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Abstract: Presented in this current study is the numerical analysis of magnetohydrodynamics
Williamson nanofluid flow over an exponentially stretching surface. The most important aspect of the
investigation is that the effects of the magnetic field, chemical reaction and thermal radiation in the
fluid flow are taken into account. The partial differential equations governing the present Williamson
nanofluid flow problem were observed to be highly nonlinear and coupled. Suitable similarity
transformations were used to transmute the coupled system of nonlinear partial differential equations
governing the fluid flow into a linear system. The linear system was solved numerically using the
spectral quasi-linearization method. The MATLAB bvp4c numerical technique and a comparison
with existing results for the skin friction coefficient were used to confirm the appropriateness of the
method in solving the current problem. The influence of some pertinent physical parameters on the
fluid’s velocity, temperature and concentration profiles were displayed graphically. The effects of all
the physical parameters on the skin friction coefficient, Nusselt number and Sherwood number were
portrayed in a tabular form. It was noted that enhancing the thermal radiation parameter reduces the
fluid’s temperature, Nusselt number and the skin friction coefficient, while the Sherwood number
is improved.

Keywords: magnetohydrodynamics; Williamson nanofluid; quasi-linearization; chemical reaction;
thermal radiation

MSC: 65N12; 76M22; 76M25; 80M25

1. Introduction

Non-Newtonian fluids occur most often in industrial and engineering applications.
The rheological properties of the non-Newtonian fluids cannot be explained using the
famous Navier–Stokes equations. As a consequence, a number of models have been used
to describe the characteristics of non-Newtonian fluids. These models include the Ellis
model [1], Carreaus model [2], power law model [3], Cross model [4] and Casson model [5],
to mention but a few. One special type of non-Newtonian model is the Williamson model [6],
which was proposed to describe the flow of pseudoplastic materials. The boundary layer
flow of the pseudoplastic materials has found applications in bio-engineering, chemical
and nuclear industry, material processing and geophysics.

In fluid dynamics, Sakiadis [7] was the first researcher to study the boundary layer
flow over a continuous stretching surface. An inaguaral study of fluid flow of Blasius type
past a stretching surface was initiated by Crane [8]. The study of fluid flow over a stretching
sheet has been a subject of interest in recent years due to its significant importance in areas
such as metallurgical processes, polymer extrusion, plastic films, metal spinning, etc. There
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are quite a number of studies that have been performed on fluid flow past a stretching
sheet, i.e., [9–13], among others.

In thermal engineering, the enhancement of the thermal characteristics of heat transfer
fluids is a priority. The thermal conductivity and heat transfer qualities of the base fluid
can be improved by dispersing nanosized (1–100 nm) solid particles into the fluid. These
nanoparticles are usually metals, carbon nanotubes, oxides or carbines. The enhancement
of heat transfer in fluids as a result of dispersing ultra-fine particles was first reported by
Masuda et al. [14]. The term ‘nanofluid’, a fluid that contains dispersed nanoparticles, was
introduced by Choi and Eastman [15]. A significant number of studies have been carried
out on nanofluids, which inlcude the works by Elboughdiri et al. [16], Ashraf et al. [17],
Nabwey et al. [18], Selimefendigil et al. [19] and Lou et al. [20].

Alfven [21] was the first to study the magnetic properties and the characteristics
of fluids that are electrical conductors. Typical examples of such magnetofluids include
electrolytes, plasmas, salt water and liquid metals. There has been growing interest in
studying the MHD Williamson nanofluid. Abbas et al. [22] investigated the effects of
heat generation and viscous dissipation on an MHD Williamson nanofluid that flows
past a linear stretching sheet in a porous medium. The characteristics of MHD flow and
heat transfer of a Williamson nanofluid flowing past a stretching sheet were examined by
Reddy et al. [23]. Shawky et al. [24] used the Runge–Kutta method to analyze the heat and
mass transfer of magnetohydrodynamic Williamson nanofluid flowing over a stretching
sheet. The influence of Joule heating, heat generation/absorption, thermal radiation and
chemical reaction on the MHD Williamson nanofluid flow over a stretching sheet through a
porous medium was investigated by Bouslimi et al. [25]. Other notable works on the MHD
Williamson nanofluid are [26–33], among others.

This current study mainly focuses on the Williamson nanofluid flow past an expo-
nentially stretching surface with a chemical reaction and thermal radiation. This study
has many applications in engineering and industrial processes. The Williamson fluid
model with a chemical reaction has applications in water and air pollution, atmospheric
flows and in chemical engineering problems such as food processes. Thermal radiation
has applications in processes such as drying and distribution of temperature and mois-
ture over agricultural fields [34]. Nadeen and Hussain [35] used the homotopy analysis
method to explore heat transfer effects on Williamson nanofluid flow over a porous ex-
ponentially stretching sheet. The Runge–Kutta–Fehlberg method was used to study the
MHD flow of a Williamson nanofluid flow over an exponentially stretching surface by
Kumar et al. [34]. Two cases of heat transfer, PEST and PEHF, were investigated on an
MHD Williamson nanofluid flow over an exponentially stretching surface by Ahmed and
Akbar [36]. Temperature-dependent viscosity and thermal conductivity in a Williamson
nanofluid flow over an exponentially stretching sheet were studied by Amjad et al. [37].
Li et al. [38] used MATLAB’s bvp4c package to analyze heat and mass transfer in MHD
Williamson nanofluid flow over an exponentially porous stretching surface.

Based on the aforementioned studies, it can be noted that there are many studies that
have been performed on the Williamson nanofluid flow past an exponentially stretching
surface. The novelty of this current study is the addition of thermophoresis and Brown-
ian motion effects in the momentum equation. Additionally, the effects of the magnetic
field, thermal radiation, chemical reaction, heat source and injection/suction parameters
are simultaneously investigated in this model. The highly non-linear partial differential
equations that govern the Williamson nanofluid flow are reduced into non-linear ordinary
differential equations using suitable similarity transformations and then solved using the
spectral quasi-linearization method (SQLM), developed by Motsa et al. [39]. The effects of
some chosen pertinent parameters on the fluid velocity, temperature, concentration, skin
friction coefficient, heat transfer rate and mass transfer rate were displayed using graphs
and tables. The numerical results obtained in this current research work were validated by
comparing the present results with those from MATLAB’s bvp4c routine and those results
from already-published work. A very good agreement was established.
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2. Fluid Model

The Williamson fluid model is used to describe the rheological behaviour of pseu-
doplastic materials over a wide range of shear stresses and shear rates. The continuity
and momentum equations of an incompressible Williamson model are given, respectively,
by [40]:

divV = 0, (1)

ρ f
dV
dt

= divS + ρ f b, (2)

where d
dt is the time derivative and b is the specific body force vector. The Cauchy stress

tensor S = −pI + τ∗, [41], where p is the pressure term and I the identity vector. The extra
stress tensor is given by:

τ∗ =

(
µ∞ +

µ0 − µ∞

1− Γγ̇

)
A1,

where the respective viscosities at zero and infinity shear rate are µ0 and µ∞, respectively.
The terms A1 and Γ are the first Revlin–Ericksen tensor and time constant, respectively.
Additionally:

γ̇ =

√
π

2
, π = trace(A2

1).

Choosing µ∞ = 0 and Γγ̇ < 1 and applying the Binomial expansion, we have the extra
stress tensor τ∗ = µ0[1 + Γγ̇]A1.

3. Mathematical Analysis

Investigated in this current study is a two-dimensional flow of a steady incompressible
Williamson nanofluid over a sheet that stretches exponentially. In this flow problem, the
coordinate system is chosen in such a way that the x axis is along the stretching sheet and
the y axis is measured normal to the sheet. At y = 0, the sheet is assumed to be stretching
with a velocity Uw = U0e

x
l . The variable magnetic field B(x) = B0e

x
2l (B0 is a constant

magnetic field) is applied perpendicular to the direction of flow. At the sheet, the fluid has
temperature Tw = T∞ + T0e

x
2l and nanoparticle fraction Cw = C∞ + C0e

x
2l . The ambient

values of temperature and nanoparticle fraction, far way from the sheet, are denoted by
T∞ and C∞, respectively. Figure 1 displays the schematic flow diagram and the coordinate
system of the problem. Assuming that there is no pressure gradient and applying boundary
layer approximations, the continuity, momentum and energy equations governing the flow
are given by [25,40]:

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂

∂y

{
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2}
+ gβT(T − T∞) + gβC(C− C∞)− σB2

ρ f
u, (4)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

Q
(ρcp) f

(T − T∞) + τ

{
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2}
− 1
(ρcp) f

∂qr

∂y
, (5)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − K(C− C∞), (6)

where u and v are the fluid velocity components in the x and y directions, respectively, ν is
the kinematic viscosity of the fluid, g is the acceleration due to gravity, βT is the thermal
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expansion coefficient, βC is the concentration expansion coefficient, σ is the electrical
conductivity, α is thermal diffusivity, Q(x)(= Q0e

x
l ) is the variable heat source, ρ f is the

fluid density, DB is the Brownian diffusion coefficient, DT is the thermophoresis coefficient,

K(x)(= K0e
x
l ) is the chemical reaction parameter and τ =

(ρcp)p
(ρcp) f

is the ratio of the effective

heat capacity of the nanoparticle material and heat capacity of the fluid.

C → C∞

T → T∞

stretching plate
x, u

y, v
g

CBL

TBL
MBL

Nano-particles

BB
C/T/MBL - Concentration/Thermal/Momentum Boundary Layer

Figure 1. Schematic flow diagram and coordinate system.

The energy Equation (5) can be simplified by using the Rosseland approximation [42],
which states that the radiative heat flux:

qr =
4σ∗

3k∗
∂T4

∂y
,

where σ∗ is the Stefan–Boltzmann constant and k∗ is the mean absorption coefficient.
Assuming that the temperature differences within the flow are so small, the linear Taylor
series expansion of T4 about T∞ gives T4 ≈ 4TT3

∞ − 3T3
∞ such that:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 . (7)

Using Equation (7) in Equation (5) gives:

u
∂T
∂x

+ v
∂T
∂y

=

(
α +

16σ∗T3
∞

3(ρcp) f k∗

)
∂2T
∂y2 +

Q
(ρcp) f

(T − T∞) + τ

{
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2}
, (8)

The suitable boundary conditions for the system of Equations (3)–(6) are:

u = Uw = U0e
x
l , v = −γ(x), where γ(x) = −V0e

x
2l ,

T = Tw = T∞ + T0e
x
2l , C = Cw = C∞ + C0e

x
2l , at y = 0, (9)

u→ 0, T → T∞, C → C∞, as y→ ∞.
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The similarity transformations which are used to solve the governing equations are defined
as follows [43]:

u = U0e
x
l f ′(η), v = −

√
νU0

2l
e

x
2l [ f (η) + η f ′(η)], η =

√
U0

2νl
ye

x
2l ,

T = T∞ + T0e
x
2l θ(η), C = C∞ + C0e

x
2l φ(η) (10)

Using similarity transformations Equation (10), the continuity Equation (3) is identically
satisfied and Equations (4)–(6) take the following form:

f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ −M2 f ′ + 2GTθ + 2GCφ = 0, (11)(
1 +

4
3

Rd

)
θ′′ + Pr( f θ′ − f ′θ + Nbφ′θ′ + Ntθ

′2 + δθ) = 0, (12)

φ′′ + Sc( f φ′ − f ′φ− Krφ) +
Nt

Nb
θ′′ = 0, (13)

subject to boundary conditions:

f (0) = −S, f ′(0) = 1, θ(0) = 1, φ(0) = 1,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0. (14)

where λ

(
= Γ

√
U3

0 e
3x
l

νl

)
is the Williamson fluid parameter, M2(=

2lσB2
0

ρU0
) is the magnetic

field parameter, GT(=
glBT T0

U2
0

) is the thermal Grashof number, GC(=
glBCC0

U2
0

) is the mass

Grashof number, Pr(= ν
α ) is the Prandlt number, Rd(=

4σ∗T3
∞

k∗κ ) is the radiation parameter,
Nb(=

τDB
ν (Cw − C∞)) is the Brownian motion parameter, Nt(=

τDT
νT∞

(Tw − T∞)) is the

thermophoresis parameter, δ(= 2lQ0
ρcpU0

) is the heat generation parameter, Sc(= ν
DB

) is the

Schmidt number, S(= V0

√
2l

νU0
) is the suction (S < 0) or the injection (S > 0) parameter

and Kr(=
2lK0
U0

) is the chemical reaction parameter.
The skin friction coefficient (c f ), the local Nusselt number (Nux) and the local Sher-

wood number (Shx) are the physical quantities of engineering significance discussed in
this study. Following the work by Ahmed and Akbar [36]:

c f =
1

ρU2
w

(
µ

(
∂u
∂y

+
Γ√
2

(
∂u
∂y

)2))
y=0

,

Nux = −
√

2l

(Tw − T∞)e
x
2l

(
∂T
∂y

)
y=0

,

Shx = −
√

2l

(Cw − C∞)e
x
2l

(
∂C
∂y

)
y=0

.

Using similarity transformations in Equation (10), the following dimensionless forms are
obtained:

√
2Rexc f =

(
f ′′(0) +

λ

2
( f ′′(0))2

)
,

Nux√
Rex

= −θ′(0),
Shx√
Rex

= −φ′(0),

where Rex = Uw l
ν is the Reynolds number.
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4. Method of Solution

In this study, the spectral quasi-linearization method is used to seek the numerical
solution of the coupled system of Equations (11)–(13) subject to boundary conditions Equa-
tion (18). A Newton–Raphson-based quasi-linearization method [44], which uses first-order
Taylor series expansion, is used to linearize the non-linear terms. Denote the respective
solutions of Equations (11)–(13) at iteration level s by fs, θs and φs, respectively. Assuming
that the difference between solutions at iteration level s and s + 1 are sufficiently close,
quasi-linearization gives the following iterative sequence of linear differential equations:

a0,s f ′′′s+1 + a1,s f ′′s+1 + a2,s f ′s+1 + a3,s fs+1 + a4,sθs+1 + a5,sφs+1 = R1,s, (15)

b0,sθ′′s+1 + b1,sθ′′s+1 + b2,sθs+1 + b3,s f ′s+1 + b4,s fs+1 + b5,sφ′s+1 = R2,s, (16)

c0,sφ′′s+1 + c1,sφ′s+1 + c2,sφs+1 + c3,s f ′s+1 + c4,s fs+1 + c5,sθ′′s+1 = R3,s, (17)

where the variable coefficients known at iteration level s are defined as:

a0,s = 1 + λ f ′′s , a1,s = fs + λ f ′′′s , a2,s = −4 f ′s −M, a3,s = f ′′s , a4,s = 2GT , a5,s = 2GC,

b0,s = 1 +
4
3

Rd, b1,s = Pr( fs + Nbφ′s + 2Ntθ
′
s), b2,s = −Pr( f ′s − δ), b3,s = −Prθs,

b4,s = Prθ′s, b5,s = PrNbθ′s, c0,s = 1, c1,s = Sc fs, c2,s = −Sc( f ′s + Kr),

c3,s = −Scφs, c4,s = Scφ′s, c5,s =
Nt

Nb
.

The boundary conditions given in Equation (18) are transformed to:

f ′s+1(0) = 1, fs+1(0) = −S, θs+1(0) = 1, φs+1(0) = 1,

f ′s+1(∞)→ 0, θs+1(∞)→ 0, θs+1(∞)→ 0. (18)

The terms on the right hand side are:

R1,s = fs f ′′s − 2 f ′2s + λ f ′′s f ′′′s , R2,s = Pr( fsθ′s − f ′sθ + Nbθ′sφ′s + Ntθ
′2
s ),

R3,s = Sc( fsφ′s − f ′sφs)

The unknown functions fs+1, θs+1 and φs+1 are approximated using Chebyshev interpolat-
ing polynomials, such that the their derivatives evaluated at Gauss–Lobatto collocation
points ηi = cos πi

N (i = 0, 1, 2, · · · , N) are given by:

dn fs+1

dη
(ηi) =

N

∑
k=0

Dn
ik fs+1(ηk) = DnFs+1,

dnθs+1

dη
(ηi) =

N

∑
k=0

Dn
ikθs+1(ηk) = DnΘs+1, (19)

dnφs+1

dη
(ηi) =

N

∑
k=0

Dn
ikφs+1(ηk) = DnΦs+1,

where

D = 2
L∞

D, Fs+1 = [ fs+1(η0), fs+1(η1), · · · , fs+1(ηN−1), fs+1(ηN)]
T ,

Θs+1 = [θs+1(η0), θs+1(η1), · · · , θs+1(ηN−1), θs+1(ηN)]
T ,

Φs+1 = [φs+1(η0), φs+1(η1), · · · , φs+1(ηN−1), φs+1(ηN)]
T .

Using derivatives in Equation (19) in the system of Equations (15)–(17) yields a system in
vector matrix form: A11 A12 A13

A21 A22 A23
A31 A32 A33

Fs+1
Θs+1
Φs+1

 =

R1,s
R2,s
R3,s

,
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where

A11 = a0,sD3 + a1,sD2 + a2,sD + a3,s, A12 = a4,sI, A13 = a5,sI,

A21 = b3,sD + b4,s, A22 = b0,sD2 + b1,sD + b2,s, A23 = b5,sD,

A31 = c3,sD + c4,s, A32 = c5,sD2, A33 = c0,sD2 + c1,sD + c2,s.

where I is an (N + 1)× (N + 1) identity matrix. The spectral boundary conditions are:

fs+1(ηN) = S,
N

∑
k=0

DN,k fs+1(ηN) = 1, θs+1(ηN) = 1, φs+1(ηN) = 1,

N

∑
k=0

D0,k fs+1(η0) = 0, θs+1(η0) = 0, φs+1(η0) = 0.

The numerical iteration of the SQLM, coded in MATLAB R2022b on an Intel(R) Core(TM)
i5, is started by using the initial guesses that satisfy the boundary conditions Equation (18),
given by:

f0(η) = 1− e−η + S, θ0(η) = e−η , φ0(η) = e−η .

5. Results and Discussion
5.1. Validation of Results

To confirm the accuracy of the SQLM used in this study, the values of the skin friction
−( f ′′(0) + λ

2 ( f ′′(0))2) are compared against the MATLAB bvp4c solver results and the
homotopy analysis method results obtained by Nadeem and Hussain [40] and Amjad
et al. [45]. Considering the values GT = GC = 0, Equation (11) reduces to the problem by
Amjad et al. [45], which is given by:

f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ −M2 f ′ = 0, (20)

subject to boundary conditions:

f (0) = −S, f ′(0) = 1, f ′(∞)→ 0. (21)

Using N = 40 collocation points, η∞ = 5.0, the MATLAB SQLM algorithm for solving
Equation (20) involves iteratively solving the following recursive sequence:

D0,0 D0,1 · · · D0,N−1, D0,N

A

DN,0 DN,1 · · · DN,N−1 DN,N
0 0 · · · 1




fs+1(η0)

Fs+1

fs+1(ηN−1)
fs+1(ηN)

 =


0

Rs

1
−S

, (22)

where A = a0,sD3 + a1,sD2 + a2,sD + a3,s, Fs+1 = [ fs+1(η1), fs+1(η2), · · · , fs+1(ηN−3),
fs+1(ηN−2)]

T and Rs = −2F′s ◦ F′s + Fs ◦ F′′s ) + λF′′s ◦ F′′′s . Performing 20 iterations, the
results obtained for −( f ′′(0) + λ

2 ( f ′′(0))2) are displayed in Table 1.
Table 1 displays the computed values of the skin friction coefficient compared against

the results by Amjad et al. [45] for different values of λ, S and M. A good match of the
results is observed. The accuracy of the SQLM was validated by a direct comparison with
the reported results.

Considering GT = GC = 0 = M = 0, Equation (11) reduces to the problem by Nadeem
and Hussain [40], which can be solved using MATLAB’s bvp4c solver by first using the
following substitutions:
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y(1) = f , y(2) = f ′, y(3) = f ′′ (23)

f ′′′ = y(3)′ =
2(y(2))2 − y(1)y(3)

(1 + λy(3))
(24)

and the boundary conditions are given as ya(1) + S, ya(2)− 1, yb(2). The three first-order
equations are coded in the MATLAB’s bvp4c solver with the function name “odeBVP”, and
with “odeBc” handling the boundary conditions. Choosing the interval of integration to
[0, 40], the solutions from the function “bvp4c” are given by:

s o l = bvp4c (@odeBVP , @odeBc , s o l i n i t , opt ions ) .

A comparison of the SQLM skin friction coefficient values against those from MATLAB’s
bvp4c routine and the results by Nadeem and Hussain [40] is shown in Table 2. A perfect
agreement was observed.

Table 1. Table of present values of
√

2ReC f compared against published results for varying values of
λ, S and M.

−( f ′′(0) + λ
2 ( f ′′(0))2)

λ S M Amjad et al. [45] SQLM

0.1 0.2 2.0 1.754213 1.754213105760364
0.2 0.2 2.0 1.678675 1.678675073146794
0.3 0.2 2.0 1.579827 1.578533717157394
0.1 0.1 2.0 1.799249 1.799249869955796
0.1 0.2 2.0 1.754213 1.754213105760364
0.1 0.3 2.0 1.710489 1.710489423953702
0.1 0.2 0.1 1.201556 1.201559983439274
0.1 0.2 0.2 1.237223 1.237224345281889
0.1 0.2 0.3 1.271816 1.271816653083256

Table 2. Table of present values of
√

2ReC f compared against MATLAB’s bvp4c results for selected
values of λ and S = 0.1.

−( f ′′(0) + λ
2 ( f ′′(0))2)

λ Nadeem and Hussain [40] MATLAB’s bvp4c SQLM

0.0 1.32930 1.329302736062721 1.329308462412963
0.1 1.29801 1.298017071294807 1.298022829158239
0.2 1.26310 1.263103796098337 1.263109548733657
0.3 1.22276 1.222776617114427 1.222781418705920

5.2. Results

The SQLM algorithm was implemented using MATLAB R2022b software. For all the
numerical results, unless otherwise stated, the default parameters considered are: N = 60,
M = 0.1, GT = 0.1, λ = 0.3, GC = 0.1, Nt = 0.1, Nb = 0.1, Pr = 0.5, δ = 0.2, S = 0.0,
Kr = 0.1, Sc = 1.0. The convergence and accuracy of the spectral quasi-linearization
method were verified using the solution error norms and residual errors, respectively. The
solution error norms, defined as the difference between values of successive iterations are
denoted by [46]:

Err[F(η)] = ||Fs+1(η)− Fs(η)||∞, Err[Θ(η)] = ||Θs+1(η)−Θs(η)||∞, Err[Φ(η)] = ||Φs+1(η)−Φs(η)||∞.

The residual error gives a measure of the extent to which the SQLM solution approximates
the true solution. The residual L∞ norms are given by Alharbey et al. [47] as:

Res( f ) = || f ′′′ + f f ′′ − 2 f ′2 + λ f ′′ f ′′′ −M2 f ′ + 2GTθ + 2GCφ||∞,

Res(θ) = ||(1 + (4/3)Rdθ′′ + Pr( f θ′ − f ′θ + Nbφ′θ′ + Ntθ
′2 + δθ)||∞,

Res(φ) = ||φ′′ + Sc( f φ′ − f ′φ− Krφ) + (Nt/Nb)θ
′′||∞,
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Figure 2a reveals that the SQLM converges after only five iterations with a solution
based error of order ≈ 10−10. Additionally, after three iterations, the SQLM achieves an
accuracy of order ≈ 10−9, as shown in Figure 2b.
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Figure 2. Error graphs of f (η), θ(η) and φ(η).

Figures 3–5 display the effects of the magnetic parameter (M), suction/injection
parameter (S) and the Williamson parameter (λ), respectively, on the fluid velocity profiles.
Figure 3 shows that the fluid velocity is depressed as the magnetic parameter is increased.
Physically, the fluid velocity drops due to the resistive Lorentz force, which is induced by
the magnetic parameter. It is depicted in Figure 4 that the Williamson nanofluid velocity
profiles are depressed when the suction parameter is increased. Additionally, it is revealed
in Figure 5 that there is an inverse relationship between the fluid velocity distribution and
the non-Newtonian Williamson parameter. An increase in the values of λ causes a decrease
in the fluid movement and reduces the boundary layer thickness.
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Figure 3. Influence of M on the nanofluid velocity.

The influences of the Prandtl number (Pr), Brownian motion parameter (Nb), thermal
Grashof parameter (GT) and thermal radiation parameter (Rd) on the Williamson nanofluid
dimensionless temperature (θ) are depicted in Figures 6–9, respectively. It is displayed in
Figure 6 that the fluid temperature and thermal boundary layer are reduced as the Prandtl
number increases. The Prandtl number can be viewed as the ratio of momentum to thermal
boundary layers. Physically, a high Prandtl number means a small thermal boundary
layer. It is revealed in Figure 7 that an increase in the values of the Brownian motion
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parameter increases the fluid temperature profile. An increase in the Brownian motion
parameter results in an increased kinetic energy of the Williamson nanoparticles, and hence,
a temperature increase. Figure 8 depicts that the fluid temperature is depressed as the
thermal Grashof number is enhanced. Essentially, the Grashof number signifies the ratio of
buoyancy to viscous forces. Increasing GT results in an addition of more thermal energy in
the fluid molecules, which in turn increases the fluid local heat transfer rate. The thermal
boundary layer is reduced, and hence, the temperature profiles decrease. It is shown in
Figure 9 that temperature is an increasing function of the thermal radiation parameter. The
effect of increasing the thermal radiation parameter is thickening the thermal boundary
layer, and hence, the temperature profiles are increased.
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Figure 4. Influence of S on the nanofluid velocity.
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Figure 5. Influence of λ on fluid velocity.

Figure 10 portrays the influence of the Schmidt number (Sc) on the Williamson nanopar-
ticle concentration. Sc can be defined as the ratio of momentum diffusivity and mass diffu-
sivity. High values of Sc corresponds to a weaker solute diffusivity and the concentration
distribution and solute boundary layer decrease as a consequence. The fluid dimensionless
concentration profiles are depressed when the chemical reaction parameter is increased as
seen in Figure 11. Physically, when the chemical reaction parameter is increased, quite a
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number of solute molecules will undergo chemical reaction, and hence, the reduction in
the concentration. The influence of the mass Grashof number (GC) on the concentration
is displayed in Figure 12. GC relates species buoyancy force to the viscous hydrodynamic
force. Increasing GC causes an enhancement of the concentration gradient, which in turn
boosts the buoyancy effect. A resulting induced flow will cause a decrease in concentration,
and hence, a decrease in the concentration profile, as depicted in Figure 12.
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Figure 6. Influence of Pr on fluid temperature.
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Figure 7. Influence of Nb on fluid temperature.

Table 3 displays the effects of all the pertinent thermo-physical parameters involved in
the current problem on the skin friction, Nusselt number and Sherwood number. The skin
friction coefficient upsurges as the values of injection parameter, Prandtl number, magnetic
parameter, Brownian motion parameter and Schmidt number are increased. The fluid flow
is improved by the functioning magnetic field regarding the Williamson nanofluid, and
thus, increases the surface friction. The increase of

√
2ReC f with an increasing Prandtl

number is attributed to increased fluid momentum. The opposite trend is observed when
the Williamson fluid parameter, mass Grashof number, thermal Grashof number, thermal
radiation parameter, thermophoresis parameter, heat generation parameter and chemical
reaction parameter are increased.
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Figure 8. Influence of GT on fluid temperature.
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Figure 9. Influence of Rd on fluid temperature.

0 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sc = 0.5

Sc = 0.6

Sc = 0.7

Sc = 0.8

Figure 10. Influence of Sc on fluid concentration.
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Figure 11. Influence of Kr on fluid concentration.
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Figure 12. Influence of Gc on fluid concentration.

It is also noted that the mass Grashof number and the thermal Grashof number are the
only parameters whose increment enhances the Nusselt number. Increasing the values of
the Williamson fluid parameter, injection parameter, magnetic parameter, Prandtl number,
thermal radiation, Brownian motion parameter, thermophoresis parameter, heat generation
parameter, Schmidt number and chemical reaction parameter suppresses the heat transfer
rate. It is noted that Nusselt number is a decreasing function of Nb and Nt. Physically,
the effects of both Brownian motion and themorphoresis effects move the Williamson
nanoparticles away from the stretching sheet sheet, intensifying the the diffusion of the
nanoparticles into the boundary layer, and hence, causing a decrease in the Nusselt number.

The Sherwood number is improved as the values of mass Grashof number, thermal
Grashof number, thermal radiation parameter, Brownian motion parameter, heat generation
parameter, Schmidt number and chemical reaction parameter are increased and depreci-
ates as the Williamson fluid parameter, injection parameter, magnetic parameter, Prandtl
number and thermophoresis parameter are increased. The Schmidt number is the relative
effectiveness of the momentum and mass transport by diffusion in the hydrodynamic
and species boundary layers. An increase in Sc will result in an increase in the Sherwood
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number. An increased chemical reaction parameter means there will be more interaction
of species concentration with the momentum boundary, and hence, an increase in the
Sherwood number.

Table 3. The numerical values of the skin friction coefficient, Nusselt number and Sherwood number
for all the thermo-physical parameters.

λ S M Pr GC GT Rd Nb Nt δ Sc Kr
√

2ReC f − Nux√
Rex

− Shx√
Rex

0.1 0.2 2.0 0.5 0.1 0.1 0.1 0.5 0.5 0.1 1.0 0.1 1.776767 0.308282 0.700530
0.3 1.706494 0.295463 0.687057
0.9 1.608996 0.169515 0.539204

0.1 0.1 1.730004 0.323907 0.736618
0.2 1.776768 0.308282 0.700530
0.3 1.824988 0.294009 0.665454

0.2 0.1 1.174219 0.434167 0.794308
0.2 1.213171 0.426083 0.787275
0.3 1.251027 0.418169 0.780543

2.0 0.1 1.771939 0.147223 0.810761
0.2 1.773217 0.191519 0.780377
0.3 1.774461 0.233031 0.751949

0.5 0.3 1.635586 0.347227 0.724385
0.6 1.430563 0.391337 0.757335
0.9 1.232356 0.424697 0.786362

0.1 0.3 1.474263 0.368464 0.735159
0.6 1.246002 0.419482 0.777179
0.9 1.027907 0.454621 0.811112

0.1 0.3 1.470957 0.273691 0.724148
0.5 1.468421 0.248889 0.741101
0.7 1.466412 0.230255 0.753849

0.1 0.1 1.390481 0.316343 0.032976
0.3 1.461652 0.312301 0.593189
0.5 1.474263 0.308282 0.700530

0.5 0.1 1.491310 0.358320 0.807764
0.3 1.482646 0.324544 0.753061
0.5 1.474263 0.308282 0.700530

0.1 0.0 1.477366 0.382548 0.658192
0.1 1.474263 0.308282 0.700530
0.2 1.470240 0.198753 0.756672

0.1 0.6 1.446575 0.322304 0.458305
0.8 1.461864 0.314201 0.587691
1.0 1.474263 0.308282 0.700530

1.0 0.2 1.479727 0.303787 0.778334
0.4 1.488552 0.297958 0.906974
0.6 1.495533 0.294169 1.015232

6. Conclusions

In this manuscript, the spectral quasi-linearization method was applied to numerically
analyze the magnetoxhydrodynamics Williamson nanofluid flow over an exponentially
stretching surface with chemical reaction and thermal radiation nanofluid flow. A com-
parison of the skin friction coefficient results obtained from MATLAB’s bvp4c solver and
published work confirmed that the method is reliable for solving the current problem. The
key findings from the study are as follows:
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1. The dimensionless velocity ( f ′(η)) diminishes as the values of the magnetic parameter
are increased from 0 to 1.2;

2. The dimensionless temperature (θ(η)) is an increasing function of 0.1 ≤ Nb ≤ 1.6 and
0.0 ≤ Rd ≤ 0.9;

3. The dimensionless concentration (φ(η)) decreases for 0.5 ≤ Sc ≤ 0.8 and 0.1 ≤ Kr ≤ 0.7;
4. The skin friction coefficient increases as M(0.1 ≤ M ≤ 0.3) and Nb(0.1 ≤ Nb ≤ 0.5)

increase and depressed for increased values of Nt(0.1 ≤ Nt ≤ 0.5);
5. The Nusselt number diminishes as M(0.1 ≤ M ≤ 0.3), Nb(0.1 ≤ Nb ≤ 0.5) and

Nt(0.1 ≤ Nt ≤ 0.5) are increased;
6. The Sherwood number decreases as M(0.1 ≤ M ≤ 0.3) and Nt(0.1 ≤ Nt ≤ 0.37)

increase and decreases as Nb(0.3 ≤ Nb ≤ 0.7) increases.
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Nomenclature

x, y Cartesian coordinates [m]
u, v Velocity components in the x and y directions, respectively [m s−1]
U0 Reference velocity [m s−1]
βT Thermal expansion coefficient
βC Concentration expansion coefficient
B0 Magnetic field strength [NmA−1]
C f Skin friction coefficient
Pr Prandtl number
M Magnetic parameter [Te]
T Fluid temperature [T]
Cw Concentration of nanoparticles at the surface [mol m−3]
C Concentration of nanoparticles [mol m−3]
Uw Velocity at the wall [m s−1]
Q Heat source
Kr Chemical reaction parameter [Ms−1]
T0 Reference temperature [K]
C0 Reference concentration [mol m−3]
Rd Thermal radiation parameter
qr Radiative heat flux [J]
S Suction/injection parameter
θ(η) Dimensionless temperature
φ(η) Dimensionless concentration
Nt Thermophoretic parameter
Nux Local Nusselt number
Shx Local Sherwood number
Tw Surface temperature [K]
T∞ Ambient temperature [K]
f Dimensionless stream function
g Acceleration due to gravity [m s−2]
Sc Schmidt number
DB Brownian diffusion coefficient [m2 s−1]
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DT Thermophoresis diffusion coefficient [m2 s−1]
µ∞ Infinite viscosity [Nsm−2]
(ρcp) f Heat capacity of the nanofluid [Jm−3K−1]
Rex Reynolds number
f ′(η) Velocity profile
η Dimensionless similarity variable
σ Electrical conductivity [Sm−1]
Γ Positive time constant
α Thermal diffusivity [m−2 s−1]
(ρcp)p Heat capacity of the nanoparticles [Jm−3 K−1]
ν Kinematic viscosity [m2 s−1]
ρ f Fluid density [kg m−3]
λ Williamson fluid parameter
GrT Thermal Grashof number
GrC Concentration Grashof number

References
1. Matsuhisa, S.; Bird, R.B. Analytical and numerical solutions for laminar flow of the non-Newtonian ellis fluid. AIChE J. 1965, 11,

588–595. [CrossRef]
2. Carreau, P.J. Rheological Equations from Molecular Network Theories. Trans. Soc. Rheol. 1972, 16, 99–127. 10.1122/1.549276.

[CrossRef]
3. Ostwald, W. Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität. Kolloid Z. 1929, 47, 176–187. [CrossRef]
4. Cross, M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965, 20, 417–437.

[CrossRef]
5. Casson, N. A Flow Equation for Pigment-Oil Suspensions of the Printing Ink Type. In Rheology of Disperse Systems; Mill, C.C., Ed.;

Pergamon Press: Oxford, UK, 1959; pp. 84–104.
6. Williamson, R.V. The Flow of Pseudoplastic Materials. Ind. Eng. Chem. 1929, 21, 1108–1111. [CrossRef]
7. Sakiadis, B.C. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and

axisymmetric flow. AIChE J. 1961, 7, 26–28. [CrossRef]
8. Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [CrossRef]
9. Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ikramullah; Ayaz, M.; Mashwani, W.K. On the Analysis of the

Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer. Coatings 2021, 11, 566.
[CrossRef]

10. Zeb, H.; Bhatti, S.; Khan, U.; Wahab, H.A.; Mohamed, A.; Khan, I. Impact of Homogeneous-Heterogeneous Reactions on Flow of
Non-Newtonian Ferrofluid over a Stretching Sheet. J. Nanomater. 2022, 2022, 2501263. [CrossRef]

11. Mahabaleshwar, U.S.; Maranna, T.; Sofos, F. Analytical investigation of an incompressible viscous laminar Casson fluid flow past
a stretching/shrinking sheet. Sci. Rep. 2022, 12, 18404. [CrossRef]

12. Abbas, N.; Nadeem, S.; Shatanawi, W. Effects of radiation and heat generation for non-Newtonian fluid flow over slendering
stretching sheet: Numerically. J. Appl. Math. Mech. 2022, 103, e202100299. [CrossRef]

13. Akbar, N.S.; Al-Zubaidi, A.; Saleem, S.; Alsallami, S.A.M. Variable fluid properties analysis for thermally laminated 3-dimensional
magnetohydrodynamic non-Newtonian nanofluid over a stretching sheet. Sci. Rep. 2023, 13, 3231. [CrossRef]

14. Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing
Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles. Netsu Bussei 1993, 7, 227–233. [CrossRef]

15. Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticle. In Proceedings of the 1995 International
Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995.

16. Elboughdiri, N.; Ghernaout, D.; Muhammad, T.; Alshehri, A.; Sadat, R.; Ali, M.R.; Wakif, A. Towards a novel EMHD dissipative
stagnation point flow model for radiating copper-based ethylene glycol nanofluids: An unsteady two-dimensional homogeneous
second-grade flow case study. Case Stud. Therm. Eng. 2023, 45, 102914. [CrossRef]

17. Ashraf, M.Z.; Rehman, S.U.; Farid, S.; Hussein, A.K.; Ali, B.; Shah, N.A.; Weera, W. Insight into Significance of Bioconvection on
MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface. Mathematics 2022, 10, 2592.
[CrossRef]

18. Nabwey, H.A.; Rahbar, F.; Armaghani, T.; Rashad, A.M.; Chamkha, A.J. A Comprehensive Review of Non-Newtonian Nanofluid
Heat Transfer. Symmetry 2023, 15, 362. [CrossRef]

19. Selimefendigil, F.; Şenol, G.; Öztop, H.F.; Abu-Hamdeh, N.H. A Review on Non-Newtonian Nanofluid Applications for
Convection in Cavities under Magnetic Field. Symmetry 2022, 15, 41. [CrossRef]

20. Lou, Q.; Ali, B.; Rehman, S.U.; Habib, D.; Abdal, S.; Shah, N.A.; Chung, J.D. Micropolar Dusty Fluid: Coriolis Force Effects on
Dynamics of MHD Rotating Fluid When Lorentz Force Is Significant. Mathematics 2022, 10, 2630. [CrossRef]

http://doi.org/10.1002/aic.690110407
http://dx.doi.org/10.1122/1.549276
http://dx.doi.org/10.1007/BF01496959
http://dx.doi.org/10.1016/0095-8522(65)90022-X
http://dx.doi.org/10.1021/ie50239a035
http://dx.doi.org/10.1002/aic.690070108
http://dx.doi.org/10.1007/BF01587695
http://dx.doi.org/10.3390/coatings11050566
http://dx.doi.org/10.1155/2022/2501263
http://dx.doi.org/10.1038/s41598-022-23295-6
http://dx.doi.org/10.1002/zamm.202100299
http://dx.doi.org/10.1038/s41598-023-30233-7
http://dx.doi.org/10.2963/jjtp.7.227
http://dx.doi.org/10.1016/j.csite.2023.102914
http://dx.doi.org/10.3390/math10152592
http://dx.doi.org/10.3390/sym15020362
http://dx.doi.org/10.3390/sym15010041
http://dx.doi.org/10.3390/math10152630


Mathematics 2023, 11, 2740 17 of 18

21. Alfven, H. Existence of Electromagnetic-Hydrodynamic Waves. Nature 1942, 150, 405–406. [CrossRef]
22. Abbas, A.; Jeelani, M.B.; Alnahdi, A.S.; Ilyas, A. MHD Williamson Nanofluid Fluid Flow and Heat Transfer Past a Non-Linear

Stretching Sheet Implanted in a Porous Medium: Effects of Heat Generation and Viscous Dissipation. Processes 2022, 10, 1221.
[CrossRef]

23. Reddy C, S.; Naikoti, K.; Rashidi, M.M. MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching
sheet with variable thickness and variable thermal conductivity. Trans. A. Razmadze Math. Inst. 2017, 171, 195–211. [CrossRef]

24. Shawky, H.M.; Eldabe, N.T.M.; Kamel, K.A.; Abd-Aziz, E.A. MHD flow with heat and mass transfer of Williamson nanofluid
over stretching sheet through porous medium. Microsyst. Technol. 2019, 25, 1155–1169. [CrossRef]

25. Bouslimi, J.; Omri, M.; Mohamed, R.A.; Mahmoud, K.H.; Abo-Dahab, S.M.; Soliman, M.S. MHD Williamson nanofluid flow over a
stretching sheet through a porous medium under effects of joule heating, nonlinear thermal radiation, heat generation/absorption,
and chemical reaction. Adv. Math. Phys. 2021, 2021, 9950993. [CrossRef]

26. Hayat, T.; Bashir, G.; Waqas, M.; Alsaedi, A. MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface
with melting heat transfer. J. Mol. Liq. 2016, 223, 836–844. [CrossRef]

27. Ibrahim, W.; Negera, M. The Investigation of MHD Williamson Nanofluid over Stretching Cylinder with the Effect of Activation
Energy. Adv. Math. Phys. 2020, 2020, 9523630. [CrossRef]

28. Eswara Rao, M.; Siva Sankari, M.; Nagalakshmi, C.; Rajkumar, S. On the Role of Bioconvection and Activation Energy for
MHD-Stretched Flow of Williamson and Casson Nanofluid Transportation across a Porous Medium Past a Permeable Sheet. J.
Nanomater. 2023, 2023, 3995808. [CrossRef]

29. Asjad, M.I.; Zahid, M.; Ali, B.; Jarad, F. Unsteady MHD Williamson Fluid Flow with the Effect of Bioconvection over Permeable
Stretching Sheet. Math. Probl. Eng. 2022, 2022, 7980267. [CrossRef]

30. Wang, F.; Asjad, M.I.; Rehman, S.U.; Ali, B.; Hussain, S.; Gia, T.N.; Muhammad, T. MHD Williamson Nanofluid Flow over a
Slender Elastic Sheet of Irregular Thickness in the Presence of Bioconvection. Nanomaterials 2021, 11, 2297. [CrossRef]

31. Ahmed, K.; Akbar, T.; Muhammad, T.; Alghamdi, M. Heat transfer characteristics of MHD flow of Williamson nanofluid over an
exponential permeable stretching curved surface with variable thermal conductivity. Case Stud. Therm. Eng. 2021, 28, 101544.
[CrossRef]

32. Patil, V.S.; Humane, P.P.; Patil, A.B. MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation
and chemical reaction. Int. J. Model. Simul. 2023, 43, 185–199. [CrossRef]

33. Khan, M.; Malik, M.Y.; Salahuddin, T.; Hussian, A. Heat and mass transfer of Williamson nanofluid flow yield by an inclined
Lorentz force over a nonlinear stretching sheet. Results Phys. 2018, 8, 862–868. [CrossRef]

34. Kumar, P.B.S.; Gireesha, B.J.; Gorla, R.S.R.; Mahanthesh, B. Magnetohydrodynamic Flow of Williamson Nanofluid Due to an
Exponentially Stretching Surface in the Presence of Thermal Radiation and Chemical Reaction. J. Nanofluids 2017, 6, 264–272.
[CrossRef]

35. Nadeem, S.; Hussain, S.T.; Lee, C. Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng. 2013, 30, 619–625.
[CrossRef]

36. Ahmed, K.; Akbar, T. Numerical investigation of magnetohydrodynamics Williamson nanofluid flow over an exponentially
stretching surface. Adv. Mech. Eng. 2021, 13, 168781402110198. [CrossRef]

37. Amjad, M.; Ahmed, I.; Ahmed, K.; Alqarni, M.S.; Akbar, T.; Muhammad, T. Numerical Solution of Magnetized Williamson
Nanofluid Flow over an Exponentially Stretching Permeable Surface with Temperature Dependent Viscosity and Thermal
Conductivity. Nanomaterials 2022, 12, 3661. [CrossRef]

38. Li, Y.-X.; Alshbool, M.H.; Lv, Y.-P.; Khan, I.; Riaz Khan, M.; Issakhov, A. Heat and mass transfer in MHD Williamson nanofluid
flow over an exponentially porous stretching surface. Case Stud. Therm. Eng. 2021, 26, 100975. [CrossRef]

39. Motsa, S.S.; Dlamini, P.G.; Khumalo, M. Spectral Relaxation Method and Spectral Quasilinearization Method for Solving
Unsteady Boundary Layer Flow Problems. Adv. Math. Phys. 2014, 2014, 341964. [CrossRef]

40. Nadeem, S.; Hussain, S.T. Heat transfer analysis of Williamson fluid over exponentially stretching surface. Appl. Math. Mech.
2014, 35, 489–502. [CrossRef]

41. Dapra, I.; Scarpi, G. Perturbation solution for pulsatile flow of a non-Newtonian Williamson fluid in a rock fracture. Int. J. Rock
Mech. Min. Sci. 2007, 44, 271–278. [CrossRef]

42. Rosseland, S. Theoretical Astrophysics; Oxford University Press: Oxford, UK, 1936.
43. Seini, Y.I.; Makinde, O.D. MHD Boundary Layer Flow due to Exponential Stretching Surface with Radiation and Chemical

Reaction. Math. Probl. Eng. 2013, 2013, 163614. [CrossRef]
44. Bellman, R.; Kalaba, R. Quasilinearization and Nonlinear Boundary-Value Problems; American Elsevier Publishing Company: New

York, NY, USA, 1965.
45. Amjad, M.; Ahmed, K.; Akbar, T.; Muhammad, T.; Ahmed, I.; Alshomrani, A.S. Numerical investigation of double diffusion

heat flux model in Williamson nanofluid over an exponentially stretching surface with variable thermal conductivity. Case Stud.
Therm. Eng. 2022, 36, 102231. [CrossRef]

http://dx.doi.org/10.1038/150405d0
http://dx.doi.org/10.3390/pr10061221
http://dx.doi.org/10.1016/j.trmi.2017.02.004
http://dx.doi.org/10.1007/s00542-018-4081-1
http://dx.doi.org/10.1155/2021/9950993
http://dx.doi.org/10.1016/j.molliq.2016.08.104
http://dx.doi.org/10.1155/2020/9523630
http://dx.doi.org/10.1155/2023/3995808
http://dx.doi.org/10.1155/2022/7980267
http://dx.doi.org/10.3390/nano11092297
http://dx.doi.org/10.1016/j.csite.2021.101544
http://dx.doi.org/10.1080/02286203.2022.2062166
http://dx.doi.org/10.1016/j.rinp.2018.01.005
http://dx.doi.org/10.1166/jon.2017.1317
http://dx.doi.org/10.1590/S0104-66322013000300019
http://dx.doi.org/10.1177/16878140211019875
http://dx.doi.org/10.3390/nano12203661
http://dx.doi.org/10.1016/j.csite.2021.100975
http://dx.doi.org/10.1155/2014/341964
http://dx.doi.org/10.1007/s10483-014-1807-6
http://dx.doi.org/10.1016/j.ijrmms.2006.07.003
http://dx.doi.org/10.1155/2013/163614
http://dx.doi.org/10.1016/j.csite.2022.102231


Mathematics 2023, 11, 2740 18 of 18

46. Motsa, S. On the New Bivariate Local Linearisation Method for Solving Coupled Partial Differential Equations in Some
Applications of Unsteady Fluid Flows with Heat and Mass Transfer. In Mass Transfer—Advancement in Process Modelling; InTech:
Vienna, Austria, 2015. [CrossRef]

47. Alharbey, R.A.; Mondal, H.; Behl, R. Spectral Quasi-Linearization Method for Non-Darcy Porous Medium with Convective
Boundary Condition. Entropy 2019, 21, 838. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5772/60444
http://dx.doi.org/10.3390/e21090838

	Introduction
	Fluid Model
	Mathematical Analysis
	Method of Solution
	Results and Discussion
	Validation of Results
	Results

	Conclusions
	References

