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Abstract: In engineering mathematics, the unsaturated nature of soil has a significant impact on
the seismic bearing capacity solution. However, it has generally been neglected in the published
literature to date. Based on the kinematic approach of limit analysis, the present study proposes a
method for calculating the bearing capacity of shallow strip footings located in unsaturated soils,
taking four common types of soils as examples. The modified pseudo-dynamic (MPD) approach
is used to calculate the seismic forces varying with time and space, and the layerwise summation
method is used to derive the power generated by the seismic forces. In the calculation of internal
energy dissipation, this paper introduces the effective stress based on the suction stress to derive the
cohesion expression at different depths. The analytical formula of bearing capacity is obtained by the
principle of virtual work, and its value is optimized by the Sequential Quadratic Programming (SQP)
algorithm. In order to verify the validity of the proposed method, the present results are compared
with the solutions published so far and a good agreement is obtained. Finally, a parametric study is
performed to investigate the influence of different types of parameters on the bearing capacity.

Keywords: seismic bearing capacity; upper bound; unsaturated soils; modified pseudo-dynamic
approach

MSC: 49-06

1. Introduction

Strip footings are widely used in building structures to support upper loads and
transfer them to the ground due to their easy construction and high applicability. China is
an earthquake-prone country, and many studies have shown that earthquakes can seriously
reduce the bearing capacity of strip footings, so the accurate derivation of the seismic
bearing capacity solution of strip footing is a hot issue in engineering mathematics.

An appropriate seismic load description method is the basis for the seismic bearing ca-
pacity assessment. The commonly used seismic wave description methods can be divided
into two main categories: the pseudo-static method and the pseudo-dynamic method. The
pseudo-static (PS) method, which is most widely used, simplifies the seismic acceleration to
a constant that does not vary with time and space, and ignores the influence of parameters
such as bedrock depth, foundation soil damping ratio, etc. The pseudo-dynamic method
overcomes the shortcomings of the pseudo-static method, which does not respond to the
time-range characteristics of ground shaking and the dynamic properties of geotechnical
materials. According to the difference in the way of characterizing the amplitude of seismic
waves, the pseudo-dynamic method can be subdivided into the conventional pseudo-
dynamic (CPD) method, the spectral pseudo-dynamic (SPD) method, and the modified
pseudo-dynamic (MPD) method. These seismic load description methods are often com-
bined with the limit-equilibrium method [1-3], upper bound method of limit analysis [4-8]
and stress characteristics [9,10] to solve the seismic bearing capacity assessment.

However, all solutions in the above studies have some limitations because they assume
that the soil is in a dry or saturated state without considering the matric suction. In practical
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engineering terms, a number of shallow foundations are usually constructed above the
water table or are often affected by rainfall, resulting in the majority of the overlying soils
being unsaturated. The damage to the foundation is caused to a large extent by shear
damage of the unsaturated soil. Therefore, the shear strength of unsaturated soils is a
parameter that should be studied as a priority in foundation design. Several investigations
have demonstrated that unsaturated soils’ shear strength can be increased by the presence
of matric suction [11]. Therefore, the bearing capacity of strip footings in unsaturated
soils can be significantly increased due to the development of matric suction within the
unsaturated soil compared to the saturated or dry condition.

Adding matric suction from unsaturated soils to the classic bearing capacity equation
is the widely accepted method for properly taking into account the impact of matric
suction in the calculation of foundation bearing capacity. Fredlund et al. [12] proposed a
linear equation, which is known as the two-independent stress state variable method, to
represent the relationship between matric suction and shear strength of unsaturated soils.
Oloo et al. [13] combined this method with Terzaghi’s formula to derive a linear equation
for the bearing capacity of unsaturated layered soil pavements. However, experiments
show that the relationship between matric suction and bearing capacity is not a simple linear
relationship [14]. Therefore, to be more relevant to reality, Lu and Likos [11] introduced the
concept of suction stress, which includes matric suction and physicochemical and bond
forces, and investigated its distribution with depth and its variation with time factors such
as temperature, evaporation, and precipitation. Lu et al. [15] went further and proposed a
closed-form equation for the effective stress representing the shear strength behavior of
unsaturated soils, which was applied to foundation-bearing capacity evaluation and slope
stability by Vahedifard and Robinson [16].

It should be noted that the effective stresses of Lu et al. [15] are described in terms of
a single stress variable (matric suction), modified from the expression for saturated soils.
However, the theory is difficult to determine the effective stress coefficients x and cannot
explain the wetting of unsaturated soils. The effective stress expression using net stress and
matric suction as two independent stress variables [12] can overcome the shortcomings
of the theory. However, it creates new problems: (1) it is difficult to deal with smooth
transitions between saturated and unsaturated states, (2) it is difficult to deal with the
variation of intensity with suction, and (3) it is difficult to deal with the effect of saturation
and the coupling with percolation. In contrast, the effective stress expression of Lu et al. [15]
can be used for both shear strength and deformation analysis, and can also unify the limit
equilibrium analysis of unsaturated and saturated classical soil mechanics problems.

This study aims to propose a new formulation for the estimation of the bearing capacity
of strip footing under the coupled action of seismic load and matric suction, using the
kinematic approach of limit analysis as a framework. The most rigorous MPD method was
adopted to consider the effect of seismic forces and combined with the layerwise summation
method to compute the power of seismic forces. By taking four typical unsaturated
geotechnical materials (clay, silt, loess, and sand) as examples, effective stress expressions
based on suction stresses are introduced to calculate the shear strength in different depths
of the damage zone to establish the balance equation. Finally, key factors such as damping
ratio, seismic wave wavelength, horizontal acceleration coefficient, water table depth, and
flow rate are also analyzed and discussed in this solution.

2. Theoretical Framework of Seismic Bearing Capacity
2.1. Kinematic Method of Limit Analysis

The upper bound theorem of limit analysis has been widely used in studies of slope
stability [17-19], tunnel face stability [20-22], and foundation-bearing capacity [23]. It can
be described as follows: For a given velocity field permitted by the maneuver, the power of
external work is equal to the power of the object’s internal energy dissipation:

/Tl’U,'dA-i-/ FividV:/ O’ijﬁi]'dv )
A \% \4
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where v; = the velocity of the failure block, ¢j; and ¢;; = the internal stress and the cor-
responding plastic strain rate, respectively, T; and F; = the surface force and body force
acting on foundations, respectively, and A and V = the area and volume of the integration
region, respectively.

2.2. Pseudo-Dynamic Approach

As bedrock shaking propagates to the surface in the form of seismic waves, there is
spatial and temporal variability in its characteristic parameters, such as amplitude and
frequency. The specific variability is related to parameters such as density, damping, and
modulus of the overlying bedrock layer. To simplify the analysis, Steedman and Zeng [24]
suggested a method that ignores the change of wave velocity and vibration frequency
during the propagation of seismic waves, called the conventional pseudo-dynamic (CPD)
method. The amplitude of vibration acceleration varies linearly as the seismic wave
propagates to the surface, and the amplification factor is f. The bedrock burial depth is H,
and the vibration acceleration of the transverse wave (wavelength A, period T) at the depth
z below the surface is:

ay(z,t) = <f+ ! I;fz)khgsin(? - H;Z) )

where kj, = horizontal seismic acceleration coefficient, ¢ = gravitational acceleration. It
is worth paying attention to how to determine the wavelength value of seismic wave A.
As is known to all, the magnitude of the wavelength A is equal to the product of wave
velocity vs and period T, i.e., A = vsT. The shear wave velocity v of soil is mainly related
to the type and characteristics of the site soil, as shown in Table 1. Generally, in denser soil,
the propagation speed of seismic waves is faster. The period of seismic wave T generally
adopts the designed characteristic period of ground motion, which can comprehensively
reflect the influence of such factors as earthquake magnitude, epicentral distance, and site
category, as shown in Table 2. For specific site categories and site grouping, please refer to
the Code for the seismic design of buildings [25].

Table 1. Shear wave velocity range of different types of soils [25].

Soil Types

Name and Properties of Soils vs(m/s)

Medium hard soil

Medium dense crushed stone soil; dense coarse or medium sand;

cohesive soil and silt with f;; > 150; hard loess 250 <5 < 500

Medium soft soil

Slightly dense coarse or medium sand, cohesive soil and

s <
silt with £, < 150, filling soil f,; > 130, plastic new loess 150 <os < 250

Soft soil

Silt and muddy soil, loose sand, newly deposited cohesive soil

<
and silt, fill with f,; < 130, flow plastic loess vs <150

fak is the characteristic value of foundation-bearing capacity obtained from load tests and other methods (kPa).

Table 2. Characteristic period values [25].

Design Earthquake Grouping

Site Classification

Io I 11 11 vV
Group 1 0.20 0.25 0.35 0.45 0.65
Group 1 0.25 0.30 0.40 0.55 0.75
Group 1 0.30 0.35 0.45 0.65 0.90

However, the CPD method cannot satisfy the boundary condition at z = 0. Therefore,
Bellezza [26] proposes a modified pseudo-dynamic (MPD) method, which is the most
rigorous method for assessing seismic effects. The MPD method considers that the soil
below the foundation follows more realistic visco-elastic properties rather than linear elastic
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properties, and considers the attenuation of the amplitude of seismic waves by soil damping
ratio D. The expression of S-wave seismic acceleration obtained by the MPD method is:

ay(z,1) = ﬁ[(gcﬂ + 54Ss2) cos(wt) + (SsCsz — CsSs2) sin(wt)] 3)

where ano = kyg 4
Csz = cos(%) cosh(j%z) (5)

Ssz = —sin()sinh (%) (6)

Cs = cos(y1) cosh(y2) @)

Ss = —sin(y1)sinh(y>) ®8)

_2nH [V1+4D%+1

=70\ 20 +407) ©)
2nH [V1+4D?-1 10)

Y2773\ 20 4D2)

In addition, there is an in-between method, which is known as the spectral pseudo-
dynamic (SPD) method. The soil is a visco-elastic material as in the MPD method, and
calculates ay,(z, t) with the same formula as the CPD method, except that the amplification
factor is changed to a binary function about the damping ratio and wavelength, which is

expressed as follows:
1

f =
\Jcos2(2nH /A + (D2rH /1)

(11)

2.3. Cohesion of Unsaturated Soils

The study of effective stresses in unsaturated soils is the most fundamental and crucial
in the study of unsaturated soils. The calculation of effective stresses in unsaturated soils
can be divided into the single stress variable method and the double stress variable method
proposed by Fredlund et al. [12], depending on the number of stress variables. On this basis,
Lu and Likos [11] proposed a new effective stress calculation equation for both saturated
and unsaturated soils by studying the suction stress characteristic curves:

od=0c—-u,—o° (12)

where ¢’ = the effective stress, ¢ = the total stress, u, = the pore air pressure; and ¢°= the
suction stress. It is worth stating that suction stress is a broad concept that includes all the
principal forces between soil particles. To quantify it, Lu et al. [15] proposed a closed-form
equation, as follows:

*(“a - ”w) (“a - ”w) <0
o = (#a—tiw) (13)

- Ug — Uyp) >0

vy (e te)

where uy, = the pore water pressure; u, — 1y = the matric suction, «, whose reciprocal
equals the air-entry pressure, varies from 0.0 to 0.5 kPa~! and ¢ is a dimensionless constant
that reflects the breadth of soil pore size, whose general range of value is 1.1-8.5. Both & and
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1 are the fitting parameters of SWCC, and their specific values can be referred to in Figure 1:
(ug — uw) < 0 means saturated soil, in which case substituting Equation (13) into (12)
yields the classical Terzaghi’s effective stress equation ¢ = ¢ — uy,. On the contrary,
(ug — uy) > 0 represents unsaturated soil, which is the present research object to evaluate
the bearing capacity.

Clay  Silt Sand
1000

Clay
-
i . o o
_ ol A Ay
= U e — 4 7 R _
i | Clayey = 0087 sy 774 Silt
—~ 1 silt ]"l_”_’q/_/., silt .7 7.
= O ] e
10+ _l_,f,:i,—\{v,vl—qu,_é jJ__ARLJ_/__AT____
A ARA s W W
Ic{a}?} 1 ?IM'\_ v JQ(Sand :Di_l Sand
l s,anq i\ :,and-F\? > =
o beagveaey T Ry
I hal hs 7 Tod
| T T T | ' T T T '
0 2 4 6 8 10
Y

Figure 1. The values of a and 1 for different types of soils [15].

In order to obtain an analytical solution for the matric suction profile, Gardner’s
exponential model was applied [27]:

k = kst (=) (14)

where k, ks = hydraulic conductivity of unsaturated and saturated soils, respectively.
Assuming that the matric suction is zero at the water table (z = 0) and flow rate g is fixed,
the matric suction profile under a one-dimensional steady flow can be derived as:

g — iy = —% In|(1+ kis)e*%v“ - k% (15)
where 7 = unit weight of water, taken 10 kN/ m3, ks = saturated hydraulic conductivity,
and z = height above the water table. A positive value of 4 denotes infiltration, whereas
a negative number denotes evaporation. Substitution of Equation (15) into (13) gives an
expression for the suction stress of unsaturated soils, which clearly involves four constants,
including the flow case g and the characteristic soil parameters ( «, ¥, k;):

1n[(1 + ez — ki]

S

B (16)
(1 + {7 11‘1{(1 + kls)e—“rwz . k%] }1IJ> (y-1)/9

o=t
14
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Calculations reveal that the value of ¢° is negative in the one-dimensional vertical
unsaturated steady-state flow condition. The cohesion generated by ¢° through the effective
internal friction angle is called apparent cohesion with the following expression:

Capp = —0° tan ¢’ (17)

where ¢’ = effective internal friction angle. Introducing Equations (16) to (17) provides
the expression of ¢,y for various types of soils and flow conditions. The effective cohe-
sion ¢’ and the apparent cohesion cgp, can be seen as constituting the total cohesion ¢ of
unsaturated soils [16], which are expressed as follows:

Cc = C/ + Capp (18)

3. Formulation of Seismic Bearing Capacity

If not specifically stated, four types of unsaturated soils, including sand, clay, loess
and silt, which are representative of nature, will be selected in the present study to assess
the bearing capacity. Their typical parameters are recorded in Table 3. The strip footing has
a rough bottom and a thick enough layer of unsaturated soil beneath it to cover the entire
damaged region. Under earthquake action, shallow foundations often bear inclined and
eccentric loads [28-30], but the assessment of bearing capacity in this situation is relatively
complex. Therefore, this article assumes that only vertical concentric loads act on shallow
foundations. The most rigorous MPD method is utilized to evaluate seismic effects, and
only the horizontal seismic force is considered.

Table 3. Input parameters of the four types of soils adopted in the present study.

Soil Types P w (kPa™1) ks(m/s) ¢ (kPa) (kN/m?)
Clay 2 0.005 5x 1078 10 18
Silt 2 0.01 5% 1077 10 18

Loess 4 0.025 5x 10 0 18
Sand 4 0.1 5x 107> 0 18

3.1. Multi-Block Failure Mechanism

Under earthquake action, the damage to the foundation tends to occur along a certain
direction and is, therefore, asymmetric. Compared with the conventional arc-shaped
damage mechanism, the multi-block mechanism with higher accuracy and more realistic
fit will be adopted to calculate the seismic bearing capacity of strip footings. As shown in
Figure 2, this multi-block failure mechanism consists of # triangular rigid blocks, where
each block has two interior angles that are unknown variables («;, ;), so there are a total of
2n variables to be optimized. The length of the side corresponding to the angle §; is I;, and
the length of the side corresponding to a; is d;. The strip footing width is B, according to
the sine theorem, we can obtain:

i sm,B] .
H 1<i<n (19)
=7 sin(e; + B))
sin a; o sin §; .
d; =B H 1<i<n (20)

sin ;g sin(aj +B;)  —

As shown in Figure 3, a kinematically admissible velocity field is built up to calculate
the external force power. When the foundation is subjected to ultimate load, each rigid
block will undergo translational motion at certain velocities, including the absolute velocity
v; with the lower soil body and the relative velocity [v]; with neighboring blocks. The
soil follows the associated flow law. v; and [v]; are at an angle of ¢’ with the velocity
interruption line corresponding to d; and /;, respectively. The first triangle ABB; translates
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jointly with the rigid base at a velocity of v;. The velocities of the other blocks can be

obtained as follows: ,
lsin(a; + B —2¢")

=1 Sin(.Bj—&-l —2¢’)

v; = m1<i<n (21)

_ sin(a; + Bi — Bra1) i sinle; + B — 2¢)

vl = _ . nl<i<n-1
) sin(Biy1 — 2¢) =1 sin(Bj41 — 2¢') '

(22)

- B -
kwo do
P, —— = e e e e
— Tt berde b b 4 4 4} e
A Ot C
a In : ) A
B ! n
1 a; e} ﬁn dn
d] ‘F]
1 i+1 - £}
B AN N 22 Dy,
I W
G H
ﬂ{ ﬂi+]
Bz d Bf+|
B, d B 7
water table ,
=
bedrock _ ¥
Figure 2. Unilateral collapse mechanism for seismic bearing capacity (Dyy = the depth of water table).
}
I
}
B
1 e
4 | [v]n Vi ) | [v];
?;' ¢| Visg
0 il V], 7y A a.‘+ﬁf"ﬁf'+l rt-a,--ﬁ,-+ga'
V],
1",‘ i-1
J T B+ + Z a,
99' H 2 ofe=l
|
(@) (b)

Figure 3. (a) kinematically admissible velocity field; (b) Corresponding velocity vector hodograph.

3.2. Calculation of External Work Rate

The internal dissipated power caused by the cohesion of the unsaturated soil can
be considered to occur along the velocity interruption lines /; and d; in this multi-block
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mechanism. Its value is generally obtained by multiplying the total cohesion, the length of
the interrupted line, and the magnitude of the velocity projection on the interrupted line:

Dint = Dy + D, (23)

where D¢ and D, are the dissipation caused by the effective cohesion ¢’ and the apparent
cohesion c,pp, respectively. The apparent cohesion c,p, caused by one-dimensional steady-
state seepage does not vary linearly along the depth, so numerical integration is needed to
calculate Dy:

I; sin ): w;

j=
n—1
=1 9 sin Z o; =
j=1

n
Y |3 + 5, [doising @4)
1

N =

where (fls3 and (7153 represent the suction stress of points B; and B, 1, which can be obtained

i+1

by substituting z; = I;sin Z «; and z = ;11 sin ) «; into Equation (16), respectively. In
j=1 j=1

contrast, the effective cohesion ¢’ remains constant along the depth direction. Therefore, D,:

n n—1
Dint = ¢’ cos ¢/ () _djvi + Y _ I;[v];) (25)
i=1 i—1

The external forces acting on the strip footing include the vertical force of the super-
structure P, the gravity of the lateral soil g, the soil self-weight G within the collapse
mechanism, and the seismic force. Since the seismic force changes with time and space, a
right-angle coordinate system was established, as shown in Figure 4, with point B as the
origin, the vertically downward direction as the positive z-axis direction, and the expan-
sion direction of the damage mechanism as the positive x-axis direction. Then, according
to Equation (3), the horizontal acceleration coefficients at different times and different
positions can be derived as:

ky,

kp(z,t) = m

[(CsCsz + SsSsz) cos(wt) + (SsCsz — CsSsz) sin(wt)] (26)

By substituting z = 0 to Equation (26), the acceleration coefficient at the ground surface
kyo can be obtained as:

k

kno = m [Cs cos(wt) + S sin(wt)] (27)

The power of the strip footing’s ultimate load and its corresponding horizontal seismic
inertia force is:
Wp, = Pevr[kyo cos(B1 — @) +sin(B1 — ¢)] (28)

The power of lateral soils weight and its corresponding seismic inertia force is:
Wao = —qo0ndn[kno cos(an + Bn — ¢) + sin(an + pu — ¢')] (29)

The power of the self-weight of the soils within the collapse range is:
1 & /
Wy = 27 lidisin(ai + pi)oisin(pi — o' = 1)) (30)
i=

The seismic force acting on the soils within the collapse area is related to both time
and space, and the power produced by it is typically calculated by two methods: the
direct integration method and the layer wise summation method [6,11,31]. The layerwise
summation method is chosen in the present study due to its obvious advantages in terms
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of accuracy control and computational efficiency. First, each block will be divided into m
strips of cells according to the depth, as shown in Figure 4a. Mathematically, as long as m is
large enough, the seismic inertia force within each strip cell can be regarded as constant.
After that, the total power of the seismic inertia force can be obtained by summing up the
power of all strip cells, expressed as:

nom i—1

W, = 'YZ Z Sl-]-kh(z, t)UZ' COS(’Bi — q)l — 2 zx]) (31)
i=1j=1 j=1

where S;; = the area of the jth strip cell of the ith block, calculated according to the follow-

ing equation:

1

Sij = 5(

+ ’xi(jﬂ) = Xj(ji+1) ‘) j=123--m (32)

Xij — Xijt Zi(j+1) %
where (xi, zij), ( Xij, zijr), (Xi(j1 1), Zij+1)), and ( Xi(j11), Zi(j 1)) = the coordinates of the
four vertices of this strip cell, as shown in Figure 4b. The total power caused by the external

force can be obtained by accumulating the power of each part of the external force, i.e.,:

Wext = VVPe + qu + W’y + We (33)

8]

(xu. 2 (—x,_;- > :U..)

k(=) G,
¥V

('xf(!'—U ’ :f(r'— U) (‘xr(,r'—.f,l > :;(;'—.U')

(b)

Figure 4. Schematic diagram of (a) stratification of the i-th triangular block and (b) force on the
strip cell.

3.3. Seismic Bearing Capacity Solution

In the process of the upper load or seismic fluctuations gradually becoming larger
until the foundation collapses, it is known that the power caused by external forces is
always smaller than that dissipated by internal energy. Equaling external work power with
internal energy power yields a functional balance equation, which is written as:

Wext = Dint (34)
The solution of this equation is the upper bound solution of seismic bearing capacity,
which is written as:
Pe Dint*WPe+qu+W'y+We

Tee =B = Blkyo cos(B1 — 9) + sm(f1 — )] (33)
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where g = the ultimate load that can be carried by a strip footing in a unit area. If the
apparent cohesion generated by the suction stress of unsaturated soils is neglected, i.e.,
the total cohesion is considered to be a constant (c = ¢’). In this case, Equation (35) can be
written in the form of classical Terzaghi’s expression:

1
Gee = E'yBN7 + qoNy + ¢'Ne (36)

where Ny, Ny, N, = the bearing capacity parameters related to v, qo, ¢, respectively, whose
detailed expressions are as follows:

_ fitknfo
Nr = ko cos(B1 — @) + sin(p1 — ) 7
N, = ERRAE (39)

~ kyocos(By — @) +sin(By — @)

N, = — f5 +f6 i (39)
ko cos(B1 — @) +sin(1 — @)
where f; — f4 are dimensionless functions, whose detailed expressions are recorded in the
Appendix A. Most scholars [4,32,33] choose to optimize N, N; and N, individually, and
then substitute them into Equation (36) to get g.. according to the superposition principle.
Therefore, this method is known as the superposition method, whose results are on the
conservative side.

However, in order to get the upper bound solution that is more suitable to the actual
situation, the present study considers the influence of steady flow on unsaturated soils.
According to Equations (18) and (23) the apparent cohesion on each velocity interruption
line is different, so the superposition method cannot be employed. Instead, the value of
gce Need to be optimized directly according to Equation (35). The detailed optimization
process is shown in Figure 5. In fact, the seismic bearing capacity is a multivariate linear
function with respect to «;, B; and t/ T, which can be expressed as:

Qee = f(“ir ,Bi/t/T) (40)

It can be seen that there are 2n + 1 variables to be optimized. The classical multi-
objective sequential quadratic programming (SQP) algorithm is applied to find the min-
imum upper-bound solution, and the constraints to be embedded in the optimization
algorithm are presented in Table 4.

Table 4. Limitations to be embedded in the algorithm.

Constraints/Conditions

n
Geometric compatibility Laj=manda; +p; <m
i=1

1

Kinematic admissibility «;+ Bi > Pit1, viy1 >v;and v; >0

Range of values O<a;<m/2,1<Bi<mand0 < t/T <1
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| Upper bound therom of limit anl}-‘sjsl

| Collect data for analysis |

Basic parameters of soil Seismic parameters
o, Gy H by, D, 2

MPD method

4| Determination of asymmetric failure mechanism Ii

. Unsaturated parameters
., ks, g

layerwise summation method

Acquisition of total cohesion at different depths

l

Calculation of extemal power Calculation of internal power

Establishment of balance equation

Bearing capicity
(g, iy, /T

SQP algorithm |—= | =—| Constraints

Min (numerical results)

Upper bound solution

Figure 5. Flow chart for computing the seismic bearing capacity gc..

4. Results and Discussion

For the sake of better fitting the actual engineering, the default values of input pa-
rameters are generally adopted unless otherwise stated, i.e.,: (p’ =20°,490=0,D = 0.05,
H =10B,k;, =0.1, A =20m, Dy, = 4B and q = 0. As for the number of rigid triangular
blocks 1 of the multi-block mechanism, it will significantly affect the accuracy in the upper
bound solution of seismic bearing capacity gc., but too many blocks can be computationally
overwhelming. Therefore, in order to balance the computational volume and accuracy, a
convergence study is carried out to determine the value n. Table 5 records the variation of
fce, With 1 using clay as an example. Notice that the reduction of g, falls to 0.1% when n
increases to 9, which is accurate enough, so n= 9 will be used throughout the analysis. All
parameters take default values, and the SQP algorithm is used to search for the critical slip
surface of the strip footings in four different types of unsaturated soils, whose results are
shown in Figure 6. From Figure 6, it can be observed that the bearing capacity of the four
soils is ranked as clay > silt > loess > sand. What is more, a large bearing capacity means a
large collapse range. In other words, if the collapse range of the foundation is wider and
deeper, its ultimate bearing capacity will be larger.
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Table 5. The magnitude of g, versus different numbers of rigid triangular blocks n.
n Ace Difference (%)
3 339.64
4 330.17 2.79
5 326.76 1.03
6 325.16 0.49
7 324.29 0.27
8 323.76 0.16
9 32341 0.10
qce
0.0 — .
N . .7 .7 & 7
S -’ #
-02 I N\ . - . P Z
: . - q,~27.94kPa -~ P
-0.4 | N RS . g
£ Nt "
£ N q.~147.26kPa -~
-0.6 N .7 P 7 clay
~. Z 7 - = silt
~._ o -"q,=316.65KP,
os b _~ — - = loess
=" 4,=323.41kPa =" sand
-1.0 I I R I R I . 1 .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
x/m

Figure 6. The critical slip surface of the four soils with default parameters.

4.1. Comparisons

For assessing the bearing capacity of strip footings, external conditions affecting
soil strength, including steady flow and seismic force, are considered simultaneously for
the first time in the present limit analysis. Therefore, in this section, these two external
conditions are analyzed separately in order to better demonstrate the validity of the results.
First, the MPD results are compared with the results of other methods [4,34], as shown
in Figure 7. It can be seen that with the increase of seismic wave wavelength, the results
of Soubra [4], who apply the CPD method, remain basically constant. At the same time,
the present results show continuous ups and downs, which are generally consistent with
Soufi et al. [34]. Moreover, the local maxima of the present results coincide with the PS and
CPD results. These characteristics have been proven to be correct by many scholars [5,34],
thus ensuring the validity of the seismic load assessment in this study.

Then, to verify the effect of unsaturation on the bearing capacity, the seismic effect
of the soil is neglected (k;, = 0). Consider a clay soil with characteristic parameters
P = 1.8, a= 0.005 kPa~!, ks=5x 108 m/s, and itisin a hydrostatic state g= 0. Then the
bearing capacity of strip footings in unsaturated clay g, can be returned by optimizing
Equation (36), which will be compared with the results of Vahedifard and Robinson [16]
and Du et al. [35], as shown in Figure 8. It is obvious that all three methods show an almost
linear increase with the increase of D,/ B. Furthermore, for all values of D,, /B, the results
of Vahedifard and Robinson [16] are the largest, and the present results are the second
largest. The results of Du et al. [35] are slightly larger than the present results, with an
average difference of 1.42%, which is because the present study adopted the unilateral
asymmetric mechanism while Du et al. [35] adopted the bilateral symmetric mechanism.
However, as D,/ B increases from 4 to 10, the difference between the results of Vahedifard
and Robinson [16] and the present study increases from 23.5% to 36.7%, which is attributed
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to the fact that the present method calculates the cohesive force strictly according to different
depths, while Vahedifard and Robinson [16] adopt an average value of different depths.
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Figure 7. Comparisons of g, values for different seismic load assessment methods [4,31,34].
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Figure 8. Comparisons of g, values for different unsaturation assessment methods [16,35].

In summary, the present study is able to produce reasonably valid results regarding
various properties of soils and the numerical analysis results without considering these
properties are in high agreement with Soubra [4]. Therefore, the proposed formula for esti-
mating the bearing capacity of strip footings in unsaturated soils under seismic conditions
has a high degree of confidence. The impact of various parameters on present results will
be analyzed in the following sections.

4.2. Effect of Earthquake Action

Figure 9 shows the variation of the seismic bearing capacity g, for four types of
unsaturated soils with respect to the effective internal friction angle ¢’ and the horizontal
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acceleration coefficient ky, respectively. It is seen that as ¢’ increases, qce undoubtedly
increases rapidly, and the rate of increase is also accelerated. As kj, increases, .. decreases
almost linearly. For the same values of ¢’ and kj, the order of magnitude of g, of the four
soil types is clay > silt > loess > sand.

3000 400
'=20° 1=20m D=0.05
clay - _ 350 4
2500 F  — — giit D=0.05 D,/B=4 H=10B D,/B=4 ¢=0
: ¢=0 k=01 i/H=2
— - - loess 300 |

2000 7 sand . clay
} / 250 = = silt
g /' b — - = loess

S 1500 | . S 200 —-- sand
= / £ .
. ~ ~.
/ > 150 S
1000 . .
. / T~ -
s P 100 - e~
- . - <.
500 P L’ ~-—
.~ b -° 50 = . =
.——”’/ .—-”-. i .‘\h“'~-
N i | R 1 0 1 L T e e — e
10 15 20 25 30 35 40 0.0 0.1 02 0.3 04 0.5
o
() k,
(a) (b)

Figure 9. g, versus (a) ¢’ and (b) ky, for four types of soils.

Figure 10 illustrates the variation of seismic bearing capacity g with the shear wave-
length A normalized to the bedrock burial depth H for four types of unsaturated soils and
three different values of damping ratios D. For all four soil types, g, increases with increas-
ing D, as expected. This explains the need to build on sites with higher damping ratios in
areas of higher seismic intensity. As the normalized wavelength A/H increases, a continuous
wave of bearing capacity g.. can be clearly observed, but with an overall decreasing trend.
This is because, for smaller wavelengths, the direction of acceleration changes continuously
and the seismic forces in opposite directions cancel each other out, reducing the negative
effect of the seismic forces on the bearing capacity. This inhomogeneous acceleration field
is shown in Figure 11, in which the smaller the wavelength, the greater the inhomogeneity.
Conversely, for larger wavelengths, both the value and direction of acceleration in the
damage zone will tend to be uniform, and this homogeneous acceleration field will produce
a large seismic force and reduce the foundation’s bearing capacity. If the wavelength of
the seismic wave is equal to the wavelength corresponding to the natural frequency of
the ground, the foundation will resonate with the ground, causing a sudden increase in
acceleration amplitude and a sudden reduction in the bearing capacity. The normalized
wavelengths A/ H corresponding to these local minima obey certain mathematical laws.
These laws can be expressed as follows:

(41)

AH = n
(1+2

1
——F—7=0,12,---,00
D

4.3. Effect of Steady Flow

As stated in the previous section, the four parameters that characterize the unsaturated
nature of the soil are the fitting parameters («, 1), the saturated hydraulic conductivity ks
and the flow rate q. In addition, the depth of the water table D, is also a crucial factor in
the study of unsaturated soils under steady seepage [35,36]. These five factors together
determine the apparent cohesion of the soil c,p, and thus affect the seismic bearing capacity
qce- Figure 12 shows the distribution of apparently normalized cohesion c,pp /Y D7 with
normalized distance above the water table z/ D, for two water table depths, i.e., Dy. =1
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and 10 m, and three flow rates, i.e.,, g = —3.14 x 1078 m/s, 0, and 1.15 x 108 m/s, for
four types of soils. As shown in Figure 12a, for each water table depth and flow rate, the
Capp/ YD values of clay increase linearly with increasing z/Dy,. Furthermore, Infiltration
significantly reduces the apparent cohesion ¢, relative to the no-flow condition, while
evaporation has a positive effect on ¢;pp. For example, at Dy, = 1 m, infiltration reduces
Capp at the surface (z = 0) by 2.304 KPa, while evaporation increases c,pp by 0.859 KPa. In
contrast to clay, the apparent cohesion curves for silt are non-linear. For z/D,, < 0.2, the
curves for different g and Dy, almost overlap. When z/ Dy, is greater than 0.2, the infiltration
and evaporation curves gradually deviate from the no-flow curve. However, the effect of
flow rate g on c,pp is not as significant as that of Dy, which is the opposite of the case for
clay. For loess and sand, the effect of different 4 on Capp is negligible, and the value of Capp
rises and then falls with the increase of distance from the water table: i.e., there is a clear
peak. The reason for this phenomenon is that excessively wet or dry conditions reduce
the capillary forces in the soil, resulting in low apparent cohesions [11]. Note that as the
water table rises, the apparent cohesion increases in all four soils, particularly in loess and
sandy soils.
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N ~N ) ~ — * N — -
S - ’/~ = = ~ \J - v % .
300 / X « 300 [ \ / &
\ / N \ / N
\/ N\ - N\
S 250 | . 250 ;
£ O £ N
3 : 5“4 N\, N\
N \ N = N
200 N 200 N\ Y
\ — - \
— =D= D./B=4 ¢= — —D=
D,/B=4 q=0 D=0.20 \ W/B=4 ¢=0 D=0.20 .
150 1= 00 - —D=0.10 ok k0D g=20° - = D=0.10
k=0.1  ¢=20 D=005 \ ——D=0.05 \
100 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1
0.0 05 1.0 15 20 25 3.0 35 0.0 05 1.0 15 20 25 3.0 35
MH MH
(a) (b)
200 50
180
160 40
140
30
L 120 ,
Ay =3}
=, 100 N
S = 20
80
- — — - =D=0.20
60 F D./B=4 ¢=0 g | D /B=4 ¢=0
v o — = D=0.10 \ 1of Ow
wl k=0.1 =20 D=0.05 k=01 ¢=20°
1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

20

0.0 0.5

20
MH
©

L5
MH
(d)

Figure 10. g, versus A/ H for different D: (a) Clay, (b) Silt, (c) Loess, and (d) Sand.

To investigate the effects of Dy, and g at greater depths, Figure 13 directly shows the
variation of seismic bearing capacity of strip footings g.. with changes in water table depth
Dy normalized to foundation width B for different g values B = 1 m. Obviously, the
effect of these two factors, particularly Dy, on g, varies with soil type. Specifically, with
increasing Dy, / B, gce increases linearly for sand while showing a non-linear increase for
silt. gc. values for both types of soils are also affected by g, especially for clay, and the order
of magnitude is evaporation > no-flow > infiltration. As for loess and sand, ¢ has little
effect on their apparent cohesion, as mentioned above, resulting in very small differences
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zIH

zIH

for different g values. It is worth noting that the g.. value for loess reaches its maximum at
Dy /B = 4 and then decreases sharply. When it comes to sand, the g, value decreases, and
the rate of decrease slows down with increasing D,,/B. By combining Figures 12 and 13, it
can be concluded that the apparent cohesion ¢,y has a very direct and critical influence
on the bearing capacity g.., with a large cohesion implying a large bearing capacity, and
vice versa.

</ / /
1k D
q <
b > L L L
q >
b > L L L
< -
4b > L L L
s} A/H=0.1 <> L A/H=0.25 > L MH=0.5 L JH=12
<
—6F > L L L
< <
7k — L L L
— >
8f — '
L <> | <
-] \
7]70.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 0.10 -2 -1 0 1 2
ky(z,0) k(2.0 ky(z,0) ky(z,8)
0
il
Sl
Sl
Ll
il I I
MH=2.0 MH=2.5 - _
i | MH=3.0 I MH=3.6
Sl
N
-9
71*00.10 *0‘.05 0.00 0,‘05 0.‘10 0.‘15 0.20 —0.10 *0‘,05 0.00 0.‘05 0.‘10 0,‘15 0.20 -0.10 *0{05 0.00 0.‘05 0,‘10 0}15 0.20 -0.1 0.0 (;.1 (;.2 (;,3 (;.4 6,5 0.6
ki (z,0) ky(z,0) ky(z,0) ki (z,0)

Figure 11. k;(z, t) of the MPD method versus z/H for different A/H.

For the case of ¢'=20°, g9 = ¢ = 0, ¢’= 10 kPa and ks= 5 x 10~8m/s, Figure 14 gives
the g, versus air-entry pressure 1/« with various ¢ values (¢ = 1.1, 2.0, 2.5, 4.0, 8.5) for
different water table depth Dy, normalized to foundation width B. From Figure 14, it can
be observed that, for a given value of 1/«, g.. decreases with increasing 1. On the contrary,
for a given value of ¢, ¢ increases with an increase in 1/«. In particular, for p = 1.1, g
increases slowly with increasing 1/« for all values of D,,/B. However, for ¢ > 2.0, g
increases sharply before slowly converging, and the g, values first approach each other
at a value of 1/a. This 1/a value increases with the increase of D,/ B, and is taken to
be approximately 40 kPa, 60 kPa, 80 kPa, 100 kPa, for Dy, /B = 4, 6, 8, 10, respectively.
Ultimately, for a given value of D,/ B, the curves corresponding to all values of i tend
to be horizontal and overlap when 1/« is large enough, indicating that the effect of ¢ is
negligible at this point. In addition, the larger the value of Dy, / B, the later the convergence
of the curves corresponding to all values of 1/«, demonstrating the positive effect of the
deep water table on gc..
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Figure 12. Normalized apparent cohesion profiles for normalized distance above the water table and
three flow rates for (a) Clay, (b) Silt, (c) Loess, and (d) Sand.
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Figure 13. q., versus D,,/B for different q: (a) Clay, (b) Silt, (c) Loess, and (d) Sand.
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Figure 14. g versus 1/« for different ¢ values: (a) Dy /B = 4; (b) Dy/B = 6; (¢) Dy/B = §;
(d) Dy/B = 10.

5. Conclusions

In this paper, a new formula for seismic bearing capacity solution in unsaturated soils is
proposed following the kinematic method of limit analysis. The modified pseudo-dynamic
(MPD) method, which is the most realistic to describe the seismic load, is adopted based on
the layerwise summation method. In order to evaluate the effect of one-dimensional steady
flow on seismic bearing capacity, four common soils (clay, silt, loess, and sand) are used as



Mathematics 2023, 11, 2692

19 of 21

fi=

fa=

examples, and the effective stress expression is adopted to calculate the apparent cohesion
at different depths. An asymmetric multi-block destructive mechanism is constructed, and
the upper bound solution is optimized by the SQP algorithm for 18 angular variables and a
time-dependent variable. The present results are compared with those of several studies
and proved to be valid and superior. Detailed parametric studies are also performed with
the following conclusions:

(1) For all soil types, the bearing capacity g, increases rapidly as the effective internal
friction angle ¢’ increases while decreasing linearly as the acceleration coefficient kj, in-
creases. With the increase of 77 and k, the bearing capacity shows an increasing linear trend.

(2) The decrease in the wavelength A of seismic waves leads to a more non-homogeneous
acceleration field, i.e., the transverse waves propagate from bedrock to surface with chang-
ing direction and magnitude. The power generated by seismic forces in different directions
will cancel each other out, resulting in a higher bearing capacity q.., which explains the
increase in g with a decrease in A. What needs special attention in seismic design is
that when the frequency of seismic waves is equal to the inherent frequency of the soil,
resonance phenomenon will occur, leading to a sharp decrease in gc,.

(3) Compared to the hydrostatic condition, the apparent cohesion will become smaller
and thus produce a smaller bearing capacity g, when the soil is infiltrated by rainfall.
Conversely, the evaporation condition produces a larger bearing capacity. The effects of
flow rate g on g of the four soil types are ranked as: clay > silt > loess > sand.

(4) As the water table rises, the bearing capacity of the four kinds of soils will change in
different ways. Specifically, the apparent cohesion of clay and silt increases, thus improving
the bearing capacity. The bearing capacity of loess increases and then decreases, while
sandy soils decrease sharply.

(5) For different values of ¢, the bearing capacity always increases with the increase of
air-entry pressure 1/«, accompanied by different growth rates, but when itis 1/« > 80 kPa,
the bearing capacity corresponding to all ¢ values gradually converges.
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