Next Article in Journal
Global Boundedness in a Logarithmic Keller–Segel System
Next Article in Special Issue
Existence and Uniqueness of Non-Negative Solution to a Coupled Fractional q-Difference System with Mixed q-Derivative via Mixed Monotone Operator Method
Previous Article in Journal
Finding Debt Cycles: QUBO Formulations for the Maximum Weighted Cycle Problem Solved Using Quantum Annealing
Previous Article in Special Issue
(αψ) Meir–Keeler Contractions in Bipolar Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations

1
Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
2
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
4
Department of Mathematics, Ege University, Bornova, 35100 Izmir, Turkey
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(12), 2742; https://doi.org/10.3390/math11122742
Submission received: 8 May 2023 / Revised: 12 June 2023 / Accepted: 13 June 2023 / Published: 16 June 2023
(This article belongs to the Special Issue Advances in Fixed Point Theory and Its Applications)

Abstract

:
In this paper, we introduce the concept of bicomplex-valued controlled metric spaces and prove fixed point theorems. Our results mainly focus on generalizing and expanding some recently established results. Finally, we explain an application of our main result to a certain type of fractional differential equation.

1. Introduction

Fixed point theory is an important branch of non-linear analysis. After the celebrated Banach contraction principle [1], a number of authors have been working in this area of research. Fixed point theorems (FPTs) are important instruments for proving the existence and uniqueness of solutions to variational inequalities. Metric FPTs expanded after the well-known Banach contraction theorem was established. From this point forward, there have been numerous results related to maps fulfilling various contractive conditions and many types of metric spaces (see, for example, [2,3,4,5,6,7,8,9]).
The authors of [10,11] presented a novel extension of the b-metric space known as controlled metric spaces (CMSs) and demonstrated the FPTs on the CMSs, providing an example by employing a control function ( x , y ) in the triangle inequality.
Serge [12] made a pioneering attempt at developing special algebra. He conceptualized commutative generalizations of complex numbers as briefly bicomplex numbers (BCN), briefly tricomplex numbers (tcn), etc., as elements of an infinite set of algebra. Subsequently, many researchers contributed in this area, (see, for example, [13,14,15,16,17,18,19]).
In 2021, the authors of [20] proved a common fixed point for a pair of contractive-type maps in bicomplex-valued metric spaces. Later, several authors discussed their results using this concept, see [21,22,23,24]. Guechi [25] introduced the concept of optimal control of ϕ -Hilfer fractional equations and proved the fixed point results. For details, see [26,27,28] and the references therein.
In this paper, we introduce the notion of bicomplex-valued CMSs (BVCMSs) and prove FPT under Banach, Kannan and Fisher contractions on BVCMSs. Then, we give an application to solve a fractional differential equation (FDE) and show that this extension is different from bicomplex-valued metric spaces in terms of Beg, Kumar Datta and Pal [20].

2. Preliminaries

We use standard notations throughout this paper: The real, complex, and bicomplex number sets are represented by C 0 , C 1 and C 2 , respectively. The following complex numbers were described by Segre [12].
z = ϑ 1 + ϑ 2 i 1 ,
where ϑ 1 , ϑ 2 C 0 , i 1 2 = 1 . We represent C 1 as:
C 1 = { z : z = ϑ 1 + ϑ 2 i 1 , ϑ 1 , ϑ 2 C 0 } .
Let z C 1 , then | z | = ( ϑ 1 2 + ϑ 2 2 ) 1 2 . Every element in C 1 with a positive real-valued norm function . : C 1 C 0 + is defined by
z = ( ϑ 1 2 + ϑ 2 2 ) 1 2 .
Segre [12] described the bicomplex number (BCN) as:
f = ϑ 1 + ϑ 2 i 1 + ϑ 3 i 2 + ϑ 4 i 1 i 2 ,
where ϑ 1 , ϑ 2 , ϑ 3 , ϑ 4 C 0 , and the independent units i 1 , i 2 satisfy i 1 2 = i 2 2 = 1 and i 1 i 2 = i 2 i 1 . We represent the BCN set C 2 as:
C 2 = { f : f = ϑ 1 + ϑ 2 i 1 + ϑ 3 i 2 + ϑ 4 i 1 i 2 , ϑ 1 , ϑ 2 , ϑ 3 , ϑ 4 C 0 } ,
that is,
C 2 = { f : f = z 1 + i 2 z 2 , z 1 , z 2 C 1 } ,
where z 1 = ϑ 1 + ϑ 2 i 1 C 1 and z 2 = ϑ 3 + ϑ 4 i 1 C 1 . If f = z 1 + i 2 z 2 and ν = ω 1 + i 2 ω 2 are any two BCNs, then their sum is
f ± ν = ( z 1 + i 2 z 2 ) ± ( ω 1 + i 2 ω 2 ) = z 1 ± ω 1 + i 2 ( z 2 ± ω 2 ) , and the product is f . ν = ( z 1 + i 2 z 2 ) ( ω 1 + i 2 ω 2 ) = ( z 1 ω 1 z 2 ω 2 ) + i 2 ( z 1 ω 2 + z 2 ω 1 ) .
There are four idempotent elements in C 2 . They are 0 , 1 , e 1 = 1 + i 1 i 2 2 , e 2 = 1 i 1 i 2 2 of which e 1 and e 2 are non-trivial, such that e 1 + e 2 = 1 and e 1 e 2 = 0 . Every BCN z 1 + i 2 z 2 can be uniquely expressed as a combination of e 1 and e 2 , namely,
f = z 1 + i 2 z 2 = ( z 1 i 1 z 2 ) e 1 + ( z 1 + i 1 z 2 ) e 2 .
This representation of f is known as the idempotent representation of a BCN, and the complex coefficients f 1 = ( z 1 i 1 z 2 ) and f 2 = ( z 1 + i 1 z 2 ) are known as the idempotent components of the BCN f .
Each element in C 2 with a positive real-valued norm function . : C 2 C 0 + is defined by
f = z 1 + i 2 z 2 = { z 1 2 + z 2 2 } 1 2 = | z 1 i 1 z 2 | 2 + | z 1 + i 1 z 2 | 2 2 1 2 = ( ϑ 1 2 + ϑ 2 2 + ϑ 3 2 + ϑ 4 2 ) 1 2 ,
where f = ϑ 1 + ϑ 2 i 1 + ϑ 3 i 2 + ϑ 4 i 1 i 2 = z 1 + i 2 z 2 C 2 .
The linear space C 2 with respect to a defined norm is a normed linear space, and C 2 is complete. Therefore, C 2 is a Banach space. If f , ν C 2 , then f ν 2 f ν holds instead of f ν f ν , and therefore C 2 is not a Banach algebra. For any two BCN f , ν C 2 , then
1.
f i 2 ν f ν ;
2.
f + ν f + ν ;
3.
ϑ f = | ϑ | f , where ϑ is in C 0 ;
4.
f ν 2 f ν , and f ν = 2 f ν holds when only one of f or ν is degenerated;
5.
f 1 = f 1 , if f is degenerated with f 0 ;
6.
f ν = f ν , if ν is a degenerated BCN.
The relation i 2 (partial order) is defined on C 2 as given below. Let C 2 be a set of BCNs and f = z 1 + i 2 z 2 and ν = ω 1 + i 2 ω 2 C 2 . Then, f i 2 ν if and only if z 1 i 2 ω 1 and z 2 i 2 ω 2 , i.e., f i 2 ν , if one of the following conditions is fulfilled:
1.
z 1 = ω 1 , z 2 = ω 2 ;
2.
z 1 i 2 ω 1 , z 2 = ω 2 ;
3.
z 1 = ω 1 , z 2 i 2 ω 2 ;
4.
z 1 i 2 ω 1 , z 2 i 2 ω 2 .
Clearly, we can write f i 2 ν if f i 2 ν and f ν , i.e., if 2, 3 or 4 are satisfied, and we will write f i 2 ν if only 4 is satisfied.
Definition 1 
([10]). Let ζ Ø and φ : ζ × ζ [ 1 , ) . The functional £ c m : ζ × ζ [ 0 , ) is called the briefly controlled-type metric CMT if
  • (CMT1)   £ c m ( , i ) = 0 = i ,
  • (CMT2)   £ c m ( , i ) = £ c m ( i , ) ,
  • (CMT3)   £ c m ( , ) φ ( , i ) £ c m ( , i ) + φ ( i , ) £ c m ( i , ) ,
  • for all , i , ζ . Then, the doublet ( ζ , £ c m ) is called a CMT space.
Several researchers have proven FPTs using this notion (see [3,4,6,11]).
Definition 2. 
Let ζ Ø and consider φ : ζ × ζ [ 1 , ) . The functional £ b v c m s : ζ × ζ C 2 is said to be a BVCMS if
  • (BCCMS1)   0 i 2 £ b v c m s ( , i )   also   £ b v c m s ( , i ) = 0 = i ,
  • (BCCMS2)   £ b v c m s ( , i ) = £ b v c m s ( i , ) ,
  • (BCCMS3)   £ b v c m s ( , ) i 2 φ ( , i ) £ b v c m s ( , i ) + φ ( i , ) £ b v c m s ( i , ) ,
  • for all , i , ζ , Then, the pair ( ζ , £ b v c m s ) is known as a BVCMS.
Example 1. 
Let ζ = [ 0 , ) and φ : ζ × ζ [ 1 , ) be defined as
φ ( , i ) = 1 , if , i [ 0 , 1 ] , 1 + + i , otherwise .
and £ b v c m s : ζ × ζ [ 0 , ) be defined as follows
£ b v c m s ( , i ) : = 0 , = i i 2 , i
Then ( ζ , £ b v c m s ) is a bvcms.
Remark 1. 
If we take φ ( , i ) = t 1 , for all , i ζ , then ( ζ , £ b v c m s ) is a bicomplex-valued b-metric space, that is, every bicomplex-valued b-metric space is a BVCMS.
Example 2. 
Let ζ = V W with V = { ( 1 υ ) | υ N } , W is the set of all positive integers and φ : ζ × ζ [ 1 , ) is defined for all , i ζ as
φ ( , i ) = 5 p
where p > 0 and £ b v c m s : ζ × ζ C 2 defined as follows
£ b v c m s ( , i ) : = 0 , i f f = i 2 p i 2 , if , i V p i 2 2 , otherwise
where p > 0 .
Now, the conditions (BCCMS1) and (BCCMS2) hold. Furthermore, (BCCMS3) holds under the following cases.
  • Case 1.  If = i and i = ;
  • Case 2.  If = i or if i = or if = i or if i ;
    •     SubCase 1.  If V and i , W ;
    •     SubCase 2.  If i V and , W ;
    •     SubCase 3.  If V and , i W ;
    •     SubCase 4.  If , i V and W ;
    •     SubCase 5.  If , V and i W ;
    •     SubCase 6.  If i , V and W ;
    •     SubCase 7.  If , i , V ;
    •     SubCase 8.  If , i , W .
  • Then ( ζ , £ b v c m s ) is a BVCMS.
Remark 2. 
If φ ( , i ) = φ ( i , ) (as in the above example) for all , i , ζ , then ( ζ , £ b v c m s ) is a bicomplex-valued extended b-metric space. We can conclude that every bicomplex-valued extended b-metric space is a BVCMS. However, the converse may not true in general.
Example 3. 
Let ζ = { 1 , 2 , 3 } and £ b v c m s : ζ × ζ C 2 be defined as
£ b v c m s ( 1 , 1 ) = £ b v c m s ( 2 , 2 ) = £ b v c m s ( 3 , 3 ) = 0 ,
£ b v c m s ( 2 , 1 ) = £ b v c m s ( 1 , 2 ) = 4 + 4 i 2 , £ b v c m s ( 3 , 2 ) = £ b v c m s ( 2 , 3 ) = 1 + 2 i 2 , £ b v c m s ( 3 , 1 ) = £ b v c m s ( 1 , 3 ) = 1 i 2 ,
and φ : ζ × ζ [ 1 , ) be defined as
φ ( 1 , 1 ) = φ ( 2 , 2 ) = φ ( 3 , 3 ) = 3 ,
φ ( 1 , 2 ) = φ ( 2 , 1 ) = 2 , φ ( 2 , 3 ) = φ ( 3 , 2 ) = 4 , φ ( 1 , 3 ) = φ ( 3 , 1 ) = 1 .
Clearly, the conditions (BCCMS1) and (BCCMS2) hold. Now,
  • Case 1.  If = the condition (BCCMS3) holds.
  • Case 2.  If = 1 and = 3 (same as = 1 and = 3 ) and i = 2
    £ b v c m s ( , ) = | £ b v c m s ( 1 , 3 ) | = | 1 i 2 | i 2 | 12 + 16 i 2 | = | 2 ( 4 + 4 i 2 ) + 4 ( 1 + 2 i 2 ) | i 2 2 | ( 4 + 4 i 2 ) | + 4 | ( 1 + 2 i 2 ) | = φ ( 1 , 2 ) £ b v c m s ( 1 , 2 ) + φ ( 2 , 3 ) £ b v c m s ( 2 , 3 ) = φ ( , i ) £ b v c m s ( , i ) + φ ( i , ) £ b v c m s ( i , ) .
  • Case 3.  If = 1 and = 2 (same as = 1 and = 2 ) and i = 3
    £ b v c m s ( , ) = | £ b v c m s ( 1 , 2 ) | = | 4 + 4 i 2 | i 2 | 5 + 7 i 2 | = | 1 ( 1 i 2 ) + 4 ( 1 + 2 i 2 ) | i 2 1 | ( 1 i 2 ) | + 4 | ( 1 + 2 i 2 ) | = φ ( 1 , 3 ) £ b v c m s ( 1 , 3 ) + φ ( 3 , 2 ) £ b v c m s ( 3 , 2 ) = φ ( , i ) £ b v c m s ( , i ) + φ ( i , ) £ b v c m s ( i , ) .
  • Case 4.  If = 2 and = 3 (same as = 3 and = 2 ) and i = 1
    £ b v c m s ( , ) = | £ b v c m s ( 2 , 3 ) | = | 1 + 2 i 2 | i 2 | 9 + 7 i 2 | = | 2 ( 4 + 4 i 2 ) + 1 ( 1 i 2 ) | i 2 2 | ( 4 + 4 i 2 ) | + 1 | ( 1 i 2 ) | = φ ( 2 , 1 ) £ b v c m s ( 2 , 1 ) + φ ( 1 , 3 ) £ b v c m s ( 1 , 3 ) = φ ( , i ) £ b v c m s ( , i ) + φ ( i , ) £ b v c m s ( i , ) .
  • Then, ( ζ , £ b v c m s ) is a BVCMS.
Definition 3. 
Let ( ζ , £ b v c m s ) be a BVCMS with a sequence { υ } in ζ and ζ . Then,
(i) 
A sequence { υ } in ζ is convergent to ζ if 0 i 2 α C 2 , a natural number N so that £ b v c m s ( υ , ) i 2 α for each υ N . Then, lim υ υ = or υ as υ .
(ii) 
If, for each 0 i 2 α where α C 2 , a natural number N so that £ b v c m s ( υ , υ + ς ) i 2 α for each ς N and υ > N . Then, { υ } is called a Cauchy sequence in ( ζ , £ α ε α ) .
(iii) 
BVCMS ( ζ , £ b v c m s ) is termed complete if every Cauchy sequence is convergent.
Lemma 1. 
Let ( ζ , £ b v c m s ) be a BVCMS. Then a sequence { υ } in ζ is a Cauchy sequence, such that ς υ , with ς υ . Then, { υ } converges to one point at most.
Proof. 
Let * and i * be two limits of the sequence { υ } ζ and lim υ £ b v c m s ( υ , * ) = 0 = £ b v c m s ( υ , i * ) . Since { υ } is a Cauchy sequence, from (BCCMS3), for ς υ , whenever ς υ , we can write
£ b v c m s ( * , i * ) i 2 [ φ ( * , υ ) £ b v c m s ( * , υ ) + φ ( υ , i * ) £ b v c m s ( υ , i * ) ] 0 as υ .
We obtain £ b v c m s ( * , i * ) = 0 , i.e., * = i * . Thus, { υ } converges to one point at most. □
Lemma 2. 
For a given BVCMS ( ζ , £ b v c m s ) , the tricomplex-valued controlled metric map £ b v c m s : ζ × ζ C 2 is continuous with respect to “ i 2 ”.
Proof. 
Let s , q C 2 , such that s q , then we show that the set £ b v c m s 1 ( q , s ) given by
£ b v c m s 1 ( q , s ) : = { ( , i ) ζ × ζ | q i 2 £ b v c m s ( , i ) i 2 s } ,
is open in the product topology on ζ × ζ . Then, let ( , i ) £ b v c m s 1 ( q , s ) . We choose ϵ = 1 200 min ( £ b v c m s ( , i ) q , s £ b v c m s ( , i ) ) . Then, for ( φ , λ ) β ( , ϵ ) × β ( i , ϵ ) we obtain
£ b v c m s ( φ , λ ) i 2 £ b v c m s ( λ , ) + £ b v c m s ( , i ) + £ b v c m s ( i , λ ) i 2 2 ϵ + £ b v c m s ( , i ) i 2 s
and
q i 2 £ b v c m s ( , i ) 2 ϵ i 2 £ b v c m s ( φ , λ ) + £ b v c m s ( , λ ) ϵ + £ b v c m s ( i , λ ) ϵ i 2 £ b v c m s ( φ , λ ) .
Then, ( , i ) β ( ϰ , ϵ ) × β ( i , ϵ ) £ b v c m s 1 ( q , s ) . □
Defining Fix η : = { * ζ | * = η ( * ) } will be the set of fixed points.
In this paper, we introduce the notion of BVCMS and FPT in the context of BVCMSs.

3. Main Results

Now, we prove the Banach-type contraction principle.
Theorem 1. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and η : ζ ζ a continuous map, such that
£ b v c m s ( η , η i ) i 2 a £ b v c m s ( , i ) ,
for all , i ζ , where 0 < a < 1 . For 0 ζ , we denote υ = η υ 0 . Suppose that
max ς 1 lim q φ ( q + 1 , q + 2 ) φ ( q , q + 1 ) φ ( q + 1 , ς ) < 1 a ,
Moreover, for every ζ the limits
lim υ φ ( υ , ) and lim υ φ ( , υ ) exists and are finite .
Then η has a unique fixed point (UFP).
Proof. 
Let { υ = η υ 0 } . By (1), we obtain
£ b v c m s ( υ , υ + 1 ) i 2 a £ b v c m s ( υ 1 , υ ) i 2 i 2 a υ £ b v c m s ( 0 , 1 ) , υ 0 .
For all υ < ς , where υ , ς N , we have
£ b v c m s ( υ , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς £ b v c m s ( υ + 1 , ς i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς £ b v c m s ( υ + 2 , ς )
£ b v c m s ( υ , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 2 , υ + 3 ) ) £ b v c m s ( υ + 2 , ς ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 3 , ς ) £ b v c m s ( υ + 2 , ς ) i 2 . . . i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) £ b v c m s ( ι , ι + 1 ) + p = υ + 1 ς 1 φ ( p , ς £ b v c m s ( ς 1 , ς ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) + p = υ + 1 ς 1 φ ( p , ς ) a ς 1 £ b v c m s ( 0 , 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) + p = υ + 1 ς 1 φ ( p , ς ) a ς 1 φ ( ς 1 , ς ) £ b v c m s ( 0 , 1 ) = φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 )
Furthermore, using φ ( , i ) 1 . Let
S = ι = 0 j = 0 ι φ ( j , ς φ ( ι , ι + 1 ) ) a ι .
Hence, we have
£ b v c m s ( υ , ς ) i 2 £ b v c m s ( 0 , 1 ) [ a υ φ ( υ , υ + 1 ) + ( S ς 1 , S υ ) ] .
Applying the ratio test and (2), we obtain lim ς , υ S υ exists and the sequence { S υ } is a real Cauchy sequence. Letting ς , υ , we have
lim ς , υ £ b v c m s ( υ , ς ) = 0 .
Then, { υ } is a Cauchy sequence in a BVCMSs ( ζ , £ b v c m s ) ; then { υ } converges to * ζ . By the definition of continuity, we obtain
* = lim υ υ + 1 = lim υ η υ = η ( lim υ υ ) = η * .
Let * , i * fix η. Then,
£ b v c m s ( * , i * ) = £ b v c m s ( η * , η i * ) i 2 φ £ b v c m s ( * , i * ) .
Therefore, £ b v c m s ( * , i * ) = 0 ; so * = i * . Hence, η has a UFP. □
Theorem 2. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and η : ζ ζ a map, such that
£ b v c m s ( η , η i ) i 2 φ £ b v c m s ( , i ) ,
for all , i ζ , where 0 < a < 1 . For 0 ζ we denote υ = η υ 0 . Suppose that
max ς 1 lim ι φ ( ι + 1 , ι + 2 ) φ ( ι , ι + 1 ) φ ( ι + 1 , ς ) < 1 a .
In addition, for each ζ ,
lim υ φ ( υ , ) and lim υ φ ( , υ ) exists and it is finite .
Then, η has a UFP.
Proof. 
Using the proof of Theorem 1 and Lemma 2, we obtain a Cauchy sequence { υ } in a complete BVCMS ( ζ , £ b v c m s ) . Then, the sequence { υ } converges to * ζ . Therefore,
£ b v c m s ( * , υ + 1 ) i 2 φ ( * , υ ) £ b v c m s ( * , υ ) + φ ( υ , υ + 1 ) £ b v c m s ( * , υ + 1 ) .
Using (7), (8) and (18), we obtain
lim υ £ b v c m s ( * , υ + 1 ) = 0 .
Using the triangular inequality and (6),
£ b v c m s ( * , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) £ b v c m s ( υ + 1 , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + a φ ( υ + 1 , η * ) £ b v c m s ( υ + 1 , η * )
Taking the limit υ from (8) and (19), we find that £ b v c m s ( * , η * ) = 0 . By Lemma 1, the sequence { υ } uniquely converges at * ζ . □
Example 4. 
Let ζ = { 0 , 1 , 2 } and £ b v c m s : ζ × ζ C 2 be a symmetrical metric given by
£ b v c m s ( , ) = 0 , for each ζ
and
£ b v c m s ( 0 , 1 ) = 1 + i 2 , £ b v c m s ( 1 , 2 ) = 1 + i 2 , £ b v c m s ( 0 , 2 ) = 4 + 4 i 2 .
Define φ : ζ × ζ [ 1 , ) by
φ ( 2 , 2 ) = 6 5 , φ ( 0 , 0 ) = 2 , φ ( 1 , 1 ) = 4 3 , φ ( 0 , 2 ) = 4 3 , φ ( 0 , 1 ) = 3 2 , φ ( 1 , 2 ) = 5 4 .
Hence, it is a BVCMS.
Consider a map η : ζ ζ is defined by η ( 0 ) = 0 , η ( 1 ) = 0 , η ( 2 ) = 0 .
Letting a = 2 5 . Then,
  • Case 1.  If = i = 0 , = i = 1 , = i = 2 , then the results is obvious.
  • Case 2.  If = 0 , i = 1 , we obtain
    £ b v c m s ( η , η i ) = £ b v c m s ( η 0 , η 1 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 2 5 ( 1 + i 2 ) = a ( £ b v c m s ( 0 , 1 ) ) = a ( £ b v c m s ( , i ) ) .
  • Case 3.  If = 0 , i = 2 , we have
    £ b v c m s ( η , η i ) = £ b v c m s ( η 0 , η 1 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 2 5 ( 4 + 4 i 2 ) = a ( £ b v c m s ( 0 , 2 ) ) = a ( £ b v c m s ( , i ) ) .
  • Case 4.  If = 1 , i = 2 , we have
    £ b v c m s ( η , η i ) = £ b v c m s ( η 1 , η 2 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 2 5 ( 1 + i 2 ) = a ( £ b v c m s ( 1 , 2 ) ) = a ( £ b v c m s ( , i ) ) .
Therefore, all axioms of Theorem 2 are fulfilled. Hence, η has a UFP, which is * = 0 .
Next, we show a Kannan-type contraction map.
Theorem 3. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and η : ζ ζ a continuous map, such that
£ b v c m s ( η , η i ) i 2 η ( £ b v c m s ( , η ) + ( £ b v c m s ( i , η i ) ) ,
for all , i ζ , where 0 η < 1 2 . For 0 ζ we denote υ = η υ 0 . Suppose that
max ς 1 lim ι φ ( ι + 1 , ι + 2 ) φ ( ι , ι + 1 ) φ ( ι + 1 , ς ) < 1 a , where a = η 1 η .
Moreover, for each ζ ,
lim υ φ ( υ , ) and lim υ φ ( , υ ) ,
exists and is finite. Then, η has a UFP.
Proof. 
For 0 ζ , consider a sequence { υ = η υ 0 } . If 0 N for which υ 0 + 1 = υ 0 , then η υ 0 = υ 0 . Thus, there is nothing to prove. Now we assume that υ + 1 υ for all υ N . By using (1) we obtain
£ b v c m s ( υ , υ + 1 ) = £ b v c m s ( η υ 1 , η υ ) i 2 η ( £ b v c m s ( υ 1 , η υ 1 ) + £ b v c m s ( υ , η υ ) ) = η ( £ b v c m s ( υ 1 , υ ) + £ b v c m s ( υ , υ + 1 ) ) , which implies £ b v c m s ( υ , υ + 1 ) i 2 η 1 η £ b v c m s ( υ 1 , υ ) = a £ b v c m s ( υ 1 , υ ) .
In the same way
£ b v c m s ( υ 1 , υ ) = £ b v c m s ( η υ 2 , η υ 1 ) i 2 η ( £ b v c m s ( υ 2 , η υ 2 ) + £ b v c m s ( υ 1 , η υ 1 ) ) = η ( £ b v c m s ( υ 2 , υ 1 ) + £ b v c m s ( υ 1 , υ ) ) , which implies £ b v c m s ( υ 1 , υ ) i 2 η 1 η £ b v c m s ( υ 2 , υ 1 ) = a £ b v c m s ( υ 2 , υ 1 ) .
Continuing in the same way, we have
£ b v c m s ( υ , υ + 1 ) i 2 a £ b v c m s ( υ 1 , υ ) i 2 a 2 £ b v c m s ( υ 2 , υ 1 ) i 2 . . . . i 2 a υ £ b v c m s ( 0 , 1 ) .
Thus, £ b v c m s ( υ , υ + 1 ) i 2 a υ £ b v c m s ( 0 , 1 ) for all υ 0 . For all υ < ς , where υ and ς are natural numbers, we have
£ b v c m s ( υ , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς ) £ b v c m s ( υ + 1 , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς ) φ ( υ + 2 , ς ) £ b v c m s ( υ + 2 , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 2 , υ + 3 ) £ b v c m s ( υ + 2 , υ + 3 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 3 , ς ) £ b v c m s ( υ + 3 , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) £ b v c m s ( ι , ι + 1 ) + p = υ + 1 ς 1 φ ( p , ς £ b v c m s ( ς 1 , ς i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( ι , ι + 1 ) + p = υ + 1 ς 1 φ ( p , ς a ς 1 £ b v c m s ( 0 , 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( ι , ι + 1 ) + p = υ + 1 ς 1 φ ( p , ς φ ( ς 1 , ς £ b v c m s ( 0 , 1 )
£ b v c m s ( υ , ς ) = φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 j = υ + 1 ι φ ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( ι , ι + 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 j = υ + 1 ι ( j , ς φ ( ι , ι + 1 ) a ι £ b v c m s ( ι , ι + 1 ) .
Furthermore, using φ ( , i ) 1 . Let
S = ι = 0 j = 0 ι φ ( j , ς φ ( ι , ι + 1 ) a ι .
Hence, we have
£ b v c m s ( υ , ς ) i 2 £ b v c m s ( 0 , 1 ) [ a υ φ ( υ , υ + 1 ) + ( S ς 1 , S υ ) ] .
By applying the ratio test, we obtain lim ς , υ S υ exists and so the sequence { S υ } is a Cauchy sequence. Letting ς , υ , we have
lim ς , υ £ b v c m s ( υ , ς ) = 0 .
Then { υ } is a Cauchy sequence in a complete BVCMS ( ζ , £ b v c m s ) . This means the sequence { υ } converges to some * ζ . By the definition of continuity, we obtain
* = lim υ υ + 1 = lim υ η υ = η ( lim υ υ ) = η * .
Let * , i * fix η. Then,
£ b v c m s ( * , i * ) = £ b v c m s ( η * , η i * ) i 2 η [ £ b v c m s ( * , η * ) + £ b v c m s ( i * , η i * ) ] i 2 η [ £ b v c m s ( * , * ) + £ b v c m s ( i * , i * ) ] = 0 .
Therefore, £ b v c m s ( * , i * ) = 0 , then * = i * . Hence, η has a UFP. □
Theorem 4. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and  η : ζ ζ a map, such that
£ b v c m s ( η , η i ) i 2 η ( £ b v c m s ( , η ) + £ b v c m s ( i , η i ) )
for all  , i ζ  where  0 η < 1 2 . For  0 ζ  we denote  υ = η υ 0 . Suppose that
max ς 1 lim ι φ ( ι + 1 , ι + 2 ) φ ( ι , ι + 1 ) φ ( ι + 1 , ς ) < 1 a , where a = η 1 η .
Moreover, for each ζ ,
lim υ φ ( υ , ) and lim υ φ ( , υ ) ,
exists and is finite. Then η has a UFP.
Proof. 
By proving Theorem 3 and using Lemma 2, we show a Cauchy sequence { υ } in a complete BVCMS ( ζ , £ b v c m s ) . Then the sequence { υ } converges to a * ζ . Then,
£ b v c m s ( * , υ + 1 ) i 2 φ ( * , υ ) £ b v c m s ( * , υ ) + φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 )
Using (2), (3) and (18), we deduce
lim υ b v c m s ( * , υ + 1 ) = 0 .
Using the triangular inequality and (1), we obtain
£ b v c m s ( * , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) £ b v c m s ( υ + 1 , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) [ η ( £ b v c m s ( υ , υ + 1 ) + £ b v c m s ( * , η * ) ) ] .
As υ from (3) and (19), we conclude that £ b v c m s ( * , η * ) = 0 . From Lemma 1, the sequence { υ } uniquely converges at * ζ . □
Example 5. 
Let ζ = { 0 , 1 , 2 } and £ b v c m s : ζ × ζ C 2 be a symmetrical metric as follows
£ b v c m s ( , ) = 0 for each ζ
and
£ b v c m s ( 0 , 1 ) = 1 + i 2 , £ b v c m s ( 1 , 2 ) = 1 + i 2 , £ b v c m s ( 0 , 2 ) = 4 + 4 i 2 .
Define φ : ζ × ζ [ 1 , ) by
φ ( 2 , 2 ) = 9 5 , φ ( 0 , 0 ) = 5 , φ ( 1 , 1 ) = 7 3 , φ ( 1 , 2 ) = 2 , φ ( 0 , 1 ) = 3 , φ ( 0 , 2 ) = 7 3 .
A self-map η on ζ can be defined by η ( 0 ) = η ( 1 ) = η ( 2 ) = 2 .
Taking η = 2 5 ; then,
  • Case 1.  If = i = 0 ,   = i = 1 ,   = i = 2 , then the result is obvious.
  • Case 2.  If = 0 , i = 1 , we obtain
          £ b v c m s ( η , η i ) = £ b v c m s ( η 0 , η 1 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 10 5 ( 1 + i 2 ) = 2 5 ( 4 + 4 i 2 + ( 1 + i 2 ) ) = η ( £ b v c m s ( 0 , 2 ) + £ b v c m s ( 1 , 2 ) ) = η ( £ b v c m s ( , η ) + £ b v c m s ( i , η i ) ) .
  • Case 3.  If = 0 , i = 2 , we have
          £ b v c m s ( η , η i ) = £ b v c m s ( η 0 , η 2 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 8 5 ( 1 + i 2 ) = 2 5 ( 4 + 4 i 2 + 0 ) = η ( £ b v c m s ( 0 , 2 ) + £ b v c m s ( 2 , 2 ) ) = η ( £ b v c m s ( , η ) + £ b v c m s ( i , η i ) ) .
  • Case 4.  If = 1 , i = 2 , we have
          £ b v c m s ( η , η i ) = £ b v c m s ( η 1 , η 2 ) = £ b v c m s ( 2 , 2 ) = 0 i 2 2 5 ( 1 + i 2 ) = 2 5 ( ( 1 + i 2 ) + 0 ) = η ( £ b v c m s ( 1 , 2 ) + £ b v c m s ( 2 , 2 ) ) = η ( £ b v c m s ( , η ) + £ b v c m s ( i , η i ) ) .
Then, all hypothesis of Theorem 4 are fulfilled. Hence, T has a UFP, which is * = 2 .
Finally, we show that FPT in a Fisher-type contraction map.
Theorem 5. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and η : ζ ζ a continuous map, such that
£ b v c m s ( η , η i ) i 2 ϖ £ b v c m s ( , i ) + f £ b v c m s ( , η ) £ b v c m s ( i , η i ) 1 + £ b v c m s ( , i ) ,
for all  , i ζ , where  ϖ , f [ 0 , 1 ) , such that ν = ϖ 1 f < 1 . For  0 ζ we denote  υ = η υ 0 . Suppose that
max ς 1 lim i 2 φ ( i 2 + 1 , i 2 + 2 ) φ ( i 2 , i 2 + 1 ) φ ( i 2 + 1 , ς ) < 1 ν ,
Moreover, suppose that for every ϰ ζ we have
lim υ φ ( υ , ) and lim υ φ ( , υ ) ,
exist and are finite. Then η has a UFP.
Proof. 
For 0 ζ . Let υ = η υ 0 . If 0 N for which υ 0 + 1 = υ 0 , then η υ 0 = υ 0 . Thus, there is nothing to prove. Now we assume that υ + 1 υ for all υ N . By using (1), we obtain
£ b v c m s ( υ , υ + 1 ) = £ b v c m s ( η υ 1 , η υ ) i 2 ϖ £ b v c m s ( υ 1 , υ ) + f £ b v c m s ( υ 1 , η υ ) £ b v c m s ( υ , η υ ) 1 + £ b v c m s ( υ 1 , υ ) = ϖ £ b v c m s ( υ 1 , υ ) + f £ b v c m s ( υ 1 , υ ) £ b v c m s ( ϰ υ , υ ) 1 + £ b v c m s ( υ 1 , υ ) i 2 £ b v c m s ( ϰ υ 1 , υ ) + f £ b v c m s ( υ , υ + 1 )
which implies
£ b v c m s ( υ , υ + 1 ) i 2 ϖ 1 f £ b v c m s ( υ 1 , υ ) = ν £ b v c m s ( υ 1 , υ )
In the same way
£ b v c m s ( υ 1 , υ ) = £ b v c m s ( η υ 2 , η υ 1 ) i 2 ϖ £ b v c m s ( υ 2 , υ 1 ) + f £ b v c m s ( υ 2 , η υ 2 ) £ b v c m s ( υ 1 , η υ 1 ) 1 + £ b v c m s ( υ 2 , υ 1 ) = ϖ £ b v c m s ( υ 2 , υ 1 ) + f £ b v c m s ( υ 2 , υ 1 ) £ b v c m s ( υ 1 , υ ) 1 + £ b v c m s ( υ 2 , υ 1 ) i 2 ϖ £ b v c m s ( υ 2 , υ 1 ) + f £ b v c m s ( υ 1 , υ )
which implies
£ b v c m s ( υ 1 , υ ) i 2 ϖ 1 f £ b v c m s ( υ 2 , υ 1 ) = ν ( υ 2 , υ 1 )
Continuing in the same way, we have
£ b v c m s ( υ , υ + 1 ) i 2 ν £ b v c m s ( υ 1 , υ ) i 2 ν 2 £ b v c m s ( υ 2 , υ 1 ) i 2 ν υ £ b v c m s ( 0 , 1 ) .
Thus, £ b v c m s ( υ , υ + 1 ) i 2 ν υ £ b v c m s ( 0 , 1 ) for all υ 0 . For all υ < ς , where υ and ς are natural numbers, giving
£ b v c m s ( υ , ς ) i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς £ b v c m s ( υ + 1 , ς i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς £ b v c m s ( υ + 2 , ς i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + φ ( υ + 1 , ς φ ( υ + 1 , υ + 2 ) £ b v c m s ( υ + 1 , υ + 2 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 2 , υ + 3 ) £ b v c m s ( υ + 2 , υ + 3 ) + φ ( υ + 1 , ς φ ( υ + 2 , ς φ ( υ + 3 , ς £ b v c m s ( υ + 3 , ς i 2 i 2 φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) + ι = υ + 1 ς 2 ( j = υ + 1 ι φ ( j , ς ) φ ( ι , ι + 1 ) £ b v c m s ( ι , ι + 1 ) + p = υ + 1 ς 1 φ ( p , ς £ b v c m s ( ς 1 , ς i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 ( j = υ + 1 ι φ ( j , ς ) φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) + p = υ + 1 ς 1 φ ( p , ς a ς 1 £ b v c m s ( 0 , 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 2 ( j = υ + 1 ι φ ( j , ς ) φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) + ( p = υ + 1 ς 1 φ ( p , ς ) a ς 1 φ ( ς 1 , ς £ b v c m s ( 0 , 1 ) = φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 ( j = υ + 1 ι φ ( j , ς ) φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) i 2 φ ( υ , υ + 1 ) a υ £ b v c m s ( 0 , 1 ) + ι = υ + 1 ς 1 ( j = 0 ι φ ( j , ς ) φ ( ι , ι + 1 ) a ι £ b v c m s ( 0 , 1 ) .
Furthermore, using φ ( , i ) 1 . Let
S = ι = 0 ( j = 0 ι φ ( j , ς ) φ ( ι , ι + 1 ) a ι .
Hence, we have
£ b v c m s ( υ , ς ) i 2 £ b v c m s ( 0 , 1 ) [ ν υ φ ( υ , υ + 1 ) + ( S ς 1 , S υ ) ] .
By using the ratio test, ensuring that lim ς , υ S υ exists, the sequence { S υ } is a real Cauchy sequence. As ς , υ , we conclude that
lim ς , υ £ b v c m s ( υ , ς ) = 0 ,
Then, { υ } is a Cauchy sequence in the complete BVCMS ( ζ , £ b v c m s ) . Therefore, the sequence { υ } converges to * ζ .
By the definition of continuity, we obtain
* = lim υ υ + 1 = lim υ η υ = η ( lim υ υ ) = η * .
Let * , i * fix η as two fixed points of η. Then,
£ b v c m s ( η * , η i * ) i 2 ϖ £ b v c m s ( * , i * ) + f £ b v c m s ( * , η i * ) £ b v c m s ( * , η i * ) 1 + £ b v c m s ( * , i * ) i 2 ϖ £ b v c m s ( * , i * ) + f £ b v c m s ( * , * ) £ b v c m s ( i * , i * ) 1 + £ b v c m s ( * , i * ) i 2 ϖ £ b v c m s ( * , i * ) .
Therefore, £ b v c m s ( * , i * ) = 0 ; then * = i * . Hence, η has a UFP. □
If we drop the continuous condition, we obtain
Theorem 6. 
Let ( ζ , £ b v c m s ) be a complete BVCMS and η : ζ ζ a map, such that
£ b v c m s ( η , η i ) i 2 ϖ £ b v c m s ( , i ) + f £ b v c m s ( , η ) £ b v c m s ( i , η i ) 1 + £ b v c m s ( , i ) ,
for all , i ζ , where ϖ , f [ 0 , 1 ) , such that ν = ϖ 1 f < 1 . For 0 ζ we denote υ = η υ 0 . Suppose that
max ς 1 lim i 2 φ ( i 2 + 1 , i 2 + 2 ) φ ( ı ˙ 2 , i 2 + 1 ) φ ( i 2 + 1 , ς < 1 ν ,
In addition, assume that for every ζ we have
lim υ φ ( υ , ) and lim υ ( , υ ) exists .
Therefore, it is finite. Then η has a UFP.
Proof. 
By proving Theorem 5 and using Lemma 2, we obtain a Cauchy sequence { υ } which converges to * ζ . Then,
£ b v c m s ( * , υ + 1 ) i 2 φ ( * , υ ) £ b v c m s ( * , υ ) + φ ( υ , υ + 1 ) £ b v c m s ( υ , υ + 1 ) .
Using (2), (3) and (23), we deduce that
lim υ £ b v c m s ( * , υ + 1 ) = 0 .
Using the triangular inequality and (1),
£ b v c m s ( * , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) £ b v c m s ( υ + 1 , η * ) i 2 φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) [ ϖ £ b v c m s ( υ , * ) + f £ b v c m s ( υ , η υ ) £ b v c m s ( * , η * ) 1 + £ b v c m s ( υ , * ) ] = φ ( * , υ + 1 ) £ b v c m s ( * , υ + 1 ) + φ ( υ + 1 , η * ) [ ϖ £ b v c m s ( υ , * ) + f £ b v c m s ( υ , η υ ) £ b v c m s ( * , η * ) 1 + £ b v c m s ( υ , * ) ] .
As υ in (3) and (24), we find that £ b v c m s ( * , η * ) = 0 . From Lemma 1, the sequence { υ } uniquely converge at * ζ . □
Example 6. 
Let ζ = { 0 , 1 , 2 } and £ b v c m s : ζ × ζ C be a symmetrical metric defined as
£ b v c m s ( , ) = 0 for each ζ
and
£ b v c m s ( 0 , 1 ) = 1 + i 2 , £ b v c m s ( 1 , 2 ) = 1 + i 2 , £ b v c m s ( 0 , 2 ) = 4 + 4 i 2 .
Defining φ : ζ × ζ [ 1 , ) by
φ ( 2 , 2 ) = 9 5 , φ ( 0 , 0 ) = 5 , φ ( 1 , 1 ) = 7 3 , φ ( 1 , 2 ) = 2 , φ ( 0 , 1 ) = 3 , φ ( 0 , 2 ) = 7 3 .
Clearly, ( ζ , £ b v c m s ) is a BVCMS. A self-map η on ζ defined by η ( 0 ) = η ( 1 ) = η ( 2 ) = 1 .
If we assume that ϖ = f = 1 5 , we obtain
  • Case 1.  If = i = 0 , = i = 1 , = i = 2 we have £ b v c m s ( η , η i ) = 0 .
  • Case 2.  If = 0 , i = 1 , we obtained £ b v c m s ( η , η i ) = 0 i 2 ϖ £ b v c m s ( , i ) + f £ b v c m s ( , η ) £ b v c m s ( i , η i ) 1 + £ b v c m s ( , i )
  • Case 3.  If = 0 , i = 2 , we have £ b v c m s ( η , η i ) = 0 i 2 ϖ £ b v c m s ( , i ) + f £ b v c m s ( , η ) £ b v c m s ( i , η i ) 1 + £ b v c m s ( , i )
  • Case 4.  If = 1 , i = 2 , we have £ b v c m s ( η , η i ) = 0 i 2 ϖ £ b v c m s ( , i ) + f £ b v c m s ( , η ) £ b v c m s ( i , η i ) 1 + £ b v c m s ( , i )
Therefore, all axioms of Theorem 6 are fulfilled. Hence, η has a UFP, which is * = 1 .

Application

Now, we see some basic definitions from the fractional calculus.
Let ϰ C [ 0 , 1 ] be a function, the Rieman–Liouville fractional derivatives of order δ > 0 are defined as:
1 Γ ( n δ ) d n d n 0 ϰ ( c ) d c ( c ) δ n + 1 = D δ ϰ ( ) ,
presenting that the right-hand side is point-wise on [ 0 , 1 ] , where Γ is the Euler Γ function and [ δ ] is the integer part of δ .
Consider the following FDE
c D ξ ϰ ( ) + f ( , ϰ ( ) ) = 0 , 1 0 , 2 ξ > 1 ; ϰ ( 0 ) = ϰ ( 1 ) = 0 ,
where c D ξ represents the order of ξ as the Caputo fractional derivatives and f : [ 0 , 1 ] × R R as a continuous map defined by
c D ξ = 1 Γ ( n ξ ) 0 ϰ n ( c ) d c ( c ) ξ n + 1 .
The given FDE (25) is equivalent to
ϰ ( ) = 0 1 Ω ( , c ) f ( , ϰ ( c ) ) d c ,
for all ϰ ζ and [ 0 , 1 ] , where
Ω ( , c ) = [ ( 1 c ) ] ξ 1 ( c ) ξ 1 Γ ( ξ ) , 0 c 1 , [ ( 1 c ) ] ξ 1 Γ ( ξ ) , 0 c 1 .
Consider C ( [ 0 , 1 ] , R ) = ζ as the space of the continuous map described by [ 0 , 1 ] , and £ b v c m s : ζ × ζ C 2 a bicomplex-valued controlled metric, such that
£ b v c m s ( ϰ , γ ) = sup [ 0 , 1 ] | ϰ ( ) γ ( ) | 2 + i 2 sup [ 0 , 1 ] | ϰ ( ) γ ( ) | 2 ,
for all ϰ , γ ζ . Let φ : ζ × ζ [ 1 , ) be defined by
φ ( ϰ , γ ) = 2 ,
for all ϰ , γ ζ . Then, ( ζ , £ b v c m s ) is a complete BVCMS.
Theorem 7. 
Consider the non-linear FDE (25). Suppose that the following assertions are satisfied:
(i) 
There exists m [ 0 , 1 ] and ϰ , γ C ( [ 0 , 1 ] , R ) , such that
| f ( , ϰ ) f ( , γ ) | m | ϰ ( ) γ ( ) | ;
(ii) 
sup [ 0 , 1 ] 0 1 Ω ( , c ) d c < 1 .
  • Then, FDE (25) has a unique solution in ζ.
Proof. 
Consider the map η : ζ ζ defined by
η ϰ ( ) = 0 1 Ω ( , c ) f ( , ϰ ( c ) ) d c .
Now, for all ϰ , γ ζ , we deduce
| η ϰ ( ) η γ ( ) | 2 ( 1 + i 2 ) = | 0 1 Ω ( , c ) f ( , ϰ ( c ) ) d c 0 1 Ω ( , c ) f ( , γ ( c ) ) d c | 2 ( 1 + i 2 ) 0 1 Ω ( , c ) | f ( , ϰ ( c ) ) f ( , γ ( c ) ) | d c 2 ( 1 + i 2 ) 0 1 Ω ( , c ) d c 2 0 1 m | ϰ ( ) γ ( ) | 2 d c ( 1 + i 2 ) .
Taking the supreme, we obtain
£ b v c m s ( η ϰ , η γ ) m £ b v c m s ( ϰ , γ ) .
Therefore, all conditions of Theorem 1 are fulfilled and the operator η has a UFP. □

4. Conclusions

In this paper we introduced the concept of BVCMS and FPTs for Banach-, Kannan- and Fisher-type contractions concepts. Furthermore, we presented examples that elaborated the usability of our results. Meanwhile, we provided an application for the existence of a solution to an FDE using one of our results. This concept can be applied for further investigations into studying BVCMSs for other structures in metric spaces.

Author Contributions

All authors contributed equally towards writing this article. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors S.H. and N.M. would like to thank Prince Sultan University for paying the publication fees through the TAS research LAB.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Luna-Elizaarraras, M.E.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomplex numbers and their elementary functions. Cubo 2012, 14, 61–80. [Google Scholar]
  3. Aslam, M.S.; Bota, M.F.; Chowdhury, M.S.R.; Guran, L.; Saleem, N. Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued b-metric spaces. Mathematics 2021, 9, 400. [Google Scholar] [CrossRef]
  4. Lateef, D. Fisher type fixed point results in controlled metric spaces. J. Math. Comput. Sci. 2020, 20, 234–240. [Google Scholar] [CrossRef]
  5. Shatanawi, W.; Mlaiki, N.; Rizk, D. Fredholm-type integral equation in controlled metric-like spaces. Adv. Differ. Equ. 2021, 358, 1–13. [Google Scholar] [CrossRef]
  6. Lateef, D. Kannan fixed point theorem in C-metric spaces. J. Math. Anal. 2019, 10, 34–40. [Google Scholar]
  7. Shatanawi, W.; Shatnawi, T.A. Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Math. 2023, 8, 10929–10946. [Google Scholar] [CrossRef]
  8. Shatanawi, W.; Shatnawi, T.A. New fixed point results in controlled metric type spaces based on new contractive conditions. AIMS Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
  9. Rezazgui, A.-Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Aϑ-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. AIMS Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
  10. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
  11. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. An improvement of recent results in controlled metric type spaces. Filomat 2020, 34, 1853–1862. [Google Scholar] [CrossRef]
  12. Segre, C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
  13. Dragoni, G.S. Sulle funzioni olomorfe di una variabile bicomplessa. Reale Accad. d’Italia Mem. Classes Sci. Nat. Fis. Mat. 1934, 5, 597–665. [Google Scholar]
  14. Spampinato, N. Estensione nel campo bicomplesso di due teoremi, del Levi-Civita e del Severi, per le funzioni olomorfe di due variablili bicomplesse I, II. Reale Accad. Naz. Lincei. 1935, 22, 38–43. [Google Scholar]
  15. Spampinato, N. Sulla rappresentazione delle funzioni do variabile bicomplessa totalmente derivabili. Ann. Mat. Pura Appl. 1936, 14, 305–325. [Google Scholar] [CrossRef]
  16. Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
  17. Colombo, F.; Sabadini, I.; Struppa, D.C.; Vajiac, A.; Vajiac, M. Singularities of functions of one and several bicomplex variables. Ark. Math. 2010, 49, 277–294. [Google Scholar] [CrossRef]
  18. Choi, J.; Datta, S.K.; Biswas, T.; Islam, N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Math. J. 2017, 39, 115–126. [Google Scholar] [CrossRef]
  19. Jebril, I.H.; Datta, S.K.; Sarkar, R.; Biswas, N. Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. J. Interdiscip. Math. 2019, 22, 1071–1082. [Google Scholar] [CrossRef]
  20. Beg, I.; Datta, S.K.; Pal, D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 717–727. [Google Scholar]
  21. Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a Fredholm integral equation via coupled fixed point on bicomplex partial metric space. AIMS Math. 2022, 7, 15402–15416. [Google Scholar] [CrossRef]
  22. Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a System of Nonlinear Integral Equations via Common Fixed Point Theorems on Bicomplex Partial Metric Space. Mathematics 2021, 9, 1584. [Google Scholar] [CrossRef]
  23. Dattaa, S.K.; Palb, D.; Sarkarc, R.; Mannad, A. On a Common Fixed Point Theorem in Bicomplex Valued b-metric Space. Montes Taurus J. Pure Appl. Math. 2021, 3, 358–366. [Google Scholar]
  24. Samei, M.E. Convergence of an iterative scheme for multifunctions on fuzzy metric spaces. Sahand Commun. Math. Anal. 2019, 15, 91–106. [Google Scholar] [CrossRef]
  25. Guechi, S.; Dhayal, R.; Debbouche, A.; Malik, M. Analysis and Optimal Control of ϕ-Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions. Symmetry 2021, 13, 2084. [Google Scholar] [CrossRef]
  26. Karthikeyan, K.; Karthikeyan, P.; Chalishajar, D.N.; Raja, D.S.; Sundararajan, P. Analysis on ψ-Hilfer Fractional Impulsive Differential Equations. Symmetry 2021, 13, 1895. [Google Scholar] [CrossRef]
  27. Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F.M. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. [Google Scholar] [CrossRef]
  28. Vijayakumar, V.; Nisar, K.S.; Chalishajar, D.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal Fract. 2022, 6, 73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Mani, G.; Haque, S.; Gnanaprakasam, A.J.; Ege, O.; Mlaiki, N. The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations. Mathematics 2023, 11, 2742. https://doi.org/10.3390/math11122742

AMA Style

Mani G, Haque S, Gnanaprakasam AJ, Ege O, Mlaiki N. The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations. Mathematics. 2023; 11(12):2742. https://doi.org/10.3390/math11122742

Chicago/Turabian Style

Mani, Gunaseelan, Salma Haque, Arul Joseph Gnanaprakasam, Ozgur Ege, and Nabil Mlaiki. 2023. "The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations" Mathematics 11, no. 12: 2742. https://doi.org/10.3390/math11122742

APA Style

Mani, G., Haque, S., Gnanaprakasam, A. J., Ege, O., & Mlaiki, N. (2023). The Study of Bicomplex-Valued Controlled Metric Spaces with Applications to Fractional Differential Equations. Mathematics, 11(12), 2742. https://doi.org/10.3390/math11122742

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop