational aspects of the matrix decomposition problem.

The algorithm and theoretical guarantees for the exact low-rank matrix completion
are first given in [229]. In the case of an incoherent low-rank matrix and uniformly random
sampling, nuclear norm minimization is applicable [229]. When there are more than
Cn1.25r log n, with a constant C > 0, observed entries selected uniformly at random from
matrix X, with high probability, matrix Y ∈ Rn×n of rank r can be perfectly recovered by
nuclear norm minimization. Similar results hold for arbitrary rectangular matrices [229].

Provable completion results for incoherent matrices and uniformly random sam-
pling are refined via nuclear norm minimization [245,247,284], SVD followed by local
descent [240], and the alternating minimization approach [285]. The case with additive
noise and sparse errors was considered in [17,247,286–288].

Most of the existing sufficient conditions [229,247] demand a uniformly random
selection of the subset of observed elements and an incoherent or non-spiky low-rank
matrix (i.e., with diffuse row and column spaces). Under these conditions, the matrix
is provably recoverable by convex optimization [229], alternating minimization [285],
and iterative thresholding [241] methods. For the stable recovery of Y ∈ Rn×n of rank r,
as few as O(nr log n) measurements suffice for a certain class of sensing systems [231,289].

If a matrix Y ∈ Rn×n of rank r satisfies certain incoherence properties, it can, with high
probability, exactly reconstruct the matrix from nr log2 n� n2 randomly sampled entries
by using efficient polynomial-time algorithms for solving (16) [229,240,245,247,270,290].
This result was generalized to noisy matrix completion by solving (17) [246]. The theoret-
ical guarantee for a variant of (18) is provided in [288]. References [17,89,287] prove the
performance guarantees of some algorithms by assuming the standard and joint incoher-
ence conditions.
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If the row space can be coherent but the column space is incoherent with parameter
µ0, the adaptive sampling algorithm proposed in [291] for matrix completion requires
O(µ0r3/2n log(2r/δ)) observed elements with a success probability of 1− δ [291]. The sam-
ple complexity is improved to O(µ0rn log2(r2/δ)) in [292].

A theoretical guarantee for the factorization-based low-rank matrix completion is
given based on a regularized objective [293]. The exact recovery guarantee and linear
convergence for many first-order methods, such as gradient descent and the alternating
minimization approach without resampling, are proven [293].

For the exact matrix completion, the joint incoherence condition has proven to be un-
necessary and can be eliminated [284]. With Ω(nr log2 n) (that is, bounded below nr log2 n
asymptotically) uniformly sampled entries, a matrix satisfying standard incoherence but
not joint incoherence (for example, a positive semidefinite matrix) can be recovered [284].
In the case of the recovery of a semidefinite matrix, the sample complexity is reduced to
O(nr log2 n), and the highest allowable rank is improved to Θ(n/ log2 n) [284]. The analysis
is based on L∞,2 matrix norm (i.e., the maximum of the row and column norms of a matrix).
The results apply to the nuclear norm minimization approach to matrix completion.

The compressive adaptive sense and search (CASS) algorithm [294] is a simple adap-
tive sensing and group testing algorithm used for sparse signal recovery. To recover a
k-sparse signal of dimension n, standard compressed sensing based on random Gaussian
non-adaptive design matrices requires the SNR to grow, such as log n. Similar to standard
compressed sensing, CASS requires only k log n measurements, but CASS is near-optimal
as it succeeds at the lowest possible signal-to-noise-ratio (SNR), which scales similar to
log k, and is a factor log n lower. CASS is substantially less computationally intensive than
standard compressed sensing.

One can successfully retrieve a matrix from O(µrn log2 n) uniform samples [233,246,284].
Low-rank matrix completion is investigated based on the leave-one-out analysis [295]. Pro-
jected gradient descent for a rank-constrained formulation is also known as the singular value
projection or IHT. The projection can be efficiently computed by rank-r SVD. Projected gradient
descent without regularization or sample splitting converges linearly in the infinity norm [295].
The nuclear norm minimization recovers Y ∈ Rn×n of rank r with a high probability with
O(µr log(µr)n log n) observed entries [295]. This result is better than some earlier results:
O(µrn log2 n) [284], O(κ2µrn max{log n, µrκ4}) [240], O(κ2µrn max{log n, µr6κ4}) [293]. It
is independent of the condition number κ, and matches the information-theoretic lower
bound Cµrn log n [247].

Compressed sensing suffers from a basis mismatch when imposing a discrete dictio-
nary on the Fourier representation. This issue can be solved by enhanced matrix com-
pletion [296], which is based on the structured matrix completion without knowledge of
the model order. The method arranges the data into a low-rank enhanced form that ex-
hibits a multi-fold Hankel structure, and then implements recovery through nuclear norm
minimization. Under mild incoherence conditions, the method ensures perfect recovery
provided that the number of samples exceeds O(r log4 n), and the performance is stable
in the presence of bounded noise. Exact recovery is still possible when many samples are
corrupted with noise of arbitrary magnitude, as long as the sample complexity exceeds
O(r2 log3 n).

For nuclear norm minimization, the observed entries are typically assumed to be
sampled uniformly at random [229,247,261]. In practice, nuclear norm minimization works
quite well for non-uniform data. Under distribution-free and some very mild assumptions,
exact recovery is possible from O(n3/2) entries of a matrix Y ∈ Rm×n, m ≤ n, in a nuclear
norm regime [297]. This bound is tight.

Based on a deterministic analysis, a sufficient and necessary condition for the recovery
of a low-rank matrix is that the pattern of revealed entries remains dense under any
relabeling of rows and columns [298]. When the missingness of the matrix entries is
dependent on the unobserved values themselves, a procedure is devised to simultaneously
complete the matrix and assess the covariate effect [299]. Under the assumptions of a
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low-rank matrix and sparse covariate effects, the statistical guarantee of the procedure and
convergence is established by allowing the matrix dimensions and the number of covariates
to grow ultra-high.

Suppose that a rank-r matrix Y ∈ Rn×n has up to s nonzero rows and up to s nonzero
columns, and its measurements are generated as the inner products with i.i.d. Gaussian
matrices. By solving a combinatorial optimization problem, faithful recovery can be guaran-
teed with O(max{rs, s log(en/s)}) measurements [300], which is significantly better than
the exact recovery using combinations of the nuclear norm and L1,2-norm, O(min rn, sn)
measurements. When some columns are completely and arbitrarily corrupted, a matrix
completion algorithm proposed in [301] combines a trimming procedure with a convex
program that minimizes the sum of the nuclear norm and L1,2-norm. As the portion of
observed entries is diminishing, matrix completion is possible, even for a growing number
of corrupted columns. From an information-theoretic viewpoint, the guarantees are nearly
optimal with respect to the rank of the underlying matrix, the portion of corrupted columns,
and the portion of sampled entries on the authentic columns [301]. When the observed
samples simultaneously contain both erasures and errors, with a constant fraction of values
arbitrarily corrupted, a unified performance guarantee on the exact recovery of a low-rank
matrix by minimizing the nuclear norm plus L1-norm is given in [287].

4.4. Discrete Matrix Completion

In recommender systems, a rating of thumbs-up or thumbs-down is denoted as a
single bit for each occurrence. In the Netflix problem, movies are rated as integers from 1
to 5. Discrete matrix completion is often used in surveys.

For noisy one-bit matrix completion in a general non-uniform sampling distribution,
an L∞-norm-constrained maximum-likelihood estimate is derived in [302]. The optimal
rate of convergence for the Frobenius-norm loss is defined by the minimax upper and
lower bounds together. One-bit matrix completion in the uniform sampling distribution
is analyzed in [303]. The minimax optimal rate of convergence is achieved by the nuclear
norm-constrained maximum-likelihood approach, and an approximately low-rank matrix X
is recovered from a set of noisy sign (one-bit) measurements. Consider the recovery of a low-
rank matrix Y ∈ Rm×n given a subset of noisy discrete measurements. Based on the low-
rank factorization of Y, a globally convergent constrained maximum-likelihood algorithm
is derived under constraints on the L∞-norm of X and exact rank [304]. The likelihood can
be from any strictly log-concave distribution, including from the exponential family, which
is suited for bounded discrete random variables.

In collaborative filtering, the sampling distribution is non-uniform. When certain rows
or columns are sampled with probabilities that are too high, the nuclear norm minimization
method might fail, and the weighted nuclear norm that takes the sampling distribution into
account is viable [305]. Rigorous recovery guarantees for learning with various weighted
nuclear norms are given in [306]. Approximate low-rank matrix completion using the
weighted nuclear norm in the general sampling scheme is theoretically guaranteed in [288].

For discrete matrix completion, upper bounds on the error norm are derived in [302,303,307].
The results in [303] have been extended to multilevel observations for matrix completion in the
case of categorical data [308].

5. Low-Rank Representation

Low-rank representation methods are robust in handling noise/corrupted data. For ob-
served data corrupted with sparse errors, low-rank representation methods [227,228,262]
jointly learn the lowest-rank representation of all data. For the recovery of a sparse and
low-rank matrix from its minimal incoherent linear measurements, the exact recovery
of the low-rank matrix under rank RIP is guaranteed for the minimum nuclear norm
solution [231].
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The low-rank matrix approximation/recovery problem [17] aims to decompose a data
matrix into a sum of a low-rank matrix and a sparse matrix,

Y = X + E ∈ Rm×n, (27)

where X is a low-rank matrix, E is a sparse corruption matrix with Gaussian noise. For PCA,
X denotes a matrix of m data points in a low-dimensional subspace Rn, corrupted by a
sparse corruption matrix E of errors and Gaussian noise. Equation (27) is also known as
the matrix decomposition model.

The goal is to recover these components from (27). One needs to impose conditions on
the sparse and low-rank components to guarantee their identifiability. We have the follow-
ing program:

min
X,E

rank(X) + λ‖E‖0 subject to Y = X + E, (28)

where λ is a penalty parameter.
When the rank of X is not too large and E is sufficiently sparse, problem (28) is

equivalent to the following convex version [17]:

min
X,E
‖X‖∗ + λ‖E‖1 subject to Y = X + E, (29)

where ‖X‖∗ is the nuclear norm, and ‖E‖1 is the L1-norm.
Low-rank representation is related to robust PCA [229]. Robust PCA does not have a

polynomial-time algorithm under broad conditions [17]. Problem (29) is convex and can
be solved in polynomial time [17]. The principal component pursuit is a method used for
solving robust PCA [17]. The augmented Lagrange multipliers method [239] is used for
its computational efficiency. The low-rank representation can better capture the global
structure of the data while ignoring the local manifold structure. It can achieve a block-
diagonal solution for independent subspaces and sufficient sampling [227]. A low-rank
representation is a subspace clustering method [309].

A low-rank representation can be formulated in the same form as (28) or (29), but re-
placing Y = X + E with Y = AX + E, where Y is the sample set, A is the dictionary, and E
is the error. In the noise-free case, the solutions to the two formulations are the same [228].

The low-rank representation simultaneously recovers the row space of a data matrix
and detects outliers under mild conditions [228]. A double low-rank representation [310]
learns the row and column spaces embedded in a matrix at once. A two-step approach
presented in [311] achieves near-optimal sample complexity for a special measurement
scheme with nested structures. When the observed matrix is noisy and contains outliers,
the Huber function is used to downweight the outliers, and the method is fast and mono-
tonically convergent [312]. A robust PCA method, referred to as the nuclear norm-based
PCA [313], remedies the bias of the computed mean and low-dimensional representation
of a sample. The algorithm has a closed-form solution at each iteration.

The matrix decomposition model (27) was solved using convex relaxation (29). Con-
vex approximations lead to biased estimates. Non-convex regularizers, such as weighted
nuclear norm minimization, weighted Schatten p-norm minimization, and weighted ma-
trix gamma norm for the low-rank part, can be used. In [314], the ADMM technique is
implemented on a formulation composed of the weighted minimax-concave penalty and
weighted matrix gamma norm, coupled with the dynamic weight update.

For the matrix decomposition problem that separates a rank-Ω(n
1
2 ) positive semidefi-

nite matrix from a sparse matrix, the joint incoherence condition is unavoidable, as without
it, any algorithm needs to solve the planted clique problem, which is, in general, intractable
in polynomial time [284]. In [315], the decomposition of a positive semidefinite matrix (e.g.,
a covariance matrix) into a matrix with a given rank and a sparse matrix is implemented by
using a deep neural network. The gradient descent algorithm has polynomial convergence
in terms of the number of the network size.
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Since nonlinear geometric structures in data are not considered in low-rank rep-
resentations, locality and similarity information in data may be lost during the learn-
ing process. Manifold learning methods preserve local geometric structures; examples
are ISOMAP [316], locally linear embedding [317], locality-preserving projection [318],
neighborhood-preserving embedding [319], Laplacian Eigenmap [320], and nonnegative
sparse hyper-Laplacian regularized low-rank representation [321].

Problem (29) can be formulated as [322]

min
X,E
‖X‖∗ + λ‖E‖1 subject to ‖Y− X− E‖F ≤ ε, (30)

where perturbation ε is small. A regularized formulation is given by [322]

min
X,E
‖X‖∗ + λ‖E‖1 +

1
2µ
‖Y− X− E‖2

F, (31)

where µ is a regularization parameter.
Rank-sparsity incoherence is applied to matrix decomposition. The incoherence

parameters of E and X are sufficient to ensure identifiability and recovery using convex
programs [286]. Following the analysis of [286], a weaker condition is given in [322]. E
is allowed to have up to Ω(mn) nonzero entries when X is low-rank and has non-sparse
singular vectors [322]. In terms of PCA, the analysis allows for a constant fraction of
the matrix entries to be corrupted by noise of arbitrary magnitude. Purely deterministic
structural conditions on the sparsity pattern of E [322] lead to a cost of roughly a factor of
rank(X) in the allowed support size of E, compared to the probabilistic analysis of robust
PCA [17].

GoDec [18] is an efficient, robust, low-rank matrix decomposition algorithm used for
solving (27). It alternatingly sets X as a low-rank approximation of Y− E and sets E as
a sparse approximation of Y− X. It can be substantially accelerated by bilateral random
projections. As the error function ‖Y− X− E‖2

F converges to a local minimum, X and E
converge linearly to their local optima [19]. GoDec+ [19] is superior to GoDec in terms
of robustness and convergence speed. It maximizes a correntropy criterion by using a
greedy bilateral paradigm for half-quadratic optimization. GoDec+ is robust to a variety of
corruptions, including Gaussian, Laplacian, salt and pepper, and occlusion.

6. Nonnegative Matrix Factorization

The NMF problem aims to factorize a nonnegative matrix X into lower-rank nonnega-
tive matrix factors,

Y = AX, (32)

where Y = [~y1, . . . ,~yn] ∈ Rm×n, each nonnegative data point ~xi ∈ Rm, A = [~a1, . . . ,~am]T ∈
Rm×k is a basis matrix known as the dictionary, ~ai = (Ai1, . . . , Aik)

T is a basic vector,
the matrix of sources, denoted as X = [~x1, . . . ,~xn] ∈ Rk×n is the code or coefficient matrix
of Y using the dictionary A; all elements in these matrices are nonnegative, and the rows in
X may be statistically dependent.

Problem (32) can be written as

~yi ≈ A~xi. (33)

That is, ~yi is represented by a linear combination of each row of A, multiplied by the
corresponding elements of ~xi.

Usually, k � m, n; thus, NMF results in a compressed representation of a matrix.
When k stands for the number of clusters, the jth row of A,~aT

j , is a representation of cluster
j, and a feature vector ~yi is assigned to the cluster with the largest weight.

NMF is plagued by scaling and permutation indeterminacy [323]. A unique decompo-
sition can be obtained by imposing some constraints on the factors. The non-uniqueness
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problem is illustrated in two dimensions in Figure 2. The basis vectors~h1 and~h2 can be,
respectively, put anywhere in each of the two open spaces between the coordinate axes
and the data, and each data point can be exactly represented by a nonnegative linear
combination of the two vectors. For some well-posed NMF problems, there are optimal
and sparse solutions under the separability assumption [324].

1

h2

h

Figure 2. Non-uniqueness of NMF.

Although both NMF and dictionary learning techniques learn sparse representations, NMF
learns low-rank representations, while dictionary learning usually learns full-rank representations.

NMF is NP-hard, in general [325], and highly ill-posed. NMF is tractable under the
separability assumption, under which all columns of Y are on the convex cone generated
by some of these columns. When there exists a rank-r NMF Y = AX, where columns of
A equal some columns of Y, i.e., the basis vectors are selected as some of the data points,
this is known as separability [326]. This convex optimization problem can be solved using
gradient descent and successive projection methods [327].

NMF problems are usually non-convex. NMF finds localized, parts-based representa-
tions of nonnegative multivariate data [328]. NMF is usually performed with an alternating
gradient descent technique, belonging to a class of multiplicative iterative algorithms [21].
While the method has low complexity, it converges slowly and is susceptible to getting stuck
in the local minima of the cost function. Alternating nonnegative LS is another popular
algorithm [23]. The cost functions can be the squared Euclidean distance, Kullback–Leibler
divergence, and their unified functions, such as the α-divergence, β-divergence [329],
or a broader family known as the Bregman divergence [330]. The Frobenius norm and
Kullback–Leibler divergence are two examples of the Bregman divergence. The projected
gradient method [331,332] is efficient for dealing with large-scale NMF problems under
nonnegativity and sparsity constraints.

Algorithms for NMF can be extended to BSS by adding regularization terms for char-
acterizing sparseness, smoothness, or effective expressions of patterns of the estimated
components [333,334]. The smooth component analysis [335] imposes smoothness con-
straints on vectors of the factor matrix or on vectors of the mixing matrix. Boolean matrix
factorization, also known as Boolean factor analysis, is a method that factorizes datasets
into binary alphabets [336].

6.1. Multiplicative Update Algorithm

The NMF problem can be formulated as

min
A,X
‖Y−AX‖F, subject to Aij ≥ 0, Xij ≥ 0 ∀i, j. (34)

The multiplicative update rule is formulated as [21]

X← X⊗ ATY
ATAX

, A← A⊗ YXT

AXXT , (35)

where ⊗ and / are element-wise multiplication and element-wise division, respectively.
Initially, A and X can be set as positive random values.
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These iterates (35) guarantee monotonic convergence to a local maximum of [21]

F =
m

∑
i=1

n

∑
j=1

(Yij ln(AX)ij − (AX)ij). (36)

After learning A, new data Y′ are mapped onto the k-dimensional space by fixing A,
randomizing X, and iterating until convergence. In this procedure, X can be alternatively
obtained by fixing A, followed by solving Y′ = AX′ for X′ by pseudoinversion. Pseudoin-
version may yield negative entries in X′. One can enforce nonnegativity by forcing negative
values to zero or by using nonnegative LS. Information loss may arise from setting negative
values to zero.

The multiplicative update algorithm may fail to converge to a stationary point [24,337].
The multiplicative update algorithm is guaranteed to converge to a stationary point when
minimizing the Euclidean distance given by (34) [338].

6.2. Alternating Nonnegative Least Squares

Alternating nonnegative LS is a block coordinate descent method for bound-constrained
optimization [23]:

min
A,X

F(A, X) =
1
2
‖Y−AX‖2

F, subject to Aij ≥ 0, Xij ≥ 0 ∀i, j. (37)

The algorithm is implemented as two alternating steps, each solving a convex opti-
mization problem,

Ak+1 = arg min
A≥0

F(A, Xk), Xk+1 = arg min
X≥0

F(Ak+1, X). (38)

The algorithm converges fast, but it does not warrant convergence [24]. A modified strategy
presented in [337] ensures convergence to a stationary point of NMF [339].

Gradient-based algorithms converge slowly for large-scale problems. The projected
gradient method [340], projected alternating LS method [24], and projected Newton
method [341] speed up the convergence of NMF. The projected gradient algorithm [340]
solves nonnegative LS problems for A and X in an alternating manner. By applying the
projected gradient procedure, the limit point is guaranteed to be a stationary point for
optimization [340]. In the multiplicative update algorithm, a fixed step size is used for
gradient descent, whereas in the projected gradient algorithm, a flexible step size is used.

Hierarchical alternating LS [342] is a fast-converging method. It solves a set of column-
wise nonlinear LS problems for each column. A and X are updated column-wisely.

The deficiencies of gradient descent methods, such as the multiplicative update algo-
rithm and alternating nonnegative LS, are overcome by an improved algorithmic frame-
work for the LS NMF problem [343]. This framework allows second-order optimization
techniques to be used, such as the Newton technique, BFGS, and the conjugate gradient
method [13], and allows incorporating regularization and box constraints. In a projected
quasi-Newton method [341], a regularized Hessian is inverted with the Q-less QR decom-
position. The Levenberg–Marquardt iterates are used for updating A and the fixed-point
regularized LS method is used for updating X. The quasi-Newton fixed-point algorithm
slightly outperforms the conjugate gradient method with gradient projection.

6.3. Other NMF Methods
6.3.1. Sparse NMF

A and X are usually sparse matrices. Some modifications to NMF for unique decom-
position impose a sparseness constraint on the mixing matrix, source matrix, or both [344].
Some circumstances for unique decomposition were investigated in [345].

Sparse NMF can be implemented by constraining the L1-norm or L0-norm on the
factor matrices [346]. Doubly sparse NMF arises when the sparsity constraint is applied to
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both factor matrices, which can be useful for document–word co-clustering. For NMF with
minimum volume constraint [347], which is L0-norm oriented, quadratic programming
is an efficient method used for small-scale problems, whereas the multiplicative update
algorithm incorporating the natural gradient can be used for large-scale problems.

From a geometric perspective, NMF attempts to find an appropriate simplicial cone
to contain Y [323]. In the large-cone NMF method [348], a large-cone penalty is applied to
NMF to simultaneously reduce the reconstruction error and improve the generalization
ability. The large-cone NMF produces bases that consist of large simplicial cones. The low-
overlapping properties of these bases lead to sparse bases and make the algorithms robust.

6.3.2. Projective NMF

Projective NMF approximates a matrix through nonnegative subspace projection [349,350]

Y = PY, (39)

where P is a positive low-rank matrix. The Frobenius norm or a modified Kullback–Leibler
divergence can be used as the cost function. Projective NMF is approached by multiplicative
update rules, with proven convergence [350]. In [349], projective NMF is implemented by
using a nonnegative multiplicative version of Oja’s rule.

Compared to NMF, projective NMF replaces X with ATY. Thus, projective NMF is
close to nonnegative PCA. In projective NMF, A is approximately orthogonal. This leads to
sparsity in the approximation, reduces the computational complexity of learning, exhibits
close equivalence to clustering, and allows for easy extension to kernel methods. For highly
nonlinearly distributed data, kernelization is a desirable solution. A nonlinear nonnegative
component analysis method, referred to as the projected gradient kernel NMF [351], can
use arbitrary positive definite kernels. The method outperforms kernel PCA and kernel
ICA in terms of classification accuracy [351].

6.3.3. Graph-Regularized NMF

NMF does not include the neighborhood structure information and, thus, may fail
when handling datasets with nonlinear structures. Topographic NMF [22] incorporates
and organizes neighborhood connections between NMF basis functions on a topographic
map. Basis functions overlap along neighboring structures due to nonnegativity. In topo-
graphic NMF, inputs are represented by multiple activity peaks, while the conventional
self-organizing map model represents the input using a single activity peak on a topo-
graphic map.

Graph-regularized NMF [352] regularizes NMF formulations using a graph Laplacian
matrix, which is a Euclidean distance-based similarity matrix obtained by using a fixed
small subset of the neighborhood information. This problem is solved by the multiplicative
update rule, which converges to one of multiple fixed points under given conditions, based
on the Lyapunov indirect method [353]. The graph-regularized NMF is rather sensitive to
the number of nearest neighbors and the regularization parameter.

The manifold regularization-based matrix factorization model [354] has globally opti-
mal and closed-form solutions. It outperforms the graph-regularized NMF. The model is
solved by a direct algorithm for a small data matrix and an alternating iterative algorithm
with inexact inner iterations for a large data matrix. Comparatively fewer attempts have
been made for the online graph-regularized NMF [355] due to the high computational
requirements, making online updates of geometric weights impractical when incorporating
geometric structures.

Neighborhood structure-assisted NMF [356] incorporates a neighborhood structural
similarity matrix based on a minimum spanning tree. The neighborhood parameter is not
used and its result is much less sensitive to the regularization parameter. Graph-regularized
NMF and symmetric NMF are closely related to neighborhood structure-assisted NMF.



Mathematics 2023, 11, 2674 30 of 50

6.3.4. Weighted NMF

NMF attaches the same importance to all attributes of a data point. The features
usually have different importance. The methods include feature-weighted NMF [357] and
entropy-weighted NMF [358].

6.3.5. Bayesian NMF

NMF is not statistically regular, and the prior distribution used in variational Bayesian
NMF has zero or divergence points. An analysis of the Kullback–Leibler divergence
between the variational posterior and the true posterior is given in [359]. A lower bound
for the approximation error of Bayesian NMF is derived, and it is dependent on the
hyperparameters and the true nonnegative rank [359]. A family of NMF algorithms,
including those under sparsity constraints, are derived using a statistical framework based
on the generalized dual Kullback–Leibler divergence, which includes members of the
exponential family of models [360].

6.3.6. Supervised or Semi-Supervised NMF

Combining label information can improve the discriminating power of the matrix
decomposition. Supervised NMF methods, such as discriminant NMF [361] and max–min
distance NMF [362], utilize class label information. Discriminant NMF [361] introduces
Fisher’s discriminative information to NMF to enhance the classification accuracy. Max–
min distance NMF [362] minimizes the maximum distance of the within-class pairs in the
new NMF space and maximizes the minimum distance of the between-class pairs in an
alternating way. For NMF, the learned basis is not necessarily parts-based [323]. Manifold-
regularized discriminative NMF applies manifold regularization and margin maximization
on NMF. It can produce parts-based bases using a Newton-based method.

Semi-supervised NMF [363] performs a joint factorization of the data and label matri-
ces; it involves a common factor matrix X. Constrained NMF is a semi-supervised method
that incorporates the label information as additional constraints [364]. For the constrained
clustering problem, domain knowledge is present in the form of must-link and cannot-link.
NMF-based [365] and symmetric NMF-based [366] constrained clustering algorithms are
semi-supervised NMF algorithms. They enforce the similarity between two points in a
must-link constraint towards 1 and the similarity between two points in a cannot-link
constraint towards 0.

6.3.7. NMF for Mixed-Sign Data

Semi-NMF, convex NMF, and cluster NMF algorithms are used to deal with mixed-
sign data [367]. Semi-NMF is defined by Y = AX, with the constraint that the elements of X
are nonnegative [367]. In convex NMF, the basis vectors in A are constrained to be convex
combinations of the data points [367]. Convex NMF can be used for a kernel extension of
NMF. It is applicable to a nonnegative or mixed-sign data matrix. The generated factor
matrices tend to be very sparse. Cluster NMF [367] is a particular case of convex NMF. It
adopts an idea similar to projective NMF and is based on the Frobenius norm.

6.3.8. Deep NMF

By repeatedly decomposing the matrix, a hierarchical deep neural network structure
for NMF [368] can provide more interpretable representations of the data.

6.3.9. NMF for BSS

Without the assumption of independence, NMF-based BSS [333] successfully estimates
the original sources from the mixtures. The convergence area for NMF-based BSS is
obtained using the invariant set method [369].
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6.3.10. Online NMF

Online NMF [370] and incremental orthogonal projective NMF [371] are incremental
NMF algorithms for data streams. In [372], online NMF in the presence of outliers is solved
using projected gradient descent and ADMM, with proven convergence.

6.3.11. Coordinate Descent for NMF

Greedy coordinate descent for NMF [373] is an element-wise update algorithm.
The most influential variables are selected for minimization. When a constraint, e.g., graph
regularized constraint, affects all elements of one column at once, the method is invalid.
It is not applicable to orthogonal NMF since orthogonality requires interactions between
rows. Scalar block coordinate descent for Bregman divergence NMF [374] is a column-wise
update algorithm. An element-wise algorithm is derived by using the Taylor series expan-
sion of Bregman divergence, with complexity the same as that of a column-wise update
algorithm. The scalar block coordinate descent algorithm for the Bregman divergence
orthogonal NMF is a column-wise update algorithm, which incorporates the column-wise
orthogonal constraint [375].

6.3.12. Robust NMF

The robust NMF using the L2,1-norm loss function is applicable for data with Laplacian
noise [376]. Truncated Cauchy NMF using truncated Cauchy loss robustly learns the
subspace on noisy datasets contaminated by outliers [377].

6.4. NMF for Clustering

Many clustering methods [3] can be described as matrix factorization problems. In [21,23],
nonnegative factors of matrices are interpreted as data clustering. Under certain assumptions,
NMF is equivalent to clustering [26,344]. Every column of A represents a cluster center,
while X denotes cluster membership.

For n feature vectors ~xi ∈ Rm, i = 1, 2, . . . , n, gathered in Y ∈ Rm×n, the C-means
problem can be formulated as (34) subject to X ∈ {0, 1}k×n, XT~1k =~1n. The columns of A
can be treated as the k cluster centroids. If the jth sample belongs to the ith cluster, Xij = 1,
otherwise Xij = 0.

Orthogonal NMF applies the orthogonality constraint on either A or X [26]. C-means
clustering corresponds to NMF with orthogonality on X [8]. Orthogonal NMF with con-
straints on A (or X) is equivalent to clustering the rows (or columns) of Y [378]. Cluster NMF
is also close to C-means clustering. Orthogonal NMF imposes an orthogonal constraint
onto NMF,

min
A,X
‖Y−AX‖2

F subject to A ≥ 0, X ≥ 0, ATA = I, (40)

where I is the identity matrix.
Orthogonal NMF can be solved using the multiplicative update algorithm [26,379].

In [379], zero values are replaced by small positive values to deal with the zero-lock problem.
Bregman divergence orthogonal NMF [375] is equivalent to Bregman hard cluster-

ing [380]. Let Y be an instance feature matrix and A be an indicator matrix in orthogonal
NMF. Then the ith row of A is considered a membership vector of the i instance to all
k groups (features). The ith instance is assigned to the jth cluster, j = arg maxj Aij. The
Bregman divergence orthogonal NMF is formulated as

min
A,X

Dφ(Y‖AX) subject to A ≥ 0, X ≥ 0, ATA = I. (41)

Fast hierarchical alternating LS for orthogonal NMF [375] is derived from hierarchical
alternating LS [342]. The scalar block coordinate descent for orthogonal NMF extends
hierarchical alternating LS for orthogonal NMF but has slower convergence.

NMF and symmetric NMF can effectively cluster linearly separable data and nonlin-
early separable data, respectively. Symmetric NMF is shown to be highly related to spectral
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clustering [8]. In [381], multiplicative update rules are used in NMF-based (or symmetric
NMF-based) constrained clustering for clustering linearly (or nonlinearly) separable data.
A directional clustering approach [382] is inspired by ideas from constrained low-rank
matrix factorization and sparse approximation.

Symmetric NMF is defined by [383]

Y = PPT , (42)

where Y is completely positive and P is nonnegative.
Symmetric NMF generates a symmetric and nonnegative low-rank approximation to

the graph matrix. It uses the Euclidean distance-based similarity metric, considering the
full graph, and can be treated as a graph clustering algorithm. The use of a dense pairwise
similarity measure is computationally expensive. Symmetric NMF makes its outcome
less interpretable than neighborhood structure-assisted NMF or graph-regularized NMF.
Parallel multiplicative update algorithms [384] have demonstrated convergence under mild
conditions, and are applied to probabilistic clustering.

Weighted symmetric NMF, also known as symmetric nonnegative tri-factorization, is
defined by

Y = PQPT , (43)

where Q is a symmetric nonnegative matrix.
Some alternating iterative algorithms for symmetric NMF with theoretically proven

convergence include the progressive hierarchical alternating least squares method for
symmetric NMF [385], symmetric NMF based on non-symmetric transformation [386],
and semi-supervised structured symmetric NMF-based clustering [387] with simultaneous
sparseness and smoothness constraints.

6.5. Concept Factorization

Concept factorization [388] extends NMF for data clustering. The superiority of
concept factorization over NMF is demonstrated for document clustering [388].

In concept factorization, each cluster center (concept) ~xc, c = 1, . . . , k, is modeled as
a nonnegative linear combination of data points ~yj, j = 1, . . . , n, and each data point ~yj is
modeled as a nonnegative linear combination of the cluster centers (concepts) ~xc,

~xc =
n

∑
j=1

wjc~yj, ~yj =
k

∑
c=1

vjc~xc, (44)

where wjc ≥ 0 represents the degree of representativeness of ~yj in concept c, and vjc ≥ 0
represents its degree belonging to concept c. Clustering is accomplished by computing
the two sets of nonnegative linear coefficients that minimize the reconstruction error of
the data points.

Concept factorization attempts to find the approximation

Y = YWVT subject to W ≥ 0, V ≥ 0, (45)

where W =
[
wjc
]
∈ Rn×k and V =

[
vjc
]
∈ Rn×k.

The model is formulated as

min
W,V

1
2

∥∥∥Y− YWVT
∥∥∥2

F
. (46)

The multiplicative update rule is given as [388]

wjc ←− wjc
(KV)jc

(VWTKW)jc
, vjc ←− vjc

(KW)jc

(KWVTV)jc
, (47)
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where K = YTY. The inner product representation of K allows for the easy kernelization of
concept factorization.

Pairwise constrained concept factorization [389] is a semi-supervised method that
incorporates pairwise constraints. Data points with pairwise must-link and cannot-link
constraints have the same class labels and different class labels, respectively. The locally
consistent concept factorization algorithm [390] constructs a nearest-neighbor graph to
characterize the local manifold structure of the data space. Label information can be
encoded into the graph directly.

7. Symmetric Positive Semi-Definite Matrix Approximation

Rank-revealing QR and truncated SVD are two standard approaches for low-rank
approximation. PCA is a truncated SVD applied on recentered data. Truncated SVD
attempts to minimize

min
A,X
‖Y−AX‖2

F, subject to ATA = Ir, (48)

where r is a pre-specified rank of approximation.
A standard eigenvalue decomposition has a computational complexity of O(n3). The

symmetric positive semidefinite matrix approximation is usually used to speed up the
large-scale eigenvalue computation and kernel learning. A typical low-rank decomposition
is given by

K = CUCT , (49)

where C ∈ Rn×c is a sketch of K ∈ Rn×n (e.g., c randomly sampled columns of K) and
U ∈ Rc×c is obtained by

min
U
‖K− CUCT‖2

F. (50)

It needs O(nc2) computations to approximate the eigenvalue decomposition or matrix
inversion for a rank-k (k ≤ c) matrix.

The Nyström method [391,392] is a popular alternative method that originates from
solving integral equations. It is a sampling-based method that can efficiently approximate
large kernel matrices and their eigen systems. However, the method is inaccurate. The anal-
ysis of the Nyström method is based on the Monte Carlo algorithm. In machine learning,
the Nyström method is heavily utilized to estimate large kernel matrices [391,393,394].

The Nyström method selects c ≤ n columns from K, and then forms a low-rank
approximation of the full matrix by using the correlations between the sampled and
remaining columns. The method is highly scalable. It needs to decompose a c× c matrix,
formed by intersecting the selected columns and the corresponding rows. The accuracy of
the approximation is decided by the number of sampled columns.

Let P ∈ Rn×c be a sketching matrix via uniform sampling. The Nyström method
computes [391]

C = KP, U = (PTC)†. (51)

where † is a pseudoinverse operator. C can be formed by sampling c = O(k/ε) columns of
K, such that

min
U
‖K− CUCT‖2

F ≤ (1 + ε)‖K−Kk‖2
F, (52)

where Kk is the estimated K of rank k.
Randomized SVD for symmetric matrices [395], as a standard sketch-based method,

also extends the Monte Carlo algorithm. Randomized SVD constructs a low-dimensional
subspace of the input matrix, and then performs standard decomposition techniques, such
as QR or SVD, on the subspace matrix. At least one pass over K is required. A much higher
accuracy is achieved by solving U from (50), but at a computational complexity of O(n2c).
Unlike the Nyström method, randomized SVD does not require c to grow with n.

The Nyström scheme proposed in [396] is as accurate as the Nyström method and
has a computational complexity that is as low as the SVD of a small matrix. It first sam-
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ples many columns from K, then an approximate SVD that is based on the randomized
low-rank matrix approximation is performed on the inner submatrix. The fast symmetric
positive semidefinite matrix approximation model [397] approximates U with a computa-
tional complexity linear in n. It is as efficient as the Nyström method and as accurate as
randomized SVD.

8. CX Decomposition and CUR Decomposition

In general, for large sparse matrices, the SVD or QR decomposition does not preserve
sparsity. The basis vectors generated by SVD have no physical interpretation as well. It is
important to find a low-rank matrix decomposition that preserves the sparse property of
the original matrix. Matrix column selection and CUR decomposition are techniques used
to represent a matrix by using a few columns and/or rows of the matrix. Matrix column
selection is a column-based method, while CUR decomposition is a column-row-based
one [398].

The matrix column selection method is also known as CX decomposition [398,399].
In CX decomposition, a data matrix Y composed of sample vectors is factorized as

Y = CX, (53)

where Y ∈ Rm×n is a large sparse matrix, C ∈ Rm×c is a submatrix of Y and is also sparse,
and X ∈ Rc×n is a coefficient matrix, which is not sparse in general.

For term-document data and binary image data, Y has sparse and nonnegative
columns. Due to prototype-preserving properties of the CX decomposition, the columns
of C are also sparse and nonnegative. The CX decomposition randomly samples a few
columns of Y by a non-uniform probability derived from SVD. The deterministic CX de-
composition [400] selects columns in a deterministic manner and it approximates SVD very
well. Each selected column is associated with an eigenvector of PCA.

The CUR decomposition offers a representation of data in relation to other data,
facilitating the interpretation of results. It has been used in exploratory data analyses
related to natural language processing [401] and subspace clustering [402]. CUR is also
used as a fast approximation to SVD [394,398,403,404], and is used to accelerate algorithms
for robust PCA [405,406]. The Nyström method is the CUR decomposition where the same
columns and rows are selected to approximate symmetric positive semidefinite matrices.

The CUR matrix decomposition [392], sometimes referred to as the pseudoskeleton decompo-
sition [407,408], seeks to find a subset of c columns of Y ∈ Rm×n to form C ∈ Rm×c, a subset of r
rows of Y to form R ∈ Rr×n, and computes U ∈ Rc×r, such that

min
C,U,R

‖Y− CUR‖2
F. (54)

The computational complexity for the optimal U = C†YR† is O(mn min{c, r}).
The CUR decomposition gives factorizations in terms of actual columns and row

submatrices, and it can be cheap to form through random sampling. For matrices, uniform
random sampling is known to provide good CUR approximations under incoherence
assumptions [408]. Additionally, several standard randomized sampling procedures give
exact CUR decompositions with high probability [409].

The CUR decomposition usually chooses many columns and rows. A standard column
selection procedure is first performed. A two-stage randomized CUR algorithm, referred
to as the subspace sampling algorithm [398], selects columns and rows based on their
statistical leverage scores. The computational complexity is higher than that of the truncated
SVD of Y. The subspace sampling algorithm can be accelerated by a fast approximation to
statistical leverage scores [410].

The Nyström method approximates a symmetric positive semidefinite matrix using
a few columns. In contrast, the CUR decomposition approximates an arbitrary matrix
by a certain number of columns and rows. Hence, the CUR decomposition extends the
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standard sketch-based method from symmetric matrices to general matrices, with the
same computational problem. The upper bounds of some CUR algorithms are even much
better than the lower error bounds of the Nyström method and ensemble-based Nyström
method. More accurately, low-complexity CUR and Nyström algorithms have been derived
from a more general error bound for adaptive column/row sampling [411]. In [397],
a fast symmetric positive semidefinite matrix approximation was implemented on the
CUR decompositions of general matrices. The computational complexity decreases to
O(cr 1

ε min{m, n}min{c, r}), but with nearly the same approximation quality.

9. Conclusions

Low-rank matrix factorization is a fundamental method in signal processing, statistics,
data analysis, and machine learning. It is a popular tool used for dimension reduction, fea-
ture extraction, data compression, data mining, and information retrieval when processing
high-dimensional real-world data. In this paper, we provide a comprehensive, state-of-the-
art review of recent matrix factorization methods, including compressed sensing, sparse
coding, dictionary learning, matrix completion, low-rank approximation as an extension
of sparse coding, NMF, symmetric positive semidefinite matrix approximation, CX de-
composition, and CUR decomposition. All of these matrix factorization methods have
primarily been developed within the past two decades, and their iterative implementations
are usually viewed as unsupervised learning approaches in the machine learning field.

In this paper, the reviewed algorithms are generally derived by optimizing objective
functions using traditional iterative optimization methods. The objective functions are usually
defined as L2-norms, subject to some constraints, such as sparse or low-rank constraints,
which can be solved using a classic LP method or a Lagrange multiplier method. The derived
methods can be easily implemented, and the performance is guaranteed theoretically.

Traditional matrix factorization methods, such as SVD, PCA, and ICA, are not de-
scribed in this paper. There are many literature surveys on these topics [1]. This paper
is unique since it brings together so many popular and related topics under the thread
of matrix factorization, while previous surveys typically focused on specific topics or
their applications.

Since the prevalence of compressed sensing and dictionary learning, low-rank approx-
imation has become a primary approach for feature extraction in signal processing and
machine learning. In this paper, we collected recent methods on matrix factorization and
matrix decomposition, as well as their theoretical advances. Their applications to various
fields are not reviewed in this paper. The idea of incorporating deep learning into low-rank
matrix factorization is not dealt with in this paper. The Bayesian approach and probabilistic
analyses, such as the Monte Carlo method, are also not reviewed in this paper. Interested
readers can retrieve the literature or conduct their own surveys on these themes and their
applications in specific fields.

This manuscript focuses on matrix factorization and matrix decomposition based
on the low-rank assumption, with importance attached to algorithms and theoretical
results. More general extensions to the tensor case are not treated in this manuscript. A
tensor is a multidimensional array that serves as a higher-order generalization of vectors
and matrices. The order of a tensor is referred to as the number of modes it possesses.
High-dimensional data, especially colored images, videos, and multisensor networks,
are conveniently represented by tensors. Due to space limitations, tensor factorization,
tensor compressed sensing, tensor completion, and nonnegative tensor factorization are
not introduced in this paper. For more on tensor factorization, refer to [4].

9.1. Optimization by Metaheuristics or Neurodynamics

In recent years, some algorithms have solved formulated optimization problems by
using nature-inspired metaheuristics [412,413] or neurodynamics (i.e., recurrent neural
networks), and their combinations. These methods are not reviewed in this article. Here,
we describe a few representative methods published in recent years. In [414], sparse
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signal reconstruction was achieved through collaborative neurodynamic optimization;
this approach involves using a population of recurrent neural networks operating con-
currently for a scattered search of individual solutions, combined with particle swarm
optimization for repeated repositioning. In [415], Boolean matrix factorization is solved
through a collaborative neurodynamic approach, which uses a population of Boltzmann
machines for a scattered search of factorization solutions and particle swarm optimization
for re-initializing the Boltzmann machines upon local convergence. Some other examples
of neurodynamics-based methods for sparse signal reconstruction include a smoothing
neurodynamic neural network modeled [416] for Lp-norm 2 ≥ p ≥ 1, a projected neurody-
namic neural network for L0-norm [417], and a Lagrange programming neural network
with Lp-norm [418]. Similarly, a discrete-time projection neural network for sparse NMF is
presented in [419].

9.2. A Few Topics for Future Research

All of the matrix factorization or decomposition techniques discussed in this paper are
linear dimensionality reduction techniques used for data analysis. A future research topic
will revolve around sparse recovery from nonlinear measurements, which are prevalent
in practical physical systems. This presents a challenging task that often involves discrete
optimization. When the entries of a matrix are generated from nonlinear transformations
of lower dimensional latent subspaces, the matrix always has a high or even a full rank.
Nonlinear matrix completion can be used to recover missing entries of such data matrices.
In [420], the rank of a matrix in the feature space, defined by a kernel-trick-based nonlinear
mapping of the data space, is approximated using the Schatten p-norm, and is minimized.

Existing solutions to low-rank matrix completion assume uniformly random obser-
vation patterns. An open issue is how to identify matrix patterns with unique or a finite
number of completions. In [421], three families of matrix patterns are presented for low-
rank matrix completion (in terms of Plücker coordinates). In [422], a deterministic sampling
method for matrix completion using an asymmetric Ramanujan graph and its sufficient
conditions for the matrix completion are derived. For the matrix completion under deter-
ministic sampling, compared to uniform sampling, two weaker but necessary conditions,
namely isomeric conditions and relative well-conditionedness, guarantee that any arbitrary
matrix can be recovered [423]. Isomeric dictionary pursuit is a method based on the Schat-
ten p-norm for this purpose [423]. We expect more research on matrix completion with
deterministic sampling.

Most of the above methods are implemented on real matrices. Extensions of these
methods to the complex domains are not straightforward. In addition to amplitude, phase
information has to be considered. Extending the matrices to the complex domains can lead
to interesting results; this deserves further investigation. In [424], phase-only compressive
sensing estimates the signal direction from only the phases of complex measurements; this
is achieved by normalizing the signal by its L2-norm. This is a natural extension of one-bit
compressive sensing [193,196,197]. In [425], based on the RIP analysis, a low-complexity
signal can be perfectly recovered with high probability from phase-only complex random
observations for scenarios involving a complex Gaussian random sensing matrix and
a large number of measurements, relative to the complexity level of the signal space,
by using any optimal algorithm in the compressive sensing literature. This recovery
requires approximately twice the number of measurements needed for its compressive
sensing counterpart.

In addition to sparsity, other prior information of ~x can be exploited. Under some
unconventional constraints, lower bounds on the probability of exact recovery of ~x using
OMP in k iterations, and a lower bound on the number of measurements M, guaranteeing
that the probability of the exact recovery of ~x using OMP in k iterations is greater than a
given probability, are derived in [426]. The paper also addresses the recovery of a signal or
matrix with unconventional constraints, along with its theoretical analysis.
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The matrix factorization techniques surveyed in this paper mainly emerged from the
domains of machine learning, signal processing, and statistics in the last two decades. They
can be solved by using classical mathematical methods. There are more emerging topics in
the field, and it is anticipated that further research will yield more results in these areas in
the future.
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