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Abstract: The accurate forecasting of metal prices is of great importance to industrial producers as
the supply of metal raw materials is a very important part of industrial production. The futures
market is subject to many factors, and metal prices are highly volatile. In the past, most of the relevant
research has focused only on deterministic point forecasting, with less research performed on interval
uncertainty forecasting. Therefore, this paper proposes a novel forecasting model that combines
point forecasting and interval forecasting. First, a novel hybrid price point forecasting model was
established using Variational Modal Decomposition (VMD) and a Long Short-Term Memory Neural
Network (LSTM) based on Sparrow Search Algorithm (SSA) optimization. Then, five distribution
functions based on the optimization algorithm were used to fit the time series data patterns and
analyze the metal price characteristics, Finally, based on the optimal distribution function and point
forecasting results, the forecasting range and confidence level were set to determine the interval
forecasting model. The interval forecasting model was validated by inputting the price data of copper
and aluminum into the model and obtaining the interval forecasting results. The validation results
show that the proposed hybrid forecasting model not only outperforms other comparative models in
terms of forecasting accuracy, but also has a better performance in forecasting sharp fluctuations and
data peaks, which can provide a more valuable reference for producers and investors.

Keywords: metal price forecasting; VMD; SSA; LSTM; point forecasting; interval forecasting

MSC: 91B84

1. Introduction

Metal minerals are an important source of economic income for many metal-exporting
countries, such as Chile and Zambia, and thus, fluctuations in metal prices have a significant
impact on trade in these countries [1–3]. At the same time, price fluctuations also affect
business management, raw material supply and investment risk, as metal raw materials
are closely related to many industries and involved in industrial production [4]. This is
why price forecasting has become an important part of the solution to price fluctuations.
Forecasting is defined as the art and science of predicting future events [5]. Typically, the
process of forecasting starts with collecting historical information and extrapolating it into
the future using various mathematical models. Accurately predicting the future is essential
for effective planning in all areas of business, making forecasting one of the most important
tools managers can use to manage or organize.

In strategic mine planning, the price of mineral products is the most important and
effective parameter in evaluating engineering projects, such as mines. The feasibility
and economics of mining projects are typically assessed using the Net Present Value
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(NPV) method, which calculates the present value of the economic value of a mining
block [6]. Price forecasts are important in assessing the potential for economic extraction
of reserves [7]. In addition, by forecasting changes in ore prices, mining project decision-
makers can play a key role in making accurate project decisions, blocking development or
limiting mining activities [8]. It is worth noting that the establishment of reliable and stable
metal price forecasting models, even with small improvements in forecasting accuracy, can
bring significant benefits to metal producers [9,10]. However, the uncertain nature of time
series data is a significant barrier to forecasting accuracy. At the same time, metal price data
have a high degree of non-linear complexity and are influenced by supply and demand
and financial markets, and effective forecasting methods and high forecasting accuracy
remain a challenge [1,9,11].

To address this issue, researchers have proposed a variety of forecasting methods to
improve the accuracy of predictions. In terms of using statistical methods, a number of
econometric models have been developed to forecast metal prices, such as the Autoregres-
sive Integrated Moving Average (ARIMA) [12,13], Wavelet Analysis [14] and Generalized
Autoregressive Conditional Heterogeneity (GARCH) models [13]. Kriechbaumer et al.
proposed an improved model based on wavelet analysis and ARIMA to predict copper
prices. The results showed that the performance of the ARIMA model in predicting metal
prices was significantly improved compared to other methods [14]. However, the inher-
ent limitations of these time series models in capturing the linear behavior of the time
series and the specific non-linear patterns prevent them from further improving time series
forecasting [11,15]. As technology advances, Artificial Intelligence (AI) models have been
widely studied and used to identify and capture various features in the analysis of metal
price time series [8,12,16–19]. In terms of using metaheuristic algorithms, Eguel et al. used
simulated annealing (SA) and genetic algorithms (GAs), selected a 10-month price data set
as a training set to predict copper prices, and proposed genetic algorithms as the best model
for predicting copper prices [20]. Regarding the use of hybrid intelligence algorithms,
Alameer et al. developed a novel hybrid artificial intelligence model (GA-ANFIS) based
on a genetic algorithm and an adaptive neuro-fuzzy inference system (ANFIS) model for
predicting copper prices. Several different models were also used for a comparison with
the new model, such as GARCH, ARIMA, ANFIS (without optimization) and Support
Vector Machine (SVM) models. In the end, they concluded that the GA-ANFIS model was
better at predicting copper prices than the other models [21]. Hu et al. developed a novel
intelligent model based on the ANN-LSTM-GARCH method for predicting copper price
fluctuations using machine learning and deep learning methods. By optimizing an artificial
neural network (ANN), the prediction accuracy was greatly improved [22]. However, these
models also have their own drawbacks; for example, the widely used ANN can cause the
algorithm to lack global search capability and easily fall into local optimization [23].

Although there is a large body of literature on metal price forecasting as described
above, the uncertainty of metal price markets is not taken into account in forecasting,
despite the prevalence of this reality. At the same time, in the face of highly volatile metal
prices, deterministic forecasting can be difficult to achieve accurate predictions, which can
increase the likelihood of mispricing and lead to irrational decisions or investments. In
addition, most price forecasting focuses on single or multi-point forecasts at a deterministic
time, while interval forecasting of metal prices has received little attention. The variability
of forecasts due to uncertainty can be greatly reduced through interval quantification. At the
same time, within the upper and lower limits of the significance level considered, interval
forecasts can provide more reliable and stable references for mine managers and decision-
makers. This study proposes a novel hybrid system consisting of point forecasting and
interval forecasting models. The metal price point forecasts are used to support the price
interval forecasts. For the point forecasting, an innovative and stable hybrid forecasting
method was developed using Variational Modal Decomposition (VMD) and a Sparrow
Search Algorithm Optimization (SSA)-based Long Short-Term Memory (LSTM) neural
network to build the novel hybrid price point forecasting model. The VMD is used to
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decompose the metal price time series data, and then, each decomposition unit is predicted
using the SSA-LSTM model, and the prediction results of each decomposition unit are
summed to obtain the point prediction results. Finally, based on the best distribution
function and the point forecasting results, a range and confidence level are set and an
interval forecasting model is established, with copper and aluminum price data fed into the
model to obtain interval forecasting results. Three comparative models (LSTM, VMD-LSTM
and SSA-LSTM) are also introduced for comparative experiments.

Further material is divided into several parts. Thus, Section 2 presents the modelling
methodology; Section 3 describes the hybrid prediction model structure and the model
prediction process; Section 4 presents the model data, parameter settings and evaluation
metrics; Section 5 presents the analysis and discussion of the experimental prediction
results; and finally, Section 6 presents the overall conclusions and recommendations.

2. Methodology

This paper introduces the VMD, SSA, LSTM and the Uncertainty Prediction Method.

2.1. Variational Mode Decomposition

In 1998, Huang et al. invented Empirical Mode Decomposition (EMD) to solve the char-
acteristics of traditional decomposition methods (including wavelet transform and Fourier
transform), which cannot satisfy the uncertainty in the face of nonlinear and non-smooth
features, but this decomposition method has a serious modal confounding phenomenon.
In order to solve this problem, Konstantin Dragomiretskiy et al. proposed its improved
version of variational modal decomposition VMD in 2014. Unlike the EMD principle,
the VMD decomposition method uses an iterative search for the optimal solution of the
variational model to determine the center frequency and bandwidth of each decomposition
component, which is a completely non-recursive model, with which the model searches
for the modal components of the set of modal components and their respective center
frequencies, and each mode is smoothed after demodulation into baseband, as demon-
strated by experimental results: the method is more robust with respect to sampling and
noise. This means that the non-periodic signal is analyzed in the frequency domain and the
complex signal is decomposed into multiple harmonics [24]. It is currently used in many
fields [25,26].

The goal of VMD is to decompose real-valued input signals f(t) into discrete sub-
signals (modes) uk, assuming that each mode uk is mostly compact in the vicinity of the
frequency centerωk. Use the VMD method to decompose f(t) into k sub-sequences. The
procedure is as follows.

Step 1: For each mode uk, the associated resolved signal is calculated using the Hilbert
transform and the spectrum is constructed.

Step 2: The spectrum of the modes is shifted to the baseband by the respective esti-
mated center frequencies.

Step 3: The bandwidth is estimated from the Gaussian smoothness of the demodu-
lated signal, i.e., the gradient L2 of the signal to estimate the bandwidth. The resulting
constrained variational problem is as follows:

min
{uk},{ωk}

{
∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2

}
s.t.

K
∑

k=1
uk = f

(1)

where, uk is the first k modal component,ωk is the frequency center of the k, which is the
frequency center corresponding to the first mode and δ(t) is the unit pulse function.

Step 4: Introduce the quadratic penalty term and the Lagrange multiplier λ. The
Lagrange expression is obtained by transforming the constrained variational problem into
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an unconstrained variational problem, with the quadratic penalty term α. The effect is to
reduce the interference of Gaussian noise.

L({uk}, {ωk}, λ) = α∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2

+‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉
(2)

Step 5: Finally, the solution is carried out using the alternating direction multiplier
method (ADMM). 

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω)+λ̂(ω)/2

1+2α(ω−ωk)
2

ωn+1
k =

∫ ∞
0 ω|ûn+1

k (ω)|2dω∫ ∞
0 |û

n+1
k (ω)|2dω

λ̂n+1(ω) = λ̂n(ω) + γ

(
f̂ (ω)−∑

k
ûn+1

k (ω)

) (3)

2.2. Sparrow Search Algorithm

The Sparrow Search Algorithm SSA is a novel swarm intelligence optimization algo-
rithm inspired by the foraging and anti-predation behavior of sparrows, proposed by Xue
et al. in 2020 [27]. It has the characteristics of fast convergence and strong search ability,
and thus, this paper uses the sparrow optimization algorithm to search for the optimization
of LSTM parameters and improve its prediction accuracy.

In SSA, individuals are divided into three categories: discoverers, followers and
vigilantes, and the position of each individual corresponds to a solution. The algorithm
obtains the position of the optimal solution by continuously updating the positions of these
three categories of individuals and calculating the fitness value of all individuals at each
cycle, with the main update iteration steps shown below.

Step 1: Initialize the population, the proportion of predators and joiners and the
number of iterations.

Step 2: Calculate the fitness values and sort them from largest to smallest.
Step 3: Update the finder position (1).
Step 4: Update the follower position (2).
Step 5: Update the vigilante position (3) (Aware of Danger Sparrow).
Step 6: Calculate the fitness value and update the sparrow position.
Step 7: If the requirements are met, output the result; otherwise, repeat steps 2–6.

(1) Finder position update.

The finder checks for predators in the foraging area and if not, searches exten-
sively for food; if there are predators, it flies to a safe area. The expression is shown in
Equation (10) below.

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·imax

)
, R2 < ST

Xt
i,j + Q · L, R2 ≥ ST

(4)

where t is the number of current iterations; Xt
i,j is the position of the ith sparrow in the jth

dimension in generation t, imax is the maximum number of iterations, which is a random
number of (0, 1], Q is a random number obeying a normal distribution and L is an all −1
matrix, R2 is the alarm value and ST is the safety threshold.

(2) Follower position update

When a follower joins, it is determined whether it is eligible to compete with the finder
for food i.e., whether its location is better, if its location corresponds to a lower fitness level
then it is not eligible to compete and it needs to fly to another area to forage; otherwise, the



Mathematics 2023, 11, 2738 5 of 16

joiner will forage in the vicinity of the best individual Xp; otherwise, the joiner will forage
near the best individual. The expressions are shown below.

Xt+1
i,j =

 Q · exp
(

Xt
worst −Xt

i,j
i2

)
, i < n

2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣ · A+ · L, i ≥ n
2

(5)

where Xt
worst denotes the position of the worst adapted individual in generation t, Xt+1

p
denotes the position of the best adapted individual in generation t + 1 and A is a matrix of
the same dimension as L with elements that are subsequently pre-defined as 1 or −1 and
satisfy A+ = AT (A AT)−1.

(3) Vigilante position update

When individuals are at the periphery of the population, they need to adopt anti-
predatory behavior to achieve a higher degree of adaptation; when they are at the center of
the population, they need to move closer to their peers to stay away from the danger zone.
The expressions are as follows.

Xt+1
i,j =


Xt

best + β×
∣∣∣Xt

i,j − Xt
best

∣∣∣, fi > fg

Xt
i,j + K×

∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+ε

, fi = fg

(6)

where Xx
best is the global optimal position in the t generation, β is the control step size

that follows a (0, 1) normal distribution, K is a constant of [−1, 1], ε is a constant that
avoids the denominator being zero and fg and fw are the current best and worst fitness
values, respectively.

2.3. Long Short-Term Memory Neural Network

Hidden variable models have long suffered from long-term information preservation
and short-term input deficits. LSTM is a modified Recurrent Neural Network (RNN)
proposed by Hochreiter et al. in 1997, which consists of an input layer, an implicit layer, a
recurrent layer and an output layer [28]. Shown in Figure 1 is the Long Short-Term Memory
Neural Network.
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Figure 1. Long Short-Term Memory Neural Network.

In order to solve the long dependency problem of RNN based on historical data, the
problem of long-term time series processing was enhanced by adding memory unit states in
the implicit layer and also improving the problems of gradient disappearance and gradient
explosion [29,30].

The control units are created in the implicit layer as forgetting gates ft, input gates it
and output gates ot. The forgetting gate is to selectively forget the information in the cell;
the input gate is to selectively record new information into the cell state. The forgetting gate
selectively forgets the information in the cell; the input gate serves to selectively record new
information into the cell state, and the input gate controls how much of the new data from
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the candidate memory cell is used
∼
Ct. The output gate is to take the stored information to

the next neuron. The expressions for the calculation of each variable are shown below:

ft = σ(Wf[ht−1, xt] + bf)
it = σ(Wi[ht−1, xt] + bi)
∼
Ct = tanh(Wc[ht−1, xt] + bC)
ot = σ(Wo[ht−1, xt] + bo)

Ct = ftCt−1 +
∼
Ct

ht = ottanh(Ct)

(7)

where σ is the sigmoid activation function; W f , Wi, Wc and Wo are the weight matrices of
the respective gates; b f , bi, bc and bo are the bias parameters of the corresponding gates;
and xt, ht and Ct are the cell inputs, outputs, and states at the current.

2.4. Interval Prediction Theory

In recent years, many researchers have started interval predictions of time series data
based on point prediction results and the most appropriate distribution function to capture
the trend characteristics of the time series objects they are studying, such as airborne
particulate matter, wind speed, etc. [31–35].

This forecasting method first requires fitting the time series data with a distribution
function, mining its relevant features and finding the most appropriate distribution function.
This section introduces five metal price distribution models, Weibull, Logistic, Lognormal,
Normal and Gamma five distribution functions DFs to represent metal price states. The
associated probability density functions and cumulative distribution functions are shown
in Table 1.

Table 1. Probability density functions (PDFs) and cumulative distribution functions (CDFs).

Distribution Functions PDF/CDF Parameters

Logistic f (x; µ; σ) =
exp[−(x−µ)/σ]

σ(1+exp[− x−µ
σ ])2 ∞ > µ > −∞ location parameter

F(x; µ; σ) = 1
1+exp[− x−µ

σ ]
σ > 0 scale parameter

Weibull f (x; λ; k) = k
λ

( x
λ

)k−1exp
[
−
(

k
λ

)k
]

, x > 0 k > 0 shape parameter

F(x; λ; k) = 1− exp
[
−
(

k
λ

)k
]

λ > 0 shape parameter

Normal f (x; µ; σ) = 1
σ
√

2π
exp

[
− (x−µ)2

2σ2

]
µ > 0 location parameter

F(x; µ; σ) = 1
σ
√

2π

∫ x
0 exp

[
− (t−µ)2

2σ2

]
dt σ > 0 scale parameter

Gamma f (x; k; θ) = xk−1exp
(
− x

θ

)
/
[
θkΓ(k)

]
, x > 0 k > 0 shape parameter

F(x; k; θ) = 1
θkΓ(k)

∫ x
0 tk−1exp

[
− t

θ

]
dt, x > 0 θ > 0 scale parameter

Lognormal f (x; µ; σ) = 1
xσ
√

2π
exp

[
− (lnx−µ)2

2σ2

]
, x ≥ 0 µ > 0 location parameter

F(x; µ; σ) = 1
σ
√

2π

∫ x
0

1
t exp

[
− (lnt−µ)2

2σ2

]
dt σ > 0 scale parameter



Mathematics 2023, 11, 2738 7 of 16

Point forecast values and distribution functions are then used to provide uncertainty
information about future values. A dynamic interval forecasting method is proposed to
give uncertainty information about future prices by updating the expectation at the next
point using the forecast value. For example, the forecast value of the next point is ŷ, and ŷ
almost reaches the maximum of the historical data. If the forecasts are reliable and accurate,
then the lower and upper limits of the interval at the next point are very large values. At
the α significance level, the relationship between the upper and lower limits and the real
value can be expressed by Equation (8):

P(Imin ≤ Yt ≤ Imax) = 1− 2α (8)

In this paper, price values are random variables for which estimates are considered as
expectations of future points. Equation (8) can be written as Equation (9):

P{Imin ≤ Yt ≤ Imax | E(Yt) = ŷ} · P{| E(Yt) = ŷ} = 1− 2α (9)

In addition, we assume that the form of the predicted values is similar to the historical
distribution f. Therefore, once the distribution function of the original time series has been
determined, the historical variance S2 can be used as the variance of the unknown quantity
points. The conditional probability is then equal to Equation (10); thus, it is possible to
calculate, at a certain confidence level, α. The values of the upper and lower bounds are
calculated at a certain confidence level.{

(Imin, Imax) | Imin ≤ Yt ≤ Imax,
∫ Imax

Imin

f (x|Θ̂)dx = 1− 2α

}
(10)

Equation (10) can also be written as Equation (11):
[
Îmin, Îmax

]
=
[
Îmin, ŷ

][
ŷ, Îmax

]∫ ŷ
Îmin

f (x|Θ̂)dx = F(ŷ)− α∫ Îmax
ŷ f (x|Θ̂)dx = 1− F(ŷ)− α

(11)

3. Hybrid Forecasting Model

This section details the structure of the hybrid forecasting model developed and the
model-forecasting process.

3.1. Model Structure

There are five main steps in the prediction model (Figure 2), described in detail below.

(a) VMD decomposition: the experimental metal price dataset is decomposed into different
modes through variational modal decomposition (VMD), as described in Section 2.1.

(b) Optimization of prediction model parameters: the Sparrow search algorithm (SSA)
was used to design an optimized long- and short-term memory neural network
(LSTM), i.e., hybrid SSA-LSTM, and then, the established SSA-LSTM model was used
to predict each mode.

(c) Point prediction: the predictions of these models are summed according to the inverse
decomposition model to obtain the final point prediction.

(d) Distribution function (DF) estimation: five distribution functions, Weibull, Logistic,
Lognormal, Normal and Gamma, are used to model the metal price time series. The
ability to fit is strongly related to the estimated parameters of the DFs. Two different
estimation methods, maximum likelihood estimation (MLE) and the optimization
algorithm SSA, were used to determine the DF parameters. Finally, the distribution
function with the best fitting ability (R2) was used as the basis for the metal price
characteristics in subsequent interval forecasts.
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(e) Interval forecasting: interval metal price forecasting can be achieved based on point
forecasts, the optimal distribution function for higher R2 and the interval forecasting
theory given in Section 2.4.
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3.2. Figures, Tables and Schemes

The VMD, SSA and LSTM are coupled to form a VMD–SSA–LSTM metal price fore-
casting model with the following forecasting steps.

Step 1: Metal price information for the previous n trading days is selected as input to
the model.

Step 2: The original price time series is decomposed using the Variational Modal Decom-
position (VMD) method to obtain k subcomponents.

Step 3: Set the SSA parameters of the sparrow search algorithm, set the population size N
the maximum number of iterations T, use the SSA to find the optimal parameters
of the LSTM and determine the optimal initial learning rate of the LSTM η and
the number of neurons in the hidden layer H. Finally, a coupled model of the
SSA-LSTM is developed.

Step 4: Input each of the k components into the SSA-LSTM prediction model to obtain the
k prediction results.

Step 5: Finally, the point predictions are obtained by superimposing the predictions of the
k components.

Step 6: Fitting the actual values of metal prices by means of a distribution function and
selecting the distribution function with the largest determination coefficient deter-
mination coefficient.

Step 7: Based on the results of the optimal distribution function and the point forecast, the
interval forecast is designed assuming uncertain information, such as the forecast
range and confidence level.

4. Hybrid Predictive Model Applications

This section is divided into three parts: data introduction, parameter setting and
model evaluation metrics, as described below.

4.1. Introduction to the Data

The data source for this study is the listed prices of copper and aluminum metal (in
RMB) on the Shanghai Futures Exchange, and the daily prices of copper and aluminum
metal are used to test the hybrid forecasting model developed. The time interval selected
was from 5 January 2012 to 28 November 2022. Specifically, these datasets consist of two
subsets: the training dataset (in-sample) ranging from 5 January 2012 to 21 August 2019
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(70%), which is used to build the forecasting model; and the testing dataset (out-of-sample)
ranging from 22 August 2019 to 28 November 2022 (30%), which is used to validate the
performance of the designed model. Details of the total number of samples, the number
of training samples, the number of test samples and the maximum, minimum, mean and
standard deviation of the samples for the experimental dataset are shown in Table 2.

Table 2. The descriptive statistics of these two metal prices.

Metal Prices (RMB) Total Training Test Max Min Average Standard Deviation

Copper 2647 1856 791 76,840 33,630 51,640.92 9519.910
Aluminum 2647 1856 791 24,330 9825 14,864.52 2551.76

4.2. Parameter Settings

When the VMD method is used to decompose the original metal price data, the value
of the number of modes k has a great influence on the decomposition effect. When k is 7,
the corresponding central frequency is more dispersed, and thus, the value is 7.

The neural network of the single LSTM model is constructed using a double hidden
layer structure, with the number of neurons H contained in each hidden layer being 20, the
training count E being 200 and the learning rate η being taken as 0.005.

The VMD–SSA–LSTM hybrid model was set to have a population size of 50 sparrows
and a maximum number of iterations M of 10; 20% of the population was found, with
the remainder being joiners. The safety threshold is 0.8, and when the warning value
is less than 0.8, there is no predator; otherwise, there is a predator that is dangerous
to the population and needs to go elsewhere to feed. The sparrow search algorithm
optimization LSTM parameters number of neurons H, training number E and learning
rate η are [10, 200], [10, 200] and [0.001, 0.02], respectively.

4.3. Evaluation Indicators

To evaluate the predictive capability of the proposed hybrid system, seven evaluation
metrics are introduced in this paper. These performance metrics include the performance of
the prediction model at five measurement points [36,37], the package Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Nash-
Sutcliffe efficiency coefficient (NSE) and coefficient of determination R2, and two generic
metrics reflecting interval prediction capability [38,39], Interval forecasts normalized av-
erage width (IFNAW) and Interval forecasts coverage probability (IFCP). The detailed
formulas and definitions of the above model performance metrics are shown in Table 3.

Table 3. The considered evaluation indices.

Metrics Definition Equations

MAE The mean absolute error MAE = 1
N

N
∑

t=1
|yt − ŷŷt|

RMSE The root means square error RMSE = 1
N

N
∑

t=1
(yt − ŷŷt)

2

MAPE The mean absolute percent error MAPE = 1
N

N
∑

t=1
|(yt − ŷŷt)/yt| × 100%

R2 Coefficient of determination R2 = 1−
(

N
∑

t=1

(
F̂t − F

))
/
(

N
∑

t=1
(Ft − F)

)
NSE Nash–Sutcliffe efficiency coefficient E = 1− ∑T

t=1(Qt
o−Qt

m)
2

∑T
t=1 (Qt

o−Qo)
2

IFNAW Interval forecasts normalized average width IFNAW = 1
N

N
∑

t=1
[(Ut − Lt)/(ymax − ymin)]

IFCP Interval forecasts coverage probability IFCP = 1
N

N
∑

t=1
ct, ct =

1, if yt ∈ [Lt, Ut]

0, otherwise
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5. Analysis of Experimental Results

In this section, two experiments are conducted: metal price point prediction and
interval prediction. In order to demonstrate the better forecasting capability of this hy-
brid model, four benchmark models are introduced for a comparison, including LSTM,
SSA-LSTM, VMD–LSTM and VMD–SSA–LSTM, thus illustrating the effectiveness and
forecasting capability of the proposed hybrid system.

5.1. Point Forecasting of Metal Prices

In this section, an innovative hybrid model combining Variational Modal Decomposi-
tion (VMD) and SSA–LSTM, namely VMD–SSA–LSTM, is used for the point forecasting of
prices of copper and aluminum metals. To demonstrate that the hybrid VMD–SSA–LSTM
model proposed in this paper has good forecasting capability, three comparative models,
LSTM, SSA–LSTM and VMD–LSTM, are also developed in this paper. A comparison of
the price forecast and true value trends of the four models is shown in Figure 2, and a
comparison of the forecast scatter is shown in Figure 3. In addition, five evaluation metrics
were used to reflect the prediction level of the models, MAE, RMSE, MAPE, NSE and R2,
and they are proposed. The detailed values of the errors for the proposed hybrid and
comparative models are shown in Table 4, where the bolded labeled values are the best
values for each evaluation indicator.
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Table 4. Forecast errors of different models for copper and aluminum metal prices.

Metal Prices Methods MAE RMSE MAPE R2 NSE

Copper price

LSTM 633.8126 995.2734 1.1216% 0.99012 0.98961
SSA–LSTM 602.5823 874.5603 1.0183% 0.99546 0.99198

VMD–LSTM 600.2264 821.1074 1.0841% 0.99608 0.99293
VMD–SSA–LSTM 543.2012 763.0124 0.8789% 0.99827 0.99389

Aluminum price

LSTM 428.52 610.0284 2.1628% 0.99604 0.96192
SSA–LSTM 212.084 316.8024 1.1392% 0.99289 0.98973

VMD–LSTM 213.1229 303.9368 1.1715% 0.99221 0.99055
VMD–SSA–LSTM 172.7794 233.5254 0.9464% 0.99733 0.99442

As can be seen from Table 4, the VMD–SSA–LSTM model has a more obvious advan-
tage in predicting metal prices compared to the LSTM model and the VMD–LSTM model,
where for copper metal prices, with a reduction of 14.30%, 9.85% and 9.50%, respectively,
in the indicator MAE and 23.34%, 12.75% and 7.08%, respectively, in the RMSE, decreases
in MAPE of 0.24%, 0.13% and 0.21%, respectively, increases in the R2 indicator of 0.82%,
0.28% and 0.22% and increases in the NSE of 0.43%, 0.19% and 0.10%. For aluminum metal
prices, there were decreases of 59.68%, 18.53% and 18.93%, respectively, in the indicator
MAE, and the RMSE decreased by 61.72%, 26.29% and 23.17%, respectively, with decreases
in MAPE of 1.22%, 0.19% and 0.23%, respectively. The indicator R2 increased by 0.13%,
0.45% and 0.52%, respectively, and NSE increased by 3.38%, 0.47% and 0.39%, respectively.

Figure 3 reflects the comparison between the predicted and true price trends of the
four models. It can be seen from Figure 2 that the LSTM model has poor prediction results
due to its large deviation from the actual values, while the SSA model has the second
best prediction results, and the VMD–SSA–LSTM and VMD–LSTM models have better
prediction results due to their higher overlap with the measured values, but there is no
significant difference between these two models; furthermore, according to the scatter plot
in Figure 3, it can be seen that the VMD–SSA–LSTM model has the best convergence and
slightly outperforms the VMD–LSTM and SSA–LSTM models in terms of peak prediction
accuracy and fluctuation.

It can be seen from Figure 3 that the LSTM model has poor prediction results due to
its large deviation from the actual values, while the SSA model has the second best pre-
diction results, and the VMD–SSA–LSTM and VMD–LSTM models have better prediction
results due to their higher overlap with the measured values, but there is no significant
difference between these two models; furthermore, according to the scatter plot in Figure 4,
it can be seen that the VMD–SSA–LSTM model has the best convergence and slightly
outperforms the VMD–LSTM and SSA–LSTM models in terms of peak prediction accuracy
and fluctuation.

In summary, it can be seen that the VMD–SSA–LSTM model has the highest prediction
accuracy, and it can also be seen that after the data has been decomposed by VMD, the
prediction accuracy is much higher than that of the data without VMD decomposition,
which indicates that VMD decomposition is sufficient for noise reduction of the original time
series and extracting the complex and effective information implied in the price data, and
to a certain extent, it can better reflect the intrinsic mechanism of prices. Thus, it also shows
the importance of VMD decomposition in time series forecasting. The SSA optimizes the
model parameters of the LSTM and improves the efficiency of model parameter selection,
which shows that the hybrid VMD–SSA–LSTM forecasting model proposed in this paper
is effective.
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5.2. Interval Forecasting of Metal Prices
5.2.1. Distribution Fitting

Numerous scholars have introduced a variety of distribution functions, DFs, to de-
scribe time series in different fields [31,40]. The determination coefficient (0 ≤ R2 ≤ 1) is
used to determine the level of fit of these DFs. The larger the R2, the better the fit of the DFs.

In this section, five DFs—Weibull, Logistic, Lognormal, Normal and Gamma—are
used to represent metal price states. The associated probability density functions and
cumulative distribution functions are shown in Table 1. The calculation of the parameters
of the DFs is an important step in this section. The traditional method for estimating the
parameters of the DFs is to use the method of great likelihood estimation (MLE). However,
parameters can also be calculated using intelligent optimization algorithms to maximize
the value of the objective function of R2, ultimately improving the fit of the DFs.

In this paper, a Sparrow Search Algorithm (SSA) is used to optimize the parameters of
interest, and MLE is used as a comparative method to illustrate the excellent optimization
performance of SSA. Table 5 shows the parameters of the five DFs estimated using both MLE
and SSA methods. These parameters can be used to describe the scales and translations of
these DFs. Using the coefficient of determination R2 as an evaluation indicator that reflects
the ability to fit the distribution, the values are shown in Table 6. It can be seen that the
values of R2 calculated based on MLE and SSA are different, and the value of R2 for SSA is
higher than that of MLE, indicating that SSA is associated with a better estimation in all
cases, which further confirms that SSA is more effective than MLE. We can also see that the
Weibull distribution function is the most appropriate distribution function in most cases. It
can also be seen from Table 5 that the values of these parameters are different for the DFs
obtained using the two methods but are all within one order of magnitude.

Table 5. Parameter values of the different distribution functions determined using MLE and SSA.

Metal Prices Methods
Logistic Weibull Normal Gamma Lognormal

µ σ λ k µ σ k θ µ σ

Copper price MLE 50,959.1 5312.24 55,680.8 5.5724 51,640.9 9519.91 30.33 1702.38 10.835 0.181
SSA 48,940.5 5121.32 54,524.2 6.1856 50,237.3 9454.52 25.63 1759.68 10.152 0.192

Aluminum price MLE 14518.1 1310.55 15,979.6 5.43863 14,864.5 2551.76 37.5543 395.814 9.59336 0.160201
SSA 13125.6 1225.36 14,658.7 6.09564 13,582.9 2415.85 33.7821 409.254 8.87562 0.18.245

Table 6. R2 values of the five distribution functions based on MLE and GWO.

Metal Prices Methods Logistic Weibull Normal Gamma Lognormal

Copper price MLE 0.9853 0.9973 0.9927 0.9859 0.9796
SSA 0.9958 0.9995 0.9986 0.9961 0.9938

Aluminum price MLE 0.9856 0.9976 0.9956 0.9901 0.9852
SSA 0.9989 0.9997 0.9996 0.9990 0.9984
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5.2.2. Interval Forecasts

Unlike point forecasts, interval forecasts can provide upper and lower bounds on
observations and construct interval forecasts at a given level of significance. It can provide
investors in the metal’s financial markets with more uncertain information to help them
analyze metal market conditions. Based on the point forecasting results of the hybrid model
(VMD–SSA–LSTM), the metal price best-fit distribution function (normal distribution) and
the interval prediction method [31–35], interval forecasts of metal prices can be made at a
given significance α level. In addition, two evaluation metrics listed in Table 3 (IFNAW
and IFCP) are presented in this section with the aim of evaluating the performance of
interval prediction. It should be noted that the optimal interval prediction should satisfy
the following conditions: the larger the IFCP (0 ≤ IFCP ≤ 1) and the smaller the IFNAW at
the α significant level, the better the predictive performance of the interval prediction at
the same time.

Table 7 presents the metal price interval forecasting results for five different signif-
icance levels. Based on the interval forecasting results in Table 7, it is evident that the
interval forecasts vary in accuracy due to changes in width at different significance levels;
for example, the interval forecasts for copper prices are 84.32% (IFCP), 0.0383 (IFNAW),
100% (IFCP) and 0.0454 (IFNAW) at significance levels of 0.1 and 0.05, respectively.

Table 7. The interval forecasting results of the metal price under different significance levels.

Level (α) 0.1 0.07 0.05 0.03 0.01

Copper price IFCP 84.32% 96.59% 100% 100% 100%
IFNAW 0.0383 0.0421 0.0454 0.0500 0.0589

Aluminum price IFCP 85.34% 88.50% 90.52% 93.05% 99.12%
IFNAW 0.0394 0.0433 0.0467 0.0514 0.0605

For a more visual presentation of the interval forecasts, Figure 5 shows the three metal
price interval forecasts at three significant levels. As can be seen from the graph, the dots
represent the actual values and the colored areas represent the forecast intervals. It is
clear that the interval forecasts perform well, with a large number of actuals in the shaded
areas. In particular, for point forecasts of a time series where the errors are often larger
at the peaks and troughs and where there is greater volatility, interval forecasting can
improve the accuracy of the forecasts in these areas, and it is also worth noting that the
forecasting performance of interval forecasting depends, to a large extent, on the results of
point forecasting.
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6. Conclusions

This paper presents a hybrid forecasting system for a metal price time series. For
point forecasting, a new hybrid forecasting model for metal price forecasting is built based
on variational modal decomposition, a sparrow search algorithm and a long short-term
memory neural network LSTM technique. Tests against other forecasting models showed a
year-on-year reduction of around 10% in the Mean Absolute Error (MAE), indicating that
the hybrid forecasting model outperformed other comparative models. In addition, the
point forecasting results also fully illustrate that the forecasting model makes full use of the
VMD decomposition technique for data noise reduction and the SSA for optimizing the
LSTM neural network parameters to improve the accuracy of metal price forecasting. In
terms of interval prediction, five distribution functions are first introduced, the distribution
characteristics of metal prices are analyzed and the parameters of the distribution functions
are optimized using the SSA, which improves the distribution fitting ability and shows
strong optimization performance, with the best fitting of the positive-terrestrial distribution
function and the highest coefficient of determination. The interval prediction results of
metal prices were then obtained based on the optimal point prediction results and the
optimal distribution function. The numerical results show that there is a good interval-
prediction effect at different significance levels, with higher IFCP values and smaller IFNAW
values, and the majority of the actual values of the data lie in the prediction interval, and
the interval coverage can basically reach over 85%.

In conclusion, this study has developed a mixed point and interval forecasting model
for copper and aluminum metal prices. The forecasting model has better accuracy and
robustness in terms of forecasting results and forecasting capability, which can provide
more reference value for futures investors and policy-makers. At the same time, the
authors believe that the prediction results of this forecasting model need to be applied to
engineering practice, and the next step in the research is to prepare the predicted price
as dynamic parameters to be applied to the dynamic boundary grade measurement of
metal mines to provide theoretical guidance for the future production planning of mining
enterprises. In addition, the single-step forecasting approach has some limitations, and
further research will be carried out in the future in the area of multi-step forecasting.
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