Global Boundedness in a Logarithmic Keller–Segel System
Abstract
:1. Introduction
2. Preliminaries
2.1. Local Existence
2.2. The Positive Lower Boundedness of v
2.3. Recall of Useful Theorems
3. A User-Friendly Integral Inequality
4. Some Useful A Priori Estimates
5. Uniform Boundedness
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keller, E.F.; Segel, L.A. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 1970, 26, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Biler, P. Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 1999, 9, 347–359. [Google Scholar]
- Fujie, K.; Winkler, M.; Yokota, T. Blow-up prevention by logistic sources in a parabolic–elliptic Keller-Segel system with singular sensitivity. Nonlinear Anal. Theory Methods Appl. 2014, 109, 56–71. [Google Scholar] [CrossRef]
- Fujie, K.; Winkler, M.; Yokota, T. Boundedness of solutions to parabolic–elliptic Keller-Segel systems with signal-dependent sensitivity. Math. Methods Appl. Sci. 2015, 38, 1212–1224. [Google Scholar] [CrossRef]
- Zhigun, A. Generalised supersolutions with mass control for the Keller–Segel system with logarithmic sensitivity. J. Math. Anal. Appl. 2018, 467, 1270–1286. [Google Scholar] [CrossRef] [Green Version]
- Fujie, K. Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 2015, 424, 675–684. [Google Scholar] [CrossRef]
- Lankeit, J. A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 2015, 39, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Marras, M.; Viglialoro, G. Boundedness in a fully parabolic chemotaxis-consumption system with nonlinear diffusion and sensitivity, and logistic source. Math. Nachrichten 2018, 291, 2318–2333. [Google Scholar] [CrossRef]
- Zhang, Q. Global bounded solutions to a Keller-Segel system with singular sensitivity. Appl. Math. Lett. 2020, 107, 106397. [Google Scholar] [CrossRef]
- Liujie, G.; Fei, G.; Hui, Z. Existence, uniqueness and L∞ -bound for weak solutions of a time fractional Keller-Segel system. Chaos Solitons Fractals 2022, 160, 112–185. [Google Scholar]
- Liu, D.; Tao, Y. Global boundedness in a fully parabolic attraction–repulsion chemotaxis model. Math. Methods Appl. Sci. 2015, 38, 2537–2546. [Google Scholar] [CrossRef]
- Wang, Q. Global solutions of a Keller-Segel system with saturated logarithmic sensitivity function. Commun. Pure Appl. Anal. 2015, 14, 383–396. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Z.; Shi, S. Large time behavior of solutions for the attraction–repulsion Keller-Segel system with large initial data. Appl. Math. Lett. 2019, 87, 13–19. [Google Scholar] [CrossRef]
- Osaki, K.; Yagi, A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkc. Ekvacioj 2001, 44, 441–469. [Google Scholar]
- Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj 1997, 40, 411–434. [Google Scholar]
- Corrias, L.; Perthame, B.; Zaag, H. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions. Milan J. Math. 2004, 72, 1–28. [Google Scholar] [CrossRef]
- Winkler, M. Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity. Math. Nachrichten 2010, 283, 1664–1673. [Google Scholar] [CrossRef]
- Fujie, K.; Yokota, T. Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. J. Math. Anal. Appl. 2014, 38, 140–143. [Google Scholar] [CrossRef]
- Keller, E.F.; Segel, L.A. Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 1971, 30, 235–248. [Google Scholar] [CrossRef]
- Winkler, M. Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 2011, 34, 176–190. [Google Scholar] [CrossRef]
- Ahn, J.; Kang, K.; Lee, J. Global well-posedness of logarithmic Keller-Segel type systems. J. Differ. Equ. 2021, 287, 185–211. [Google Scholar] [CrossRef]
- Stinner, C.; Winkler, M. Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl. 2011, 12, 3727–3740. [Google Scholar] [CrossRef]
- Lankeit, J.; Winkler, M. A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 2017, 24, 49–73. [Google Scholar] [CrossRef] [Green Version]
- Fujie, K.; Senba, T. Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 2016, 29, 2417–2450. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, S. Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 2016, 443, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, D.; Winkler, M. Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 2005, 215, 52–107. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M. The two-dimensional Keller–Segel system with singular sensitivity and signal absorption: Global large-data solutions and their relaxation properties. Math. Model. Methods Appl. Sci. 2016, 26, 987–1024. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, D.; Feng, Y. Global well-posedness and uniform boundedness of urban crime models: One-dimensional case. J. Differ. Equ. 2020, 269, 6216–6235. [Google Scholar] [CrossRef]
- Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 2010, 248, 2889–2905. [Google Scholar] [CrossRef] [Green Version]
- Young, W.H. On classes of summable functions and their Fourier series. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1912, 87, 225–229. [Google Scholar]
- Winkler, M. Global Large-Data Solutions in a Chemotaxis-(Navier–)Stokes System Modeling Cellular Swimming in Fluid Drops. Commun. Partial. Differ. Equ. 2012, 37, 319–351. [Google Scholar] [CrossRef]
- Alikakos, N.D. Lp bounds of solutions of reaction-diffusion equations. Commun. Partial. Differ. Equ. 1979, 4, 827–868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Tian, B.; Wang, D.; Tang, J.; Wu, Y. Global Boundedness in a Logarithmic Keller–Segel System. Mathematics 2023, 11, 2743. https://doi.org/10.3390/math11122743
Liu J, Tian B, Wang D, Tang J, Wu Y. Global Boundedness in a Logarithmic Keller–Segel System. Mathematics. 2023; 11(12):2743. https://doi.org/10.3390/math11122743
Chicago/Turabian StyleLiu, Jinyang, Boping Tian, Deqi Wang, Jiaxin Tang, and Yujin Wu. 2023. "Global Boundedness in a Logarithmic Keller–Segel System" Mathematics 11, no. 12: 2743. https://doi.org/10.3390/math11122743
APA StyleLiu, J., Tian, B., Wang, D., Tang, J., & Wu, Y. (2023). Global Boundedness in a Logarithmic Keller–Segel System. Mathematics, 11(12), 2743. https://doi.org/10.3390/math11122743