
Citation: Zou, A.; Wang, J.; Wu, C.

Pricing Variance Swaps under MRG

Model with Regime-Switching:

Discrete Observations Case.

Mathematics 2023, 11, 2730.

https://doi.org/10.3390/

math11122730

Academic Editor : María del Carmen

Valls Martínez

Received: 25 May 2023

Revised: 12 June 2023

Accepted: 13 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Pricing Variance Swaps under MRG Model with
Regime-Switching: Discrete Observations Case
Anqi Zou 1 , Jiajie Wang 2,* and Chiye Wu 2,*

1 School of Information Science and Technology, Jinan University, Guangzhou 510632, China;
zouanqi@stu2020.jnu.edu.cn

2 Shenzhen Campus, Jinan University, Shenzhen 518053 , China
* Correspondence: wang_jj@sz.jnu.edu.cn (J.W.); chyewu@jnu.edu.cn (C.W.)

Abstract: In this paper, we creatively price the discretely sampled variance swaps under the mean-
reverting Gaussian model (MRG model in short) with regime-switching asymmetric double expo-
nential jump diffusion. We extend the traditional MRG model by further considering the trend
of the financial market as well as a sudden and unexpected event of the market. This new model
is meaningful because it uses observable Markov chains that represent market states to adjust its
parameters, which helps capture the movement of the market and fluctuations in asset prices. By
utilizing the characteristic function and the conditional transition characteristic function, we obtain
analytical solutions for pricing formulae. Note that this is our first effort to provide the analytical
solution for the ordinary differential equations satisfied by the Feynman–Kac theorem. To achieve
this, we have developed a new methodology in Proposition 2 that involves dividing the sampling
interval into more detailed switching and non-switching intervals. One significant advantage of our
closed-form solution is its high computational accuracy and efficiency. Subsequent semi-Monte Carlo
simulations will provide specific validation results.

Keywords: variance swaps; mean-reverting Gaussian model; double exponential jump-diffusion;
discrete sampling; characteristic function
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1. Introduction

With the globalization of economies and intensifying competition in financial markets,
more and more investors and scholars have realized the importance of hedging against
volatility risk. Against this background, volatility derivatives have emerged as instruments
that hedge against this volatility risk. Their most prominent feature is that they provide
direct exposure to asset volatility without continuous delta-hedging [1]. Among the various
volatility derivatives, variance or volatility swaps are considered the main and essential
ones. Essentially, they are forward contracts for future realized volatility or variance. The
long position of a volatility or variance swap pays a fixed delivery price at expiry and
receives the floating amounts of annualized realized volatility or variance, whereas the
short position is just the opposite [2]. In other words, the payoff of a variance swap at
maturity T is

(
v2(T)− K

)
× I, where v2(T) is the realized annual variance of the return, K

is the strike price such that the initial value of the variance swap equal to zero for both long
and short positions, and I is the notional amount of the swap in dollars per annualized
volatility point squared.

In the literature, there are roughly two types of approaches for pricing volatility swaps
or variance swaps: static replication methods and model-based stochastic methods. Static
replication means that a variance swap could be replicated theoretically by using a port-
folio of standard options and without specifying the volatility function. For example,

Mathematics 2023, 11, 2730. https://doi.org/10.3390/math11122730 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122730
https://doi.org/10.3390/math11122730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2716-1336
https://doi.org/10.3390/math11122730
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122730?type=check_update&version=1


Mathematics 2023, 11, 2730 2 of 30

Demeterfi [1] produced some of the most influential pioneering work that demonstrated
how to use a standard option portfolio to replicate variance swaps. Obviously, the out-
standing advantage of static replication is that it does not require a specific model to solve
pricing problems [3], and this method has been widely used for the VIX index since 2003 [4].
However, according to Sahalia et al. [5], this method has drawbacks that make it unsuit-
able for the real market. These include the inability to promptly reflect jumping variance
swap rates, as well as the need for constant adjustment in options. Therefore, we consider
model-based stochastic methods in this paper.

The study of variance swaps pricing in stochastic models can be broadly classified into
two approaches. The first method entails pricing under stochastic volatility with continu-
ously sampled realized variance. It provides an effective way to reduce the computational
difficulty, and recent work can be found in [6–10]. However, this approach is an ideal-
ization that assumes continuous sampling time. According to the research conducted by
Zhu and Lian [11], using this method to estimate realized variance may lead to significant
inaccuracies in variance swaps with longer tenors or less frequent sampling rates when
compared to discretely sampled variance swaps traded in the OTC market. Fortunately,
the second method was developed to overcome this limitation, which entails pricing the
realized variance obtained directly from discrete sampling. Broadie and Jain [12] used
discretely sampled data and various stochastic models to examine the fair strike prices
of variance swaps and volatility swaps. They also compared their pricing formulae with
a continuously sampled situation and found that as observation frequency increases to-
wards infinity, the discrete price converges to the continuous price. Rujivan and Zhu [13]
proposed a simplified analytical approach for pricing discretely sampled variance swaps
when the realized variance is defined as the squared log return of the underlying price.
Zhang [14] obtained an analytical solution for variance swaps under the MRG stochastic
volatility model. Lian [15] first explained the conditions for discrete volatility swaps to
exhibit convergence behavior. Recent work in this field can be seen in [16–18].

However, the regime-switching model is rarely considered in most of the literature
cited above. It is worth noting that the long-term trends in the financial market, which
are influenced by structural changes in macroeconomic conditions, can have a significant
impact on prices. That is, incorporating market trends into regime considerations can
help convert market volatility uncertainty into regime switching to some extent, and it
can also better assist investors in capturing market risks and opportunities [19]. As Elliott
and Lian [20] pointed out, different market states (good or bad economy) can be reflected
by different regimes, and the parameters of the regime-switching model are modulated
by an observable Markov chain. In other words, the regime-switching model can be
described as a Markov-modulated model. Because the market is generally incomplete,
the Esscher transform has been extensively studied as an effective way to determine
the unique equivalent martingale measure (see [21–23]). To the best of our knowledge,
although Markov-modulated Heston models have been widely applied and studied for
pricing options [4,24–27], the pricing of discrete-sampling variance swaps under an Markov-
modulated MRG model has not yet been investigated. Compared to the Heston model and
its reformulated version, the MRG volatility model has the following highlighted strengths.
First, it has the mean-reverting property that ensures the autocorrelation of volatility [28]
when volatility clustering occurs. Second, it has a relatively explicit solution for pricing.
Therefore, in this paper, we attempt to study the pricing of discrete-sampling variance
swaps under the Markov-modulated MRG model for the first time. This research has
significant meaning and value. It can enrich the existing theory of regime-switching models
and help market participants better understand market trends.

At the same time, there is a part of the regime-switching model that has not been
well explored, which is the underlying asset process with jump diffusion. Sudden and
unexpected events in real-world financial markets can result in significant fluctuations in
asset prices, which cannot be disregarded, especially when pricing volatility derivatives.
Many researchers have examined the jump effect with numerical tests and have proven that
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it can increase the degree of matching to the reality of financial markets [29]. In particular,
when the jump diffusion follows the asymmetric double exponential distribution proposed
by Kou [30], the model can help capture market-implied volatility smiles and market jump
behavior [31]. However, little work has been done on pricing variance swaps under a
regime-switching model with asymmetric double exponential jump diffusion, especially
the Markov-modulated MRG model.

Motivated by the reasons stated above, we introduce a novel model in this paper—a
Markov-modulated MRG model with asymmetric double exponential jump diffusion—to
price discretely sampled variance swaps. To our knowledge, this is the first attempt to apply
this new framework to pricing discretely sampled variance swaps. Hopefully, this attempt
to price variance swaps under this new model could provide some thinking for other
researchers and fill the research gap. By utilizing the Feynman–Kac theorem and transition
probability function, we can greatly simplify the pricing process and theoretically derive
the general expression of the characteristic function. This in turn allows us to solve the
pricing problem more effectively. The main contributions of this paper can be summarized
as follows: First, one potential issue for the regime-switching model that incorporates
various economic factors is that the state space of the Markov chain can become quite
large. This can lead to significant computational complexity in pricing and may pose
challenges in practice. For practical purposes, it is significant to reduce the additional
burden caused by the Markov chain. In this paper, we creatively obtain analytic pricing
formulae that can reduce the computational burden and give the analytical solution of the
ordinary differential equations satisfied by the Feynman–Kac theorem. To achieve this,
we propose a new method of dividing the sampling time into more detailed switching
intervals and non-switching intervals. Our Proposition 2 presents a specific expression
for this solution. Second, we have made a creative improvement to the semi-Monte
Carlo simulation method that verifies the accuracy and efficiency of our pricing formulae.
Specifically, we use independent and identically exponentially distributed random numbers
to generate repeated simulation paths randomly, as opposed to the traditional method of
generating repeated simulation paths. Hopefully, it can be viewed as a step forward for the
semi-Monte Carlo simulation in the regime-switching field.

2. Model Setup

In this section, we will formally introduce the MRG model with regime-switching jump
diffusion and the computation methods for calculating realized variance. Additionally, we
will discuss the specific details of the regime-switching framework.

2.1. The Regime-Switching Frame and Markov Chain

Regime-switching models have generated considerable interest for their applications to
a variety of financial problems. As the trend of the financial market significantly influences
the movement of individual stocks, it is essential to enable the key parameters of the stock
to react to general market fluctuations. The market regime is one possible way to reflect the
state of the economy, the mood of investors, and other economically realistic factors. If the
Markov chain is observable, then the state can be interpreted as the market regime [20,25,32].
In other words, we can let parameters of the stochastic modes be modulated by the Markov
chain, then the market factors can be considered in the model. It can help researchers
capture the market movement by representing different market regimes.

Here, we follow the notation introduced in [4]: X = {X(t)} is a continuous-time finite-
state X := {e1, e2, · · · , eN} observable Markov chain on a complete probability (Ω,F ,P),
where P presents the real-world probability measure, X represents N different regimes of
the financial market and the ith state ei = {0, · · · , 1i, · · · , 0}. Moreover, the dynamic of X
is given by

dX(t) = Q(t)X(t)dt + dM(t), (1)

where {M(t)} is an RN-valued martingale increment process with respect to the natural
filtration generated by X, and Q(t) = (qij)i,j=1,2,...N is a transition matrix. The element qij
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presents the transition rate from state ei to ej, satisfying qij > 0, i 6= j and qii = − ∑
j 6=i

qij (it

shows that the row sum of matrix Q(t) is always zero).

2.2. The MRG Model with Regime-Switching Jump Diffusion

Under the Markov-modulated MRG model with double exponential jump diffusion,
the dynamic of the stock price process S(t) with a short-term volatility process v(t) is
given by 

dS(t)
S(t−) = µX(t) dt + v(t)dW1(t) + d

[ Nt
∑

i=1
(Ci − 1)

]
,

dv(t) = k
(

θX(t) − v(t)
)

dt + σ dW2(t).
(2)

All variables here are set on (Ω,F ,P) unless otherwise specified, where P presents the
real-world probability measure. Assume 〈·, ·〉 is the inner product and for every i = µ, θ, λ, r,
the elements in i := (i1, i2, . . . , iN) are non-negative.

In the first equation of (2), µX(t) := 〈µ, X(t)〉 is the appreciation rate; {W1(t)} is a
standard Brownian motion; {Nt} is a Poisson process with rate λX(t) := 〈λ, X(t)〉; and {Ci}
is a sequence of independent identically distributed (i.i.d) nonnegative random variables
such that Yi = ln(Ci) has an asymmetric double exponential distribution with the density

f (y) = pη1e−η1y I{y≥0} + qη2eη2y I{y<0}, η1 > 1, η2 > 0, (3)

where p, q > 0, p + q = 1 represent the probabilities of upward and downward jumps.
In the second equation of (2), θX(t) := 〈θ, X(t)〉 is the long-term average value of

volatility. To simplify our calculation and deduce an analytic solution for pricing variance
swaps, we regard the volatility σ and the mean recovery speed parameter k as constants;
{W2(t)} is another standard Brownian such that dW1(t)dW2(t) = ρ dt, ρ ∈ (−1, 1).

Let the dynamic of the bank account process B(t) follow

dB(t) = rX(t)B(t)dt, B(0) = 1 (4)

where rX(t) := 〈r, X(t)〉 is the instantaneous market interest rate.
For simplicity, we also let FS

t , FV
t , and FX

t be the natural filtrations generated by
W1(t), W2(t), and Markov chain X(t), respectively.

Remark 1. This is the new model that we propose. We take the appreciation rate, long-term average
value of volatility, and instantaneous market interest rate to be Markov-modulated in a creative way.
In other words, the values of these parameters are not fixed compared to the traditional MRG model.
Additionally, we add an asymmetric double exponential jump-diffusion to the asset process and also
let the jump intensity be Markov-modulated parameters.

2.3. Variance Swaps

The realized variance in variance swaps is typically calculated through discrete sam-
pling over the period [0, T] in financial markets, where T represents maturity time. Two
common methods for calculating realized variance are actual-return realized variance

v2
d1
(T) =

AF
N

N

∑
i=1

(
S(ti)− S(ti−1)

S(ti−1)

)2

× 1002, (5)

and log-return realized variance

v2
d2
(T) =

AF
N

N

∑
i=1

ln2
(

S(ti)

S(ti−1)

)
× 1002, (6)
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where Stk , k = 0, . . . , N denotes the kth observation of the stock price at time tk, which
implies that the total number of observations is N. In addition, AF is an annualized factor
with a range from 4 to 252, which can be formed as AF = 1

tk−tk−1
= N

T .

3. Change of Numeraire

3.1. Change of Risk-Neutral Measure Q̂
Because the market modeling by the observable Markov chain is incomplete in gen-

eral [20], the need to seek for “proper” measure is badly needed. After plenty of studies,
researchers have found that the Esscher transform is the tool that satisfies the requirement.
Until now, there has been mature technology to calculate the equivalent martingale measure
via the Esscher transform (see [4,22,33] for more details). Here, we adopt the assumption
that the continuous and jump components of the underlying asset can be respectively
interpreted as systematic and idiosyncratic risk [34]. In other words, the jump component
cannot affect the pricing. Following the setting in [4] and the method used in [23], we
can quickly derive that W̃i(t), i = 1, 2 is a standard Brownian with respect to risk-neutral
measure Q̂, where  dW̃1(t) = dW1(t) +

µ
X(t)
−r

X(t)
v(t) dt,

dW̃2(t) = ρ dW̃1(t) +
√

1− ρ dW1(t).
(7)

We then substitute (7) into (2), and the dynamic process of S(t) and v(t) under the
equivalent martingale measure Q̂ can be rewritten as

dS(t)
S(t−) = rX(t) dt + v(t)dW̃1(t) + d

[
Ñt
∑

i=1
(Ci − 1)

]
,

dv(t) = k
[
θ̃X(t) − v(t)

]
dt + σ dW̃2(t),

(8)

where

θ̃X(t) = θX(t) +
µX(t) − rX(t)

v(t)
· ρσ

k
, λ̃X(t) := λX(t)(p + q).

3.2. Change of T-Forward Measure Q̂T

The value of a variance swap at time t under the risk-neutral measure Q̂ is

Vi(X, t) = EQ̂

[
e
−
∫ T

t r
X(t)

dt(
v2

i (T)− Ki

)
× I
∣∣∣∣FS

t ∨ FV
t ∨ FX

t

]
, i = d1, d2. (9)

It is worth noting that the interest rate rX(t) under a regime-switching frame is not a
fixed constant in the usual sense, and it will be influenced by Markov chain X(t). Therefore,

we need to consider the dependence between discount factor e−
∫ T

t rX(t) dt and variance
swap payment, which will greatly increase the difficulty of solving pricing problems; for
example, the calculation of the fair strike prices will no longer be a simple calculation of

Ki = EQ̂

[
vi

2(T)
∣∣∣FX

0 ∨FS
0 ∨ FV

0

]
, i = d1, d2,

but

Ki =

EQ̂

[
e
−
∫ T

t r
X(t)

dt
v2

i (T)
∣∣FS

0 ∨ FV
0 ∨ FX

0

]
EQ̂

[
e
−
∫ T

t r
X(t)

dt∣∣FS
0 ∨ FV

0 ∨ FX
0

] , i = d1, d2.

Fortunately, we find that this problem will be solved by changing the numeraire to a
zero-coupon bond and derive the T-forward measure Q̂T . According to Theorem 9.2.2 and
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Definition 9.4.1 in Shreve [35], we can change the risk-neutral measure Q̂ into Q̂T , that is,
the numeraire will be changed from the original money market account to a zero-coupon
bond, and the T-forward measure Q̂T can be defined as

Q̂T(A) =
1

B(0, T, X)

∫
A

e
−
∫ T

0 r
X(t)

dt
dQ̂, ∀A ∈ F . (10)

Let B(t, T, X) be a zero-coupon bond that pays one unit at maturity T, then it is given
by [25,36,37]

B(t, T, X) = EQ̂

[
e
−
∫ T

t r
X(t)

dt
∣∣∣∣FS

t ∨ FV
t ∨ FX

t

]
= 〈exp{B(T − t)}, X〉Ie,

(11)

where Ie denotes N-dimensional unit vector, operator B := diagr−Q′, diagr denotes the
matrix with vector r on its diagonal, and Q′ denotes the transposition of Q. Therefore, in
this paper, the volatility vector of zero-coupon bonds is zero. In other words, discounting
the underlying assets with it will not affect its volatility vector. Now, we can present (9) as

Vi(X, t) = EQ̂

[
e
−
∫ T

t r
X(t)

dt(
v2

i (T)− Ki

)
× I
∣∣∣FS

t ∨ FV
t ∨ FX

t

]
= B(t, T, X)EQ̂T

[(
v2

i (T)− Ki

)
× I
∣∣∣FS

t ∨ FV
t ∨ FX

t

]
,

(12)

and obtain the fair strike price

Ki = EQ̂T

[
vi

2(T)
∣∣∣FX

0 ∨FS
0 ∨ FV

0

]
, i = d1, d2. (13)

4. Pricing Variance Swaps

In this section, we will take the distribution characteristics of the new model as a
breakthrough, and derive the pricing formulae of variance swaps under discrete sampling.
Here, we employ the characteristic function method to accomplish this goal.

Now we are in a position to formally introduce the characteristic function method. Let
y(T) = ln S(T + ∆)− ln S(T), and assume its characteristic function is given by

f (φ; t, T, ∆, v(t)) = EQ̂T [eφy(T)
∣∣∣FX

t ∨ FS
t ∨ FV

t ]. (14)

It should be noted that the imaginary number i =
√
−1 is absorbed in the parameter φ

in (14), and the result will not be changed without the explicit expression of the imaginary
number [20]. Similar to the method used in [4], we first consider the conditional charac-
teristic function under the given Markov chain information FX

T+∆. When the information
FX

T+∆ is given, the Markov-modulated parameters θ̃X(t) , λ̃X(t) , and rX(t) are deterministic
functions, which means that the information available at time T + ∆ is sufficient to evaluate
these parameters. Namely, we can simplify (14) as

f (φ; t, T, ∆, v(t)) = EQ̂T

[
f
(

φ; t, T, ∆, v(t)
∣∣∣FX

T+∆

)∣∣∣FX
t

]
. (15)

4.1. Conditional Characteristic Function

In this section, we will focus on calculating the concrete expression of conditional char-
acteristic function f

(
φ; t, T, ∆, v(t)

∣∣FX
T+∆

)
and give the following lemma and proposition.

Lemma 1. If the volatility process v(t) satisfies the dynamics (8), then it has an explicit expression
as follows:

v(t) = e−ktv(0) + k
∫ t

0
θ̃

X(u)e
−k(t−u) du + σ

∫ t

0
e−k(t−u) dW̃2(u). (16)
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Proof. Let

f (t, b) := e−ktv(0) + σe−ktb + k
∫ t

0
θ̃

X(u)e
−k(t−u) du,

and

B(t) :=
∫ t

0
eku dW̃2(u).

For the Ito–Doeblin formula, we shall need the following the partial derivatives of f (t, b):

ft(t, b) = kθ̃
X(t) dt− k f (t, b), fb(t, b) = σe−kt, fbb(t, b) = 0.

We will also need the partial derivative of B(t), which is dB(t) = ekt dW̃2(u). Then, the
Ito–Doeblin formula states that

dv(t) = d f (t, B(t)) =
[
kθ̃X(t) − k f (t, b)

]
dt + σ dW̃2(u),

which shows that the dynamics (8) satisfies the expression (16).

Proposition 1. Given the information FX
T+∆, if the stochastic process follows (8) and the parame-

ters satisfy 1
2σ̂2

τ
> C(φ; T), then the characteristic function is

f (φ; t, T, ∆, v(t)
∣∣∣FX

T+∆ )

= L−
1
2 (φ; T, τ) exp

{
N(φ; T, τ) + S(φ; T, τ)e−kτv(t) + R(φ; T, τ)e−2kτv2(t)

}
.

(17)

with 

L(φ; T, τ) = 1− 2σ̂2
τ C(φ; T),

N(φ; T, τ) = F(φ; T) + M2(φ;T,τ)−µ̂2(t,T)L(φ;T,τ)
2σ̂2

τ L(φ;T,τ)
,

S(φ; T, τ) = M(φ;T)−µ̂(t,T)L(φ;T,τ)
σ̂2

τ L(φ;T,τ)
,

R(φ; T, τ) = −L(φ;T,τ)+1
2σ̂2

τ L(φ;T,τ)
,

M(φ; T, τ) = µ̂(t, T) + σ̂2
τ E(φ; T)

µ̂τ = e−kτv(t) + µ̂(t, T),

σ̂2
τ = σ2

2k (1− e−2kτ),

µ̂(t, T) = k
∫ T

t θ̃
X(u)e

−k(T−u) du,

τ = T − t.

(18)

where i(φ; T), i = C, E, F satisfies the following ordinary differential equations:
dF
dt +

1
2 σ2E2 + kθ̃E + σ2C + r̃φ + λ̃EQ̂T [eφY − 1] = 0, F(φ; T + ∆) = 0,

dE
dt + 2kθ̃C + (2σ2C− k + ρσφ)E = 0, E(φ; T + ∆) = 0,

dC
dt + 2σ2C2 + (2ρσφ− 2k)C + 1

2 φ(φ− 1) = 0, C(φ; T + ∆) = 0.

(19)

Proof. The proof of this proposition is presented in Appendix A.

4.2. Characteristic Function

In this section, we will consider the effect of Markov chain X(t) on the characteristic
function. Using Formula (17) in the previous section, we can derive that
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f (φ; t, T, ∆t, v(t)) = EQ̂T

[
f
(

φ; t, T, ∆, v(t)
∣∣∣FX

T+∆

)∣∣∣FX
t

]
= EQ̂T

[
L−

1
2 (φ; T, τ) exp

{
R(φ; T, τ)e−2kτv2(t) + S(φ; T, τ)e−kτv(t)

+N(φ; T, τ)

}∣∣∣∣FX
t

]

= L−
1
2 (φ; T, τ) exp

{
R(φ; T, τ)e−2kτv2(t) + S(φ; T, τ)e−kτv(t)

}

·EQ̂T

[
exp

{
N(φ; T, τ)

}∣∣∣∣FX
t

]
,

(20)

which means the core calculation of characteristic function is EQ̂T

[
exp

{
N(φ; T, τ)

}∣∣∣∣FX
t

]
.

Note that N(φ; T) is defined by (18) and i(φ; T), i = C, E, F satisfies the ordinary
differential equations in (19), then we can rewrite N(φ; T, τ) as

N(φ; T, τ) = F(φ; T) +
σ̂2

τ

2L(φ; T, τ)
E2(φ; T)

+
µ̂2(t, T)

2σ̂2
τ L(φ; T, τ)

E(φ; T) +
µ̂2(t, T)

2σ̂2
τ

{
µ̂2(t, T)

L(φ; T, τ)
− 1
}

.

(21)

In addition, if we try to derive the partial derivatives of (21), then

∂(N(φ; T, τ))

∂t
= E2(φ; T) · ∂a

∂t
+ E(φ; T) · ∂b

∂t
+

∂c
∂t
· d +

∂d
∂t
· c (22)

where

a :=
σ̂2

τ

2L(φ; T, τ)
, b :=

µ̂2(t, T)
2σ̂2

τ L(φ; T, τ)
,

c :=
µ̂2(t, T)

2σ̂2
τ

, d :=
µ̂2(t, T)

L(φ; T, τ)
− 1.

Therefore, the partial derivatives of a, b, c, d satisfy

∂a
∂t

=
−σ̂2e−2kτ

(
1− 2σ̂2

τ C(φ; T)
)
− 2σ̂2C(φ; T)e−2kτ σ̂2

τ

2
(
1− 2σ̂2

τ C(φ; T)
)2 ,

∂b
∂t

=
µ̂(t, T)

(
−kθ̃

X(t)e
−k(T−t)

)
σ̂2

τ

(
1− 2σ̂2

τ C(φ; T)
)

σ̂4
τ

(
1− 2σ̂2

τ C(φ; T)
)2

− µ̂2(t,T)[(−2σ̂2e−2kτ)(1−2σ̂2
τ C(φ;T))+4σ̂2

τ C(φ;T)e−2kτ σ̂2
τ ]

4σ̂4
τ(1−2σ̂2

τ C(φ;T))
2 ,

∂c
∂t

=
4µ̂(t, T)σ̂2

τ

(
−kθ̃

X(t)e
−k(T−t)

)
+ 2σ̂2e−2kτ µ̂2(t, T)

4σ̂4
τ

,

∂d
∂t

=
2µ̂(t, T)

(
−kθ̃

X(t)e
−k(T−t)

)(
1− 2σ̂2

τ C(φ; T)
)
− 2σ̂2e−2kτ µ̂2(t, T)C(φ; T)(

1− 2σ̂2
τ C(φ; T)

)2 .

(23)
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In other words, EQ̂T

[
exp{N(φ; T, τ)}

∣∣FX
t
]

can be rewritten as

EQ̂T

[
exp

{
N(φ; T, τ)

}∣∣∣∣FX
t

]

= EQ̂T

[
exp

{ ∫ t

0

∂(N(φ; T, τ))

∂t
dt
}∣∣∣∣FX

t

]

= EQ̂T

[
exp

{ ∫ t

0

(
E2(φ; T) · ∂a

∂t
+ E(φ; T) · ∂b

∂t
+

∂c
∂t
· d +

∂d
∂t
· c
)

dt
}∣∣∣∣FX

t

]
.

(24)

According to the Proposition 3.2 in [20], if Q′ denotes the transposition of Q, then

EQ̂T

[
exp

{
φ1

∫ T+∆

t
〈h, X(s)〉u(s)ds

}∣∣∣∣FX
t

]
= 〈Φ(t, T; h)X(t), Ie〉, (25)

where

Φ(t, T; h) = exp
{∫ T+∆

t

(
Q′ + φ1u(s)

)
diag[h]ds

}
,

and
Ie = (1, 1, . . . 1) ∈ RN .

Therefore, we can calculate (24) in theory if φ1 = 1 and 〈h, X(t)〉 = ∂(N(φ;T,τ)
∂t . So far, the

theoretical derivation of the characteristic function has been completed in this paper. In the
next section, we will first give the analytical solution of the ordinary differential equations
in (19) that ensure high calculation precision.

4.3. Derivation of ODEs

In this section, we will focus on deriving the analytical solutions of (19) in Proposition 1.
These solutions can greatly reduce errors caused by directly simulating numerical solutions
of differential equations and improve computational efficiency.

Proposition 2. For any T ≤ t ≤ T + ∆, if function i(φ; t), i = C, E, F follows the ordinary
differential equation

dF
dt +

1
2 σ2E2 + kθ̃E + σ2C + r̃φ + λ̃EQ̂T [eφY − 1] = 0, F(φ; T + ∆) = 0,

dE
dt + 2kθ̃C + (2σ2C− k + ρσφ)E = 0, E(φ; T + ∆) = 0,

dC
dt + 2σ2C2 + (2ρσφ− 2k)C + 1

2 φ(φ− 1) = 0, C(φ; T + ∆) = 0,

then we can let {wi} denote the times of regime switching in [T, T + ∆], and obtain the following
analytical solutions of i(φ; t), i = C, E and F(φ; T):

C(φ; t) = d−b
4σ2 ·

u(t)−1
g·u(t)−1 ,

E(φ; t) = D(φ; t) · Ẽ(φ; t, θ̃),

F(φ; T) = F1(φ; T) + F2(φ; T) + F3(φ; T)

(26)

where
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D(φ; t) = ag·u(t)
g·u(t)−1 · exp

{
d
2 t
}

,

Ẽ(φ; t, θ̃) = hi + E0(φ; wi+1, θ̃wi ),

hi =
z
∑

j=i+1
E0(φ; wj+1, θ̃wj ),

A(w) = u
1
2 (w) + u−

1
2 (w),

E0(φ; w, θ̃) = 2θ̃
d · exp

{
− d

2 (T + ∆)
}[

A(w)− A(t)
]

,

b = 2ρσφ− 2k,

d =
√

b2 − 4σ2φ(φ− 1),

a = k(b+d)
2σ2 ,

g = b−d
b+d ,

x = 1
2 d(T + ∆− t),

α = arctanh
(

g−1
g+1

)
,

y = α + xu(t) = exp
{

d(T + ∆− t)
}

,

F1(φ; T) =
z
∑

i=1

[
− σ2h2

i a2g
4d · exp

{
d(T + ∆)

}
·
{

coth(ywi+1 )− coth(ywi )

}

+σ2h2
i ·

a2gθ̃
X(wi )
d · exp

{
d(T + ∆)

}
·
{

A(wi+1)
d ·

{
coth(ywi+1 )− coth(ywi )

}

+ g+1
d
√

g ·
(

1
sinh(ywi+1 )

− 1
sinh(ywi )

)
− g+1

d
√

g ·
(

ln
∣∣∣ tanh(wi/2)

tanh(wi+1/2)

∣∣∣)}

+8 ·
(

agσθ̃
X(wi )
d

)2

·
{

A2(wi+1)
2d(g+1) ·

[
1

(g−1)+(g+1) tanh(xwi+1 )

− 1
(g−1)+(g+1) tanh(xwi )

]
− 1

8g2d ·
{

d
(

g2 + 1
)
· (wi+1 − wi)

+(g + 1)2 ·
(

1
tanh(ywi+1 )

− 1
tanh(ywi )

)
+2(g2 − 1) · ln

[
sinh(ywi+1 )

sinh(ywi )

]}

+
2A(wi+1)

(4g)3/2d
·
[
(g− 1) ·

(
ln
∣∣∣ tanh(wi/2)

tanh(wi+1/2)

∣∣∣)+ (g + 1) ·
(

1
sinh(ywi+1 )

− 1
sinh(ywi )

)]}]
,

F2(φ; T) =
z
∑

i=1

[
kθ̃X(wi)

hi ·
a
√

g
d · exp

{
1
2 d(T + ∆)

}
·
{

ln
(√

g·u(wi+1)+1√
g·u(wi+1)−1

)

− ln
(√

g·u(wi)+1√
g·u(wi)−1

)}
+ kθ̃X(wi)

·
2aθ̃X(wi )

d2 ·
{

A(wi+1) ·
√

g · ln
(√

g·u(wi+1)+1√
g·u(wi+1)−1

)
+(g + 1) · ln(g · u(wi+1)− 1) + gd · wi+1 − (g + 1) · ln(g · u(wi)− 1)− gd · wi

−A(wi+1) ·
√

g · ln
(√

g·u(wi)+1√
g·u(wi)−1

)}]
,

F3(φ; T) =
z
∑

i=1

[{
φr̃X(wi )

+ λ̃X(wi)

(
pη1

η1−φ + qη2
η2+φ − 1

)}
· (wi+1 − wi)

+σ2 ·
{

G(φ; wi+1)− G(φ; wi)

}]
,

G(φ; t) = − d+b
4σ2 · t + 1

2σ2 · ln
(

1− 1
g·u(t)

)
.

(27)
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Proof. The proof of this proposition is presented in Appendix B.

Remark 2. The basic idea of this proposition is to simplify the numerical solution process of the
differential equation. Considering that the Markov-modulated parameters remain constant before
the next regime-switching moment, this proposition creatively divides the integration interval of the
ordinary differential equation into the regime-switching interval and non-regime-switching one.
Therefore, one can solve the simple function definite integral within these small intervals.

4.4. Pricing Formulae

In this section, we will use the relationship between the characteristic function and the
expectation to derive the pricing formulae. Recall that the fair strike price Ki, i = d1, d2 of
variance swaps should satisfy V(X, 0) = 0. In other words, we can obtain that

Kd1 = EQ̂T

[
AF
N

N

∑
i=1

(
S(ti)− S(ti−1)

S(ti−1)

)2

× 1002
∣∣∣∣FX

0 ∨ FS
0 ∨ FV

0

]

=
AF
N

N

∑
i=1

EQ̂T

[(
ey(ti) − 1

)2∣∣∣∣FX
0 ∨ FS

0 ∨ FV
0

]
× 1002

=
AF
N

N

∑
i=1

EQ̂T

[(
e2y(ti) − 2ey(ti) + 1

)∣∣∣∣FX
0 ∨ FS

0 ∨ FV
0

]
× 1002

=
AF
N

N

∑
i=1

[
f (2; 0, ti, ∆t, v(0))− 2 f (1; 0, ti, ∆t, v(0)) + 1

]
× 1002.

(28)

Similarly, we can compute

Kd2 = EQ̂T

[
AF
N

N

∑
i=1

ln2
(

S(ti)

S(ti−1)

)
× 1002

∣∣∣∣FX
0 ∨ FS

0 ∨ FV
0

]

=
AF
N

N

∑
i=1

EQ̂

[
ln2
(

S(ti)

S(ti−1)

)∣∣∣∣FX
0 ∨ FS

0 ∨ FV
0

]
× 1002

=
AF
N

N

∑
i=1

EQ̂T

[
y2(ti)

∣∣∣FX
0 ∨ FS

0 ∨ FV
0

]
× 1002

=
AF
N

N

∑
i=1

f (2)(0; 0, ti, ∆t, v(0))× 1002,

(29)

where f (2)(0; 0, ti, ∆t, v(0)) = ∂ f (2)(φ;0,ti ,∆t,v(0))
∂φ2 .

5. Numerical Tests and Discussion

In this section, we will use semi-Monte Carlo simulation to verify the accuracy and
efficiency of our pricing formulae. It provides direct numerical evidence of the comparison
between the Monte Carlo simulation of the model and our formulae. We will also examine
the rationality of the promotion term in the new model, as it will help readers understand
the effects of these realistic economic factors. In addition, we will analyze the sensitivity
of (28) and (29) by studying a 1% change of model parameters. This analysis not only
helps to assess the stability and reliability of the model, but also allows us to identify the
parameters that exert the greatest influence on its results.

We assume a typical market with only two regimes, namely, the market state switches
between regime 1 and regime 2. These market states can be interpreted as bull markets (a
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good economy) and bear markets (a bad economy), respectively. Thus, the state space in
X(t) is X := {e1, e2}, and the transition rate matrix is given by

Q =

(
−0.1 0.1
0.4 −0.4

)
. (30)

Moreover, we will adopt the values of parameters in Table 1 that are used in [4,14].

Table 1. Model parameters.

Notation Parameters Regime 1 Regime 2

T Maturity 1.00 1.00
v(0) Initial volatility 0.22 0.22
S(0) Initial stock price 1.00 1.00
θ̃X(t) Long-term volatility mean

√
0.075

√
0.040

k Mean-reverting speed 2.00 2.00
σ Volatility of volatility 0.10 0.10

rX(t) Interest rate 0.08 0.06
ρ Correlation coefficient −0.40 −0.40

λ̃X(t) Jump intensity 0.30 0.20
p Probabilities of upward jumps 0.20 0.20
q Probabilities of downward jumps 0.80 0.80
η1 Inverse mean one 25.00 25.00
η2 Inverse mean two 50.00 50.00

5.1. Semi-Monte Carlo Stimulation

In this section, we will test the accuracy and efficiency of our pricing Formulae (28) and (29)
by comparing the results generated by semi-Monte Carlo simulation. This comparison more
directly and effectively demonstrates the rationality of the new model and the advantages of the
pricing formulae.

We utilize Euler–Maruyama discretization for our model (8) to Monte Carlo simulation:

M(ti+1) = M(ti) +

(
rX(ti)

− 1
2 v2(ti)

)
dt + v(ti)

√
dtW̃1(ti) + Yi,

S(ti+1) = exp
{

M(ti+1)

}
,

v(ti+1) = k
(

θ̃X(ti)
− v(ti)

)
dt + σ

√
dt
(

ρW̃1(ti) +
√

1− ρ2W(ti)

) (31)

where W̃1(ti) and W(ti) are two independent standard normal random variables. If we divide
the sampling interval [0, T] into n sub-intervals, then the time length of each part satisfies
dt = T/n.

Compared to traditional Monte Carlo simulation, semi-Monte Carlo simulation is an
effective method for improving the simulation efficiency of regime-switching models [4,20,38].
In traditional Monte Carlo simulation, randomness exists not only in the simulation of
regime-switching paths but also in the simulation of asset price and volatility processes.
This means that two identical regime paths can have different calculation results. In con-
trast, the randomness of semi-Monte Carlo simulation only exists in the regime-switching
path. Therefore, if the paths are the same, the fair price of the simulation must be the
same. Given that semi-Monte Carlo simulations require fewer computation paths than
Monte Carlo simulations, this paper leverages independent and identically exponentially
distributed random variables to effectively generate simulation paths and capture the
necessary randomness. Specifically, we will adopt the following four steps to implement
the semi-Monte Carlo simulation process:
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Step 1: Generate N = 20,000 independent identically exponentially distributed (i.i.d)
random variables with parameter βe1 . These variables represent the time until the first
regime-switching event occurs for each of the N sample paths. Based on the initial market
regime e1 and the probability of remaining in this regime q11 = 0.1, we can estimate the
number of sample paths that do not experience a regime switch before the maturity time
T = 1 as N0 ≈ e−0.1·T · N ≈ 0.90 · N . Note that the actual number of such paths may differ
due to randomness in the generation of the i.i.d random variables. Therefore, we only
need to run the following computation for (N − N0) + 1 sample paths, where N − N0 is
the number of paths that do experience a regime switch before maturity, and +1 represents
the one path that does not experience any regime switches.

Step 2: For every sample path i = 1, 2, . . . , (N − N0) + 1, calculate the conditional
characteristic function (17) according to Propositions 1 and 2. When there is no switch in
the regime switching path, it is worth noting that the difference between the analytical
solutions of the differential equation system (Proposition 2) only depends on the interval
length and the initial regime at the starting point (keeping in mind that there may have
been a switch before the path interval, and the initial regime may be different). Additionally,
the difference in the initial regime is proportional. Therefore, before starting step 2, we
assume that there are no regime switches in the whole process. Then, we calculate and save
the results under different sampling frequencies. After entering the loop simulation, for
any path, we divide it into intervals with and without switching based on the sampling
frequency. In the subsequent calculations, we call and adjust these results when there is no
switching in the initial regime.

Step 3: Utilize the conditional characteristic function in step 2 to calculate the fair
strike price Ki

dj
, i = 1, 2, . . . , (N − N0) + 1, j = 1, 2.

Step 4: Calculate the mean of the fair strike price Ki
dj

as the ultimate fair strike price
Kdj

, j = 1, 2, that is

Kdj
=

[
N0 · Kdj

(non− regime− switching) + (N − N0) · Kdj
(regime− switching)

]
N

. (32)

Moreover, we provide an algorithm (Algorithm 1) that calculates the fair strike price
for a variance swap. Here, we only take K1 as an example.

Figure 1 shows images of the fair strike price obtained from semi-Monte Carlo sim-
ulation of Equation (28) and those calculated by Monte Carlo simulation under different
observation frequencies ranging from 4 to 252. Actually, the observation frequencies repre-
sent the number of trading days in a year, with 4 and 252 representing quarterly and daily
observations, respectively.
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(a)

Figure 1. Cont.
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Figure 1. Comparison of the fair strike price obtained from model Monte Carlo simulation and our
semi-Monte Carlo simulation. (a) Kd1

with regime 1. (b) Kd2 with regime 1.

Algorithm 1: Calculation of the strike price

1 initialization;
2 generate N ← 20,000 samples with exponential distribution with parameters βe1 ;
3 define first.switch.time as the collection of these samples less than T;
4 let s0 ← 2T and f irst.switch.time← {s0, s1, . . . sn};
5 start simulation;
6 for s in first.switch.time do
7 t0 ← 0, t1 ← s;
8 generate t2, t3, . . . , te1 as following switching time in [0, T];
9 switch times← {t1, t2, . . . , te1};

10 for k in [1,252] do
11 ∆T ← T

/
k, divide [0, T] into k sampling intervals with length ∆T;

12 classify these sampling intervals: regime-switching/non-regime-switching;
13 for sampling intervals without regime-switching do
14 calculate the solution of ordinary differential equation directly
15 end
16 for sampling intervals with regime-switching do
17 divide the interval by switching time and calculate the solution of

ordinary differential equation by Equations (27) and (26)
18 end
19 calculate the conditional characteristic function according to Equation (17)

for each interval;
20 calculate the fair strike price by Equations (28) and (32)
21 end
22 end

It is evident that our solutions match the simulations well, which effectively verifies
the accuracy of our pricing formulae. Furthermore, our pricing formula has higher com-
putational efficiency, with a simulation time of 11.30401 s. In contrast, the Monte Carlo
simulation time for the model requires 3.962049 min (using the simulation running time of
Kd1 as an example).

5.2. Regime-Switching Effect

In this section, we will compare the fair strike price Kdi
, i = 1, 2 computed from the

regime-switching hybrid model and the non-regime-switching hybrid model, as shown in
Figure 2. Here, the Kdi

, i = 1, 2 without regime switching mainly refer to the situation where
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the model parameters are kept constant at the initial regime value throughout the entire
contract period T. For example, if the initial regime is bearish, then the model parameters
during the maturity T are all the values under regime 2.
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Figure 2. Comparison of the fair strike price obtained from regime-switching or non-regime-switching
models. (a,b) Kdi

, i = 1, 2 with regime 1. (c,d) Kdi
, i = 1, 2 with regime 2

Figure 2 shows that the price Kdi
, i = 1, 2 can be significantly impacted by regime

switching. More specifically, the regime tends to lower Kdi
, i = 1, 2 to some level when it

switches from a bull to a bear regime. On the other hand, when the regime switches from a
bear to a bull regime, the price tends to rise somewhat. At the same time, we also observe
that Kdi

, i = 1, 2 are relatively higher when the initial regime is in a bull state (regime 1)
compared to when the market regime is in a bear state (regime 2), which is consistent with
the findings in [4] and real financial markets. Particularly, when the observation frequencies
rises from quarterly to daily, we keep track of the price under regime 1 (see Table 2).

Table 2. Fair strike price under various observation frequencies (regime 1).

Observation
Frequency

Kd1
(Regime-

Switching)

Kd2
(Regime-

Switching)

Kd1
(Non-Regime-

Switching)

Kd2
(Non-Regime-

Switching)

Quarterly (N = 4) 684.6565 655.9717 685.9228 661.9446
Monthly (N = 12) 670.1038 650.0076 663.4953 657.1487

Fortnightly (N = 26) 657.2872 647.8999 657.8372 656.8177
Weekly (N = 52) 651.1446 646.8401 655.0941 654.8623
Daily (N = 252) 645.4533 645.5934 652.4541 654.7870

Furthermore, we can see from Table 2 that Kd1 is considerably higher than Kd2 , and
regime switching can result in large variations in Kd2 . This is mostly due to the fact that (6)
prioritizes describing the relative volatility of asset prices, whereas (5) focuses more on the
intensity of asset price swings.
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5.3. Jump Diffusion Effect

In this section, we will investigate the impact of jump diffusion by comparing the fair
strike prices Kdi

, i = 1, 2 with different jump intensities λ̃X(t) . Unless otherwise specified,
we assume that there is no jump effect in the stock price process when λ̃X(t) = 0. Since the
major concern in this section is not the regime-switching effect, we choose to explore the
jump diffusion effect under regime 1. Figure 3 shows Kdi

, i = 1, 2 at different observation
frequencies as the jump intensity λ̃X(t) increases from 0 to 0.4.
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Figure 3. Comparison of the fair strike price obtained from various jump intensities. (a) Kd1
with

regime 1. (b) Kd2 with regime 1.

From Figure 3, we can observe that at each observation frequency, the jump in S(t)
leads to higher prices, and as the jump intensity λ̃X(t) increases, the prices further in-
crease. One possible explanation for this is that jump diffusion may lead to changes in the
underlying asset prices, resulting in higher realized variances and higher prices.

5.4. Sensitivity Analysis

In this section, we will examine the sensitivity of our model parameters by computing
the fair strike prices Kdi

, i = 1, 2 on the 1% change in it. As regime switching and observation
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frequency are not the main concern in this section, we consider the sensitivity of parameters
under daily sampling and the initial state of regime 1. Table 3 shows the percentage change
in Kdi

, i = 1, 2 caused by changes in model parameters.

Table 3. Model parameters sensitivity analysis.

Parameters Value Percent Change in Kd1 Percent Change in Kd2

v(0) 0.22 0.71237780 0.71249860
S(0) 1.00 0.00000000 0.00000000
θ̃X(t)

√
0.075 1.230927000 1.23111800

k 2.00 0.10457790 0.10459840
σ 0.10 0.05727434 0.05774045

rX(t) 0.08 0.001387612 0.00043574
ρ −0.40 −0.00031455 0.00015732

λ̃X(t) 0.30 0.00606860 0.00587247
p 0.20 0.00270267 0.00222682
η1 25.00 −0.00725323 −0.00598776
η2 50.00 −0.00538579 −0.00594781

From Table 3, we can see that the three parameters—long-term volatility mean θ̃X(t) ,
initial volatility v(0), and mean reversion speed of volatility k—have a significant impact
on the volatility of fair execution prices Kdi

, i = 1, 2. Furthermore, changes in k have the
most significant impact on the volatility of prices. This is consistent with the real financial
market, where asset price volatility is primarily related to the stochastic volatility process
of the asset price. Additionally, we find that the initial stock price S(0) has no impact on
the volatility of fair execution price Kdi

.i = 1, 2.

5.5. Comparison of the New Model with the Traditional MRG Model

In this section, we will consider the fair strike price under different models and
examine how the inclusion of more realistic factors influences price. In other words, we
will compare the fair strike price under the new model illustrated in (8) with prices derived
from the traditional MRG model.

Both the Heston model and the MRG model are classic models in the stochastic field,
and it would be comprehensive to compare our new model with both of them. However,
as pointed out by Zhang [14], the connection between the MRG model and the Heston
model can be made clear under a specific assumption—that the long-term average value
of volatility θ̃ is equal to zero. Therefore, in this section, we will focus on comparing our
new model with the traditional MRG model only. Recall that the traditional MRG models
assume a continuous price process with stochastic volatility, and all the parameters in
the models are constant. To maintain this setting, we suppose that the parameters in the
traditional models are all set in regime 1, and non-regime switching occurs in maturity.

It should be noted that MRG model may not adequately capture the long-term trends in
the financial market that are influenced by structural changes in macroeconomic conditions.
However, empirical finance literature extensively documents the correlation between the
financial market and the macroeconomic environment. Moreover, sudden and unexpected
events in real-world financial markets can result in significant fluctuations in asset prices,
which cannot be disregarded, especially when pricing volatility derivatives. Therefore,
adding the assumption in our new model can make it more comprehensive and meaningful.
Figure 4 shows the strike prices obtained from Zhang’s [14] formula and ours. (Here, we
only take Kd1 as an example to show the difference.)
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Figure 4. Comparison of the fair strike price obtained under the traditional MRG model with our
new model.

From Figure 4, we can see that the price under our new model is cheaper than the
one in the traditional MRG model. This can be explained as follows. First, both regime
switching and jump diffusion contribute to the variation of the strike price, as discussed
in the previous subsection. Second, this can be interpreted by the assumption that the
parameters in the traditional MRG model are all set in regime 1 (good economy), which
is larger than the ones in regime 2 (bad economy). In other words, a bearish market can
drag down the price to some extent. Moreover, the small value of the long-term volatility
mean may lead to a lower jump probability, meaning that the regime-switching effect has a
greater effect on the price than the jump-diffusion effect. The sensitivity analysis in Table 3
can provide some evidence.

6. Conclusions

In this paper, we investigate the fair strike prices for discretely sampled variance swaps
under the Markov-modulated MRG model with asymmetric double exponential jump dif-
fusion. Compared to recent work in the variance swaps pricing field, the major contribution
of this paper is to propose an effective approach to obtain a general pricing formula and
improve the computational efficiency of semi-Monte Carlo simulation. The pricing problem
can be reduced to an expectation calculation under the risk-neutral T-forward measure.
We obtain analytical solutions for the pricing problem using the characteristic function
and the conditional transition characteristic function. Additionally, we carry out a series
of semi-Monte Carlo simulations to verify the accuracy and effectiveness of the pricing
formulae. Our experiments aim to explore the influence of regime-switching and jump-
diffusion terms, as well as analyze the sensitivity of pricing formulae parameters to the fair
strike price. We find that when regime switching occurs, either the fair strike price for good
economics will decrease or the fair strike price for bad economics will increase. When there
is a jump in market asset prices, the diffusion of the jump will accelerate changes in stock
prices, resulting in higher fair execution prices. In addition, we also find that the stochastic
fluctuation parameters of the propagation model are more sensitive to price fluctuations.

Furthermore, we would like to emphasize the practical applications of our model.
The pricing method proposed in our proposition is generalizable and provides a new
way to accurately compute Markov-modulated variables. This approach can also be
extended to other regime-switching stochastic models. For example, it could simplify the
pricing formulae presented in Elliott [25] and Yang [4] without the need for overly complex
expressions. Our attempt to price variance swaps under this new model can provide
valuable insights and numerical evidence for financial institutions and investors to better
manage and control market volatility risk, ultimately reducing trading losses.

However, it is a pity that we do not deeply consider the effect of a long contract life
where the interest rate can change stochastically. In other words, if the interest rate is
assumed to follow a specific stochastic process instead of a deterministic one, the ultimate
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risk-neutral measure and pricing formulae may differ. It would be worthwhile to explore
how to adjust the pricing approach in such cases for future studies. Moreover, it would be
worthwhile to explore reasonable methods for calibrating model parameter values, which
we lack in this paper and hope that future research can address.
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Appendix A. Proof of Proposition 1

In this appendix, a brief proof of Proposition 1 will be given. Because the effect of
Markov chain X(t) can be temporarily ignored for given information FX

T+∆, we can utilize
the tower law of expectation to simplify the conditional characteristic function as

f
(

φ; t, T, ∆t, v(t)
∣∣∣FX

T+∆

)
= EQ̂T

[
eφy(T)

∣∣∣FS
t ∨ FV

t ∨ FX
T+∆

]
= EQ̂T

[
EQ̂T

[
eφy(T)

∣∣∣FS
T ∨ FV

T ∨ FX
T+∆

]∣∣∣FS
t ∨ FV

t ∨ FX
T+∆

]
= EQ̂T

[
EQ̂T

[
eφy(T)

∣∣∣FS
T ∨ FV

T

]∣∣∣FS
t ∨ FV

t

]
.

(A1)

Therefore, we can solve the outer expectation of the inner expectationEQ̂T

[
eφy(T)

∣∣FS
T ∨ FV

T

]
to compute (A1).

We begin by solving the inner expectation EQ̂T

[
eφy(T)

∣∣FS
T ∨ FV

T

]
. To keep the notation

as simple as possible, the subscript of iX(t) , i = θ̃, r, λ̃, µ̃ will be omitted here. Let

U(φ; t, X, v(t)) = EQ̂T

[
eφy(T)

∣∣∣FS
t ∨ FV

t

]
, T ≤ t ≤ T + ∆, (A2)

where X = ln S(t) − ln S(T). According to the Feynman–Kac Theorem, function (A2)
follows the partial differential equation

∂U
∂t

+ (r̃− 1
2

v2)
∂U
∂X

+ k(θ̃ − v)
∂U
∂v

+
1
2

v2 ∂2U
∂X2 +

1
2

σ2 ∂2U
∂v2

+ ρσv
∂2U

∂v∂X
+ λ̃EQ̂T [U(φ; t, X + Y, v)−U(φ; t, X, v)] = 0,

(A3)

with
U(φ; t = T + ∆, X, v) = eφX . (A4)

As the statement in [14], we can assume that the solution of this partial Equation (A3) is

U(φ; t, X, v) = eF(φ;t)+E(φ;t)v+C(φ;t)v2+φX . (A5)

Substituting (A5) into Equations (A3) and (A4), we can obtain the following ODEs:
dF
dt +

1
2 σ2E2 + kθ̃E + σ2C + r̃φ + λ̃EQ̂T [eφY − 1] = 0, F(φ; T + ∆) = 0,

dE
dt + 2kθ̃C + (2σ2C− k + ρσφ)E = 0, E(φ; T + ∆) = 0,

dC
dt + 2σ2C2 + (2ρσφ− 2k)C + 1

2 φ(φ− 1) = 0, C(φ; T + ∆) = 0.
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Note that X = ln S(T)− ln S(T) = 0 at time t = T, then the inner expectation follows:

EQ̂T

[
eφy(T)

∣∣∣FS
T ∨ FV

T

]
= eF(φ;T)+E(φ;T)v(T)+C(φ;T)v2(T). (A6)

We next aim to compute the outer expectation. Substituting the expression of (A6)
into (A1), the outer expectation follows:

f
(

φ; t, T, ∆t, v(t)
∣∣∣FX

T+∆

)
= EQ̂T

[
eF(φ;T)+E(φ;T)v(T)+C(φ;T)v2(T)

∣∣∣FS
t ∨ FV

t ∨ FX
T+∆

]
. (A7)

Adopting the solution procedure used by [11,16], we can solve it by utilizing

f
(

φ; t, T, ∆, v(t)
∣∣∣FX

T+∆

)
=
∫ ∞

−∞
f (v(T))p(v(T)|v(t))dv(T), (A8)

where f (v) = eF(φ;T)+E(φ;T)v+C(φ;T)v2
and p(v(T)|v(t)) presents the transition density from

state (v(t), t) to state (v(T), T). As Lemma 1 holds, the volatility process v(T) at time T
can be

v(T) = e−kTv(0) + k
∫ T

0
θ̃X(u) e

−k(T−u) du + σ
∫ T

0
e−k(T−u) dW̃2(u)

= e−k(T−t)v(t) + k
∫ T

t
θ̃X(u) e

−k(T−u) du + σ
∫ T

t
e−k(T−u) dW̃2(u),

which implies that conditional expectaion µ̂τ is given by

µ̂τ := EQ̂T [v(T)|v(t)] = e−kτv(t) + k
∫ T

t
θ̃X(u) e

−k(T−u) du := e−kτv(t) + µ̂(t, T)

and the conditional variance σ̂2
τ follows

σ̂2
τ := Var[v(T)|v(t)] = σ2

2k
(1− e−2kτ).

Therefore, we can argue that the transition density p(v(T)|v(t)) must be

p(v(T)|v(t)) = 1√
2πσ̂τ

e
− 1

2σ̂2
τ
(v(T)−µ̂τ)

2

, τ = T − t. (A9)

Substituting (A9) into (A8), we then obtain that

f (φ; t, T, ∆, v(t)
∣∣∣FX

T+∆ )

=
1√

2πσ̂τ

∫ ∞

−∞
exp

 − 1
2σ̂2

τ
(v(T)− µ̂τ)

2 + F(φ; T)

+E(φ; T)v(T) + C(φ; T)v2(T)

dv(T)

=
1√

2πσ̂τ

∫ ∞

−∞
exp


(

C(φ; T)− 1
2σ̂2

τ

)
v2(T) +

(
E(φ; T) + µ̂τ

σ̂2
τ

)
v(T)

+F(φ; T)− µ̂2
τ

2σ̂2
τ

dv(T)

=
1√

2πσ̂τ

∫ ∞

−∞
exp

−
1

2σ̂2
τ


(
1− 2σ̂2

τ C(φ; T)
)
v2(T)

−2
(
σ̂2

τ E(φ; T) + µ̂τ

)
v(T)

+µ̂2
τ − 2σ̂2

τ F(φ; T)


dv(T)

=
1√

L(φ; T, τ)

√
L(φ; T, τ)√

2πσ̂τ

∫ ∞

−∞
exp


− L(φ; T, τ)

2σ̂2
τ


(

v(T)− (σ̂2
τ E(φ;T)+µ̂τ)

L(φ;T,τ)

)2

+ µ̂2
τ−2σ̂2

τ F(φ;T)
L(φ;T,τ)

− (σ̂2
τ E(φ;T)+µ̂τ)

2

L2(φ;T,τ)




dv(T).

(A10)
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To work out this integral (A10), we recall that the probability density function of the
standard normal distribution has the characteristics∫ ∞

−∞
e−a(x−b)2

dx =
√

2π
∫ +∞

−∞

1√
2π

e−
1
2

[√
2a(x−b)2

]
dx

=

√
π

a

∫ +∞

−∞

1√
2π

e−
1
2 y2

dy

=

√
π

a
, a > 0,

and for any a ≤ 0,∫ ∞

−∞
e−a(x−b)2

dx =
∫ ∞

−∞
e−ay2

dy = 2
∫ ∞

0
e−ay2

dy ≥ 2
∫ ∞

0
1 dy = ∞.

Thus we use this fact to argue that, for 1
2σ̂2

τ
> C(φ; T), the conditional function (A10) can

be derived below:

f (φ; t, T, ∆, v(t)
∣∣∣FX

T+∆ )

= L−
1
2 (φ; T, τ) exp

{
− L(φ; T, τ)

2σ̂2
τ

[
µ̂2

τ

L(φ; T, τ)
− 2σ̂2

τ F(φ; T)
L(φ; T, τ)

−
(
σ̂2

τ E(φ; T) + µ̂τ

)2

L2(φ; T, τ)

]}

= L−
1
2 (φ; T, τ) exp

{
F(φ; T) +

(
σ̂2

τ E(φ; T) + µ̂τ

)2 − L(φ; T, τ)µ̂2
τ

2σ̂2
τ L(φ; T, τ)

}

= L−
1
2 (φ; T, τ) exp


F(φ; T) + (σ̂2

τ E(φ;T)+e−kτv(t)+µ̂(t,T))
2

2σ̂2
τ L(φ;T,τ)

− (e−kτv(t)+µ̂(t,T))
2

2σ̂2
τ


= L−

1
2 (φ; T, τ) exp

{
N(φ; T, τ) + S(φ; T, τ)e−kτv(t) + R(φ; T, τ)e−2kτv2(t)

}
.

where the parameters are defined in (18), and for 1
2σ̂2

τ
≤ C(φ; T), the conditional func-

tion (A10) tends to infinity.

Appendix B. Proof of Proposition 2

In this appendix, a brief proof of Proposition 2 will be given. As shown in Appendix A
of [4], the differential equation{

dC
dt + 2σ2C2 + (2ρσφ− 2k)C + 1

2 φ(φ− 1) = 0,

C(φ; T + ∆) = 0.

There exists an analytical solution

C(φ; t) =
d− b
4σ2 ·

u(t)− 1
g · u(t)− 1

,

and all the parameters here are given by (27). Let

dG(φ; t)
dt

= C(φ; t), a =
k(b + d)

2σ2 .
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We then rewrite dE
dt + 2kθ̃C + (2σ2C− k + ρσφ)E = 0 as

d
[

exp
{

2σ2G(φ; t) + b
2 t
}

E(φ; t)
]

dt
= −2kθ̃C(φ; t) exp

{
2σ2G(φ; t) +

b
2

t
}

. (A11)

To solve this, we first compute

G(φ; t) =
d− b
4σ2 ·

1
g

∫ t

0

[
1 +

1− g
g · u(s)− 1

]
dt

= −d + b
4σ2 ·

[
t + (1− g) ·

∫ t

0

1
g · u(s)− 1

dt
]

= −d + b
4σ2 · t−

d + b
4σ2 ·

1− g
−d

·
∫ t

0

g du(s)
g · u(s)(g · u(s)− 1)

= −d + b
4σ2 · t +

1
2σ2 ·

∫ t

0

1
g · u(s)(g · u(s)− 1)

d(g · u(s))

= −d + b
4σ2 · t +

1
2σ2 · ln

(
1− 1

g · u(t)

)
.

(A12)

Then substitute (A12) into (A11) to obtain

d
[

exp
{

2σ2G(φ; t) + b
2 t
}

E(φ; t)
]

dt
= −2kθ̃ · d− b

4σ2 ·
u(t)− 1

g · u(t)− 1
· exp

{
−d

2
t
}
·
(

1− 1
g · u(t)

)

= −2kθ̃ · d− b
4σ2 · exp

{
−d

2
t
}
· u(t)− 1

g · u(t)

= aθ̃ · exp
{
−d

2
t
}
·
[

1− exp
{
−d(T + ∆− t)

}]
.

(A13)

Solving (A13), we have

E(φ; t) =
ag · u(t)

g · u(t)− 1
·
∫ T+∆

t
θ̃ exp

{
−d

2
(s− t)

}
·
[

1
u(s)

− 1
]

dt. (A14)

Note that there are some Markov-modulated parameters θ̃, r, λ̃, µ̃ in functions E(φ; t) and
F(φ; t) that can lead to “bad” expressions. We first consider dividing the sampling time
interval [T, T + ∆] in more detail. If we denote the time when regime switching happens as
w1, w2, . . . , wz, then

[T, T + ∆] =
z⋃

i=0

[wi, wi+1), i = T, 1, 2, . . . , z, T + ∆,

which yields that the Markov-modulated parameters are fixed constants in state ei, i =
1, 2, . . . , N. Therefore, there exists i such that t ∈ [wi, wi+1),
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Ẽ(φ; t, θ̃) : =
∫ T+∆

t
θ̃X(s) exp

{
−d

2
s
}
·
[

exp
{
−d(T + ∆− s)− 1

}]
ds

= Ẽ(φ; wi+1) + θ̃X(wi)

∫ wi+1

t
exp

{
−d

2
s
}
·
[

exp
{
−d(T + ∆− s)− 1

}]
ds

= Ẽ(φ; wi+1) + θ̃X(wi)

∫ wi+1

t

[
exp

{
−d(T + ∆) +

d
2

s
}
− exp

{
−d

2
s
}]

ds

= Ẽ(φ; wi+1, θ̃) +
2θ̃X(wi)

d
· exp

{
−d

2
(T + ∆)

}[
A(w)− A(t)

]
.

(A15)
In particular, for i = z, Ẽ(φ; wz+1) = E(φ; ∆) = 0. In other words, (A15) follows that

Ẽ(φ; t, θ̃) = Ẽ(φ; wi, θ̃) + E0(φ; wi+1, θ̃X(wi)
)

=
z

∑
j=i+1

E0(φ; wj+1, θ̃wj) + E0(φ; wi+1, θ̃X(wi)
)

= hi + E0(φ; wi+1, θ̃wi ).

(A16)

Then the solution (A14) of function E(φ; t) can ultimately simplify as

E(φ; t) := D(φ; t) · Ẽ(φ; t, θ̃),

where 

hi =
z
∑

j=i+1
E0(φ; wj+1, θ̃wj),

A(w) = u
1
2 (w) + u−

1
2 (w),

D(φ; t) = ag·u(t)
g·u(t)−1 · exp

{
d
2 t
}

,

E0(φ; w, θ̃) = 2θ̃
d · exp

{
− d

2 (T + ∆)
}[

A(w)− A(t)
]

.

Now we are in a position to solve{
dF
dt +

1
2 σ2E2 + kθ̃E + σ2C + r̃φ + λ̃EQ̂T [eφY − 1] = 0,

F(φ; T + ∆) = 0.
(A17)

According to (18), the computation of conditional characteristic function only requires
F(φ; T). Therefore, we will focus on the calculation of F(φ; T) by following three parts:

F(φ; T) =
1
2

σ2
∫ T+∆

T
E2(φ; t)dt + k

∫ T+∆

T
θ̃E(φ; t)dt

+ σ2
∫ T+∆

T
C(φ; t)dt + φ

∫ T+∆

T
r̃ dt +EQ̂T [eφY − 1]

∫ T+∆

T
λ̃ dt

=
z

∑
i=1

[
1
2

σ2
∫ wi+1

wi

E2(φ; t)dt
]
+

z

∑
i=1

[
k
∫ wi+1

wi

θ̃X(t)E(φ; t)dt
]

+
z

∑
i=1

[
σ2
∫ wi+1

wi

C(φ; t)dt + φ
∫ wi+1

wi

r̃ dt +EQ̂T [eφY − 1]
∫ wi+1

wi

λ̃ dt
]

:= F1(φ; T) + F2(φ; T) + F3(φ; T),

(A18)
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where

F1(φ; T) =
z
∑

i=1

[
1
2 σ2

∫ wi+1
wi

E2(φ; t)dt
]
,

F2(φ; T) =
z
∑

i=1

[
k
∫ wi+1

wi
θ̃X(t)E(φ; t)dt

]
,

F3(φ; T) =
z
∑

i=1

[
σ2
∫ wi+1

wi
C(φ; t)dt + φ

∫ wi+1
wi

r̃ dt +EQ̂T [eφY − 1]
∫ wi+1

wi
λ̃ dt

]
.

We begin by deriving the formula for F2(φ; T). In fact,

k
∫ wi+1

wi

θ̃X(t)E(φ; t)dt = kθ̃X(wi)

∫ wi+1

wi

D(φ; t) · Ẽ(φ; t, θ̃)dt

= kθ̃X(wi)

∫ wi+1

wi

D(φ; t) ·
[

hi + E0(φ; wi+1, θ̃)
]

dt

= kθ̃X(wi)
hi

∫ wi+1

wi

D(φ; t)dt + kθ̃X(wi)

∫ wi+1

wi

D(φ; t) · E0(φ; wi+1, θ̃)dt,

(A19)

which shows that we need to derive the two integrals of (A19). Note that∫ wi+1

wi

D(φ; t) · E0(φ; wi+1, θ̃)dt

=
∫ wi+1

wi

ag · u(t)
g · u(t)− 1

· exp
{

d
2

t
}
·

2θ̃X(wi)

d
· exp

{
−d

2
(T + ∆)

}[
A(wi+1)− A(t)

]
dt

=
2agθ̃X(wi)

d
·
∫ wi+1

wi

u(t)
g · u(t)− 1

· u−
1
2 (t)

[
A(wi+1)− A(t)

]
dt

=
2agθ̃X(wi)

d
·
{

A(wi+1)
∫ wi+1

wi

u
1
2 (t)

g · u(t)− 1
dt−

∫ wi+1

wi

u
1
2 (t)

g · u(t)− 1
· A(t)dt

}

=
2agθ̃X(wi)

d
·

A(wi+1) ·
−2

d
√

g
·
∫ wi+1

wi

1(√
g · u(t)

)2
− 1
· d
√

g · u(t)

− g + 1
g
·
∫ wi+1

wi

1
g · u(t)− 1

dt− 1
g
·
∫ wi+1

wi

dt
}

=
2aθ̃X(wi)

d2 ·
{

A(wi+1) ·
√

g · ln
(√

g · u(wi+1) + 1√
g · u(wi+1)− 1

)
+ (g + 1) · ln

(
g · u(wi+1)− 1

)

+gd · wi+1 − A(wi+1) ·
√

g · ln
(√

g · u(wi) + 1√
g · u(wi)− 1

)
− (g + 1) · ln

(
g · u(wi)− 1

)
− gd · wi

}
.

(A20)

and
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∫ wi+1

wi

D(φ; t)dt = a ·
∫ wi+1

wi

g · u(t)
g · u(t)− 1

· exp
{

d
2

t
}

dt

= ag · exp
{

1
2

d(T + ∆)
}
·
∫ wi+1

wi

u(t)
g · u(t)− 1

· u−
1
2 (t)dt

= ag · exp
{

1
2

d(T + ∆)
}
· −2

d
√

g
·
∫ wi+1

wi

1(√
g · u(t)

)2
− 1
· d
√

g · u(t)

=
a
√

g
d
· exp

{
1
2

d(T + ∆)
}
·
{

ln

(√
g · u(wi+1) + 1√
g · u(wi+1)− 1

)
− ln

(√
g · u(wi) + 1√
g · u(wi)− 1

)}
.

(A21)

Then we can accomplish the computation of F2(φ; T) by substituting (A21) and (A20)
into (A19).

We next aim to derive the formula for F3(φ; T). It is easy to see that

σ2
∫ wi+1

wi

C(φ; t)dt + φ
∫ wi+1

wi

r̃ dt +EQ̂T [eφY − 1]
∫ wi+1

wi

λ̃ dt

= σ2 ·
{

G(φ; wi+1)− G(φ; wi)

}
+

{
φr̃X(wi)

+ λ̃X(wi)
EQ̂T [eφY − 1]

}
· (wi+1 − wi)

(A22)

where G(φ; t) follows (A12). Since Y follows an asymmetric double exponential distribution
(3), then the expectation satisfies

EQ̂T

[
eφY − 1

∣∣∣FX
t

]
=
∫ +∞

−∞
eφy ·

(
pη1e−η1y I{y≥0} + qη2eη2y I{y<0}

)
dy− 1

= pη1 ·
∫ +∞

0
e(φ−η1)y dy + qη2 ·

∫ −∞

0
e(φ+η2)y dy− 1

=
pη1

η1 − φ
+

qη2

η2 + φ
− 1.

(A23)

Therefore, we can accomplish the computation of F3(φ; T) by substituting (A23) into (A22).
We finally try to utilize hyperbolic function to derive the formula for F1(φ; T). There

are three integrals in F1(φ; T):

1
2

σ2
∫ wi+1

wi

E2(φ; t)dt =
∫ wi+1

wi

D2(φ; t) · E2(φ; wi+1, θ̃)dt

=
1
2

σ2
∫ wi+1

wi

D2(φ; t) ·
[

hi + E0(φ; wi+1, θ̃)
]2

dt

=
1
2

σ2h2
i
·
∫ wi+1

wi

D2(φ; t)dt + σ2hi ·
∫ wi+1

wi

D2(φ; t) · E0(φ; wi+1, θ̃)dt

+
1
2

σ2 ·
∫ wi+1

wi

D2(φ; t) · E2
0
(φ; wi+1, θ̃)dt.

(A24)

Let 
x := 1

2 d(T + ∆− t),

α := arctanh
(

g−1
g+1

)
,

y := α + x.

Then we can obtain that cosh(α) = g+1√
4g

and sinh(α) = g−1√
4g

. In this sense, we can

naturally derive
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D(φ; t) · E0(φ; wi+1, θ̃) =
ag · u(t)

g · u(t)− 1
· exp

{
d
2

t
}
·

2θ̃X(wi)

d
· exp

{
−d

2
(T + ∆)

}
·
[

A(wi+1)− A(t)
]

=
2agθ̃X(wi)

d
· u(t)

g · u(t)− 1
· u

1
2 (t) ·

[
A(wi+1)− 2 cosh(x)

]

=
2agθ̃X(wi)

d
· A(wi+1)− 2 cosh(x)

g · u 1
2 (t)− u−

1
2 (t)

=
2agθ̃

X(wi)

d
· A(wi+1)− 2 cosh(x)
(g− 1) cosh(x) + (g + 1) sinh(x)

=
4agθ̃X(wi)

d
·
(

A(wi+1)
/

2
)
sech(x)− 1

(g− 1) + (g + 1) tanh(x)
,

and in the time interval [wi, wi+1),

∫ wi

wi+1

D2(φ; t) · E2
0
(φ; wi+1, θ̃)dt =

4agθ̃X(wi)

d

2

·
{ ∫ wi

wi+1

(
A(wi+1)

/
2
)2sech2(x)

[(g− 1) + (g + 1) tanh(x)]2
dt

−
∫ wi

wi+1

1− A(wi+1)sech(x)

[(g− 1) + (g + 1) tanh(x)]2
dt

}
.

(A25)

Further, if we denote xwj := 1
2 d(T + ∆− wj), j = i, i + 1, then

∫ wi

wi+1

(
A(wi+1)

/
2
)2sech2(x)

[(g− 1) + (g + 1) tanh(x)]2
dt =

(
−2
d

)
·
∫ wi

wi+1

(
A(wi+1)

/
2
)2

[(g− 1) + (g + 1) tanh(x)]2
d tanh(x)

=
A2(wi+1)

2d
·
{

1
(g + 1)

[
(g− 1) + (g + 1) tanh(xwi+1)

]
− 1
(g + 1)[(g− 1) + (g + 1) tanh(xwi )]

}
,

(A26)

and

∫ wi

wi+1

1− A(wi+1)sech(x)

[(g− 1) + (g + 1) tanh(x)]2
dt =

∫ wi

wi+1

cosh2(x)− A(wi+1) cosh(x)

[(g− 1) cosh(x) + (g + 1) sinh(x)]2
dt

=
1

4g
·
∫ wi

wi+1

cosh2(x)− A(wi+1) cosh(x)
sinh(α) cosh(x) + cosh(α) sinh(x)

dt

=
1

4g
·
∫ wi

wi+1

cosh2(y− α)− A(wi+1) cosh(y− α)

sinh2(y)
dt

= u1 + u2.

(A27)

where
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u1 =

(
1

4g

)2
·
∫ wi

wi+1

(g + 1)2cosh2(y)− 2(g2 − 1) cosh(y) sinh(y) + (g− 1)2sinh2(y)
sinh2(y)

dt

=

(
g + 1

4g

)2
·
∫ wi

wi+1

[
1 + csch2(y)

]
dt− 2(g2 − 1)

(4g)2 ·
∫ wi

wi+1

cosh(y)
sinh(y)

dt +
(

g− 1
4g

)2
·
∫ wi

wi+1

dt

=
1

8g2d
·
{

d
(

g2 + 1
)
· (wi+1 − wi) + (g + 1)2 ·

(
1

tanh(ywi+1)
− 1

tanh(ywi )

)

+2(g2 − 1) · ln
[

sinh(ywi+1)

sinh(ywi )

]}
,

u2 =
1√
4g
· A(wi+1)

4g
·
∫ wi

wi+1

csch(y)dt− 1√
4g
· A(wi+1)

4g
·
∫ wi

wi+1

cosh(y)
sinh2(y)

dt

= −2A(wi+1)

d(4g)3/2 ·
[
(g− 1) · ln

∣∣∣∣∣ tanh
(
ywi+1

/
2
)

tanh
(
ywi

/
2
) ∣∣∣∣∣+ (g + 1) ·

(
1

sinh(ywi+1)
− 1

sinh(ywi )

)]
.

Therefore, we can substitute (A26) and (A27) into (A25) and obtain that∫ wi

wi+1

D2(φ; t) · E2
0
(φ; wi+1, θ̃)dt

=

(
4agθ̃X(wi)

d

)2

·
{

A2(wi+1)

2d(g + 1)
· 1
[(g− 1) + (g + 1) tanh(x)]

− 1
8g2d

·
{

d
(

g2 + 1
)
· t + (g + 1)2

tanh(y)
+ 2(g2 − 1) · ln[sinh(y)]

}

+
2A(wi+1)

(4g)3/2d
·
[
(g− 1) · ln | tanh

(y
2

)
|+ (g + 1) · 1

sinh(y)

]}∣∣∣∣∣
wi+1

wi

.

(A28)

Similarly, we can simplify

D2(φ; t) · E0(φ; wi+1, θ̃)

=
a2g2 · u2(t)

[g · u(t)− 1]2
· exp{dt} ·

2θ̃X(wi)

d
· exp

{
−d

2
(T + ∆)

}
·
[

A(wi+1)− 2 cosh(x)
]

=
2a2g2θ̃X(wi)

d
· exp

{
d
2
(T + ∆)

}
· u2(t)

[g · u(t)− 1]2
· u−1(t) ·

[
A(wi+1)− 2 cosh(x)

]

=
2a2g2θ̃X(wi)

d
· exp

{
d
2
(T + ∆)

}
· A(wi+1)− 2 cosh(x)

[(g− 1) cosh(x) + (g + 1) sinh(x)]2

=
2a2g2θ̃X(wi)

d
· exp

{
d
2
(T + ∆)

}
· 1

4g
· A(wi+1)− 2 cosh(x)

[sinh(α) cosh(x) + cosh(α) sinh(x)]2

=
a2gθ̃X(wi)

2d
· exp

{
d
2
(T + ∆)

}
· A(wi+1)− 2 cosh(y− α)

sinh2(y)
.

(A29)
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Note that ∫ wi

wi+1

A(wi+1)

sinh2(y)
dt =

2A(wi+1)

d
·
{

coth(ywi+1)− coth(ywi )

}
,

and∫ wi

wi+1

cosh(y− α)

sinh2(y)
dt =

∫ wi

wi+1

cosh(y) cosh(α)− sinh(α) sinh(y)
sinh2(y)

dt

= − g + 1
d
√

g
·
∫ wi

wi+1

1
sinh2(y)

d sinh(y) +
g− 1
d
√

g
·
∫ wi

wi+1

1
sinh(y)

dy

= − g + 1
d
√

g
·
{

1
sinh(ywi+1)

− 1
sinh(ywi )

}
+

g− 1
d
√

g
· ln
∣∣∣∣∣ tanh

(
ywi+1

/
2
)

tanh
(
ywi

/
2
) ∣∣∣∣∣.

then the integral of (A29) in time interval [wi, wi+1) follows∫ wi

wi+1

D2(φ; t) · E0(φ; wi+1, θ̃)dt

=
a2gθ̃X(wi)

d
· exp

{
d
2
(T + ∆)

}

·
{

A(wi+1)

d
· coth(y) +

g + 1
d
√

g
· 1

sinh(y)
− g− 1

d
√

g
· ln
∣∣∣∣ tanh

(y
2

)∣∣∣∣}
∣∣∣∣∣
wi+1

wi

.

(A30)

Up to now, the only integral in (A24) that we do not compute is
∫ wi

wi+1
D2(φ; t)dt. Since

D2(φ; t) =
a2g2 · u2(t)

[g · u(t)− 1]2
· exp{dt}

= a2g2 · exp
{

d(T + ∆)
}
· u2(t)

[g · u(t)− 1]2
· u−1(t)

= a2g2 · exp
{

d(T + ∆)
}
· 1

[(g− 1) cosh(x) + (g + 1) sinh(x)]2

=
a2g
4
· exp

{
d(T + ∆)

}
· 1

[sinh(α) cosh(x) + cosh(α) sinh(x)]2

=
a2g
4
· exp

{
d(T + ∆)

}
· 1

sinh2(y)
,

(A31)

then the integral of (A31) in time interval [wi, wi+1) follows

∫ wi

wi+1

D2(φ; t)dt =
a2g
4
· exp

{
d(T + ∆)

}
·
∫ wi

wi+1

1

[sinh(y)]2
dt

= − a2g
2d
· exp

{
d(T + ∆)

}
·
{

coth(ywi+1)− coth(ywi )

}
.

(A32)

Now we can ultimately derive F1(φ; T) by substituting (A28) and (A30) into (A24).
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