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Abstract: We introduce a novel iterative algorithm, termed the Heavy-Ball-Based Hard Thresholding
Pursuit for sparse phase retrieval problem (SPR-HBHTP), to reconstruct a sparse signal from a small
number of magnitude-only measurements. Our algorithm is obtained via a natural combination of
the Hard Thresholding Pursuit for sparse phase retrieval (SPR-HTP) and the classical Heavy-Ball (HB)
acceleration method. The robustness and convergence for the proposed algorithm were established
with the help of the restricted isometry property. Furthermore, we prove that our algorithm can exactly
recover a sparse signal with overwhelming probability in finite steps whenever the initialization is
in the neighborhood of the underlying sparse signal, provided that the measurement is accurate.
Extensive numerical tests show that SPR-HBHTP has a markedly improved recovery performance and
runtime compared to existing alternatives, such as the Hard Thresholding Pursuit for sparse phase
retrieval problem (SPR-HTP), the SPARse Truncated Amplitude Flow (SPARTA), and Compressive
Phase Retrieval with Alternating Minimization (CoPRAM).

Keywords: sparse phase retrieval; Heavy-Ball method; Hard Thresholding Pursuit; restricted isometry
property
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1. Introduction

In many engineering problems, one wishes to reconstruct signals from the (squared)
modulus of its Fourier (or any linear) transform. This is called phase retrieval (PR). Par-
ticularly, if the target signal is sparse, this is referred to a sparse phase retrieval problem.
The corresponding mathematical model is used to recover a sparse vector x ∈ Rn from a
system of phaseless quadratic equations taking the form

yi = |〈ai, x〉|, i = 1, 2, . . . , m, subject to ‖x‖0 ≤ s, (1)

where {αi}m
i=1 are a set of n-dimensional sensing vectors, {yi}m

i=1 for i = 1, 2, . . . , m are
observed modulus data, and s is the sparsity level (s is much less than n and is assumed to
be known a priori for theoretical analysis purposes). As a matter of fact, solving the above
problem is conducted to solve the following optimization system with the optimal value
equal to zero

min
1
2
‖ y− |Ax| ‖2

2 s.t. ‖x‖0 ≤ s, (2)

where the measurement matrix A and observed data y are processed as follows:

A :=
1√
m
[a1 a2 . . . am]

T ∈ Rm×n, y :=
1√
m
[y1 y2 . . . ym]

T . (3)
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The phase retrieval problem arises naturally in many important applications, such as X-ray
crystallography, microscopy, and astronomical imaging, etc. Interested readers are referred
to [1] and its references for a more detailed discussion of the scientific and engineering
background of the model.

Although several heuristic methods [2–5] are commonly used to solve (1), it is generally
accepted that (1) is a very challenging, ill-posed, nonlinear inverse problem in both theory
and practice. In particular, (1) is an NP-hard problem [6]. At present, phase retrieval
approaches can be mainly categorized as convex and nonconvex. A popular class of
nonconvex approaches is based on alternating projections, e.g., the groundbreaking works
by Gerchberg and Saxton [2], Fienup [3], Chen et al. [7], and Waldspurger [8]. The convex
alternatives either rely on the so-called Shor’s relaxation to obtain a solver based on
semidefinite programming (SDP), known simply as PhaseLift [9] and PhaseCut [10], or
solve the problem of basis pursuit in dual domains, as conducted in PhaseMax [11,12]. Next,
a series of breakthrough results [9,13–15] provided provably valid algorithmic processes
for special cases, where the measurement vectors are randomly derived from some certain
multivariate probability distribution, such as the Gaussian distributions. Phase retrieval
problems [9,13,14] require the number of observations m to exceed the problem dimension
n. However, for the sparse phase retrieval problem, the true signal can be successfully
recovered, even if the number of measurements m is less than the length of the signal n.
In particular, a recent paper [16] utilized the random sampling technique to achieve the
best empirical sampling complexity; in other words, it requires less measurements than
state-of-the-art algorithms for sparse phase retrieval problems. For more on phase recovery,
interested readers can refer to [17–27].

There is a close relationship between the phase recovery problem and the compressed
sensing problem [28–30]. Compressed sensing, also known as compressed sampling, is
a new information technology used to find sparse solutions to underdetermined linear
systems. Its corresponding mathematical model can be expressed as finding a sparse vector
x from the following linear problem with sparsity constraints

yi = 〈ai, x〉, i = 1, 2, . . . , m, subject to ‖x‖0 ≤ s. (4)

Some mainstream algorithms for solving this problem have been proposed, including
Iterative Hard Thresholding (IHT) [31], the Orthogonal Matching Pursuit (OMP) [32], the
Compressive Sampling Matching Pursuit (CoSaMP) [33], the Subspace Pursuit (SP) [34],
and the Hard Thresholding Pursuit (HTP) [29]. The optimization model for the prob-
lem (4) is

min
1
2
‖ y− Ax ‖2

2 s.t. ‖x‖0 ≤ s. (5)

Comparing two problems, (1) and (4), we see that problem (1) has an extra abso-
lute value over problem (4). This makes the objective function of system (2) nonsmooth
compared to system (5). Accordingly, this leads to a huge difference in the design of our
algorithms. How can we naturally modify the compressed sensing algorithm to solve the
phase recovery problem? Recently, a breakthrough in this direction was the algorithm (we
call it SPR-HTP) proposed in [15], which is a modification of HTP from linear measurements
to phaseless measurements. Inspired by [15], we think that an acceleration method could be
used to accelerate SPR-HTP. The Heavy-Ball was first introduced by Polyak [35], and it is an
old as well as efficient way to speed things up. More recently, in [36], the authors combined
the Heavy-Ball acceleration method with the classic HTP to obtain the HBHTP for solving
compressed sensing. Their numerical experiment shows that the HBHTP performs better
than the classical HTP in terms of the recovery capability and runtime.

Considering the above motivation, we propose, in this paper, a novel nonconvex
algorithm to offset the disadvantages of existing algorithms. The new algorithm is called
the Heavy-Ball-Based Hard Thresholding Pursuit for sparse phase retrieval problem (SPR-
HBHTP). Similar to the most of the existing nonconvex algorithms, our proposed algorithm
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is divided into two stages: the initialization part and the iteration part. The optimization
model (2) could have multiple local minimizers due to its nonconvexity. Hence, the ini-
tialization step is crucial to ensure the initial point can fall within a certain neighborhood
of the real signal. Common initialization methods are orthogonality-promoting initializa-
tion, spectral initialization, variant of the spectral initialization, etc. In our algorithm, we
adopt off-the-shelf spectral initialization as the initial step. For more details, please refer to
reference [15]. For the iterative refinement stage, the search direction for SPR-HTP is

αAT(y� sgn(Axn)− Axn),

where � represents the Hadamard product (the definition is given below) of two vectors,
and α > 0 is a positive parameter. Our algorithm SPR-HBHTP is a combination of SPR-HTP
and the Heavy-Ball method, and the search direction is represented as

αAT(y� sgn(Axn)− Axn) + β(xn − xn−1)

with two parameters α > 0, β ≥ 0. Clearly SPR-HBHTP reduces to SPR-HTP as β = 0. The
following theoretical and numerical experiments show that the modified algorithm (SPR-
HBHTP) using the momentum term xn − xn−1 matches the best available state-of-the-art
sparse phase retrieval methods. With the help of the restricted isometry property (RIP) [37],
the convergence of our algorithm is established, and our algorithm is proved to have robust
sparse signal recovery under inaccurate measurement conditions. Moreover, our algorithm
can exactly recover a s-sparse signal in finite steps if the measurement is accurate.

Our contributions in this paper are as follows: we propose a new class of HTP-
type algorithms called the Heavy-Ball-Based Hard Thresholding Pursuit for sparse phase
retrieval problem (SPR-HBHTP), which is a natural combination of the Hard Thresholding
Pursuit for sparse phase retrieval (SPR-HTP) and the classical Heavy-Ball (HB) acceleration
method. In the theoretical analysis, a new theoretical analysis framework is introduced
to establish the theoretical performance results of the proposed algorithm by resorting
to the restricted isometry property of measurement matrices. The local convergence of
our algorithm is established regardless of whether there is noise in the measurement.
An estimation of the iteration number is established under the framework of accurate
measurements. For the aspect of numerical experiments, the phase transition curves,
grayscale maps, and algorithm selection maps demonstrate that the new algorithm SPR-
HBHTP is numerically much more efficient than existing alternatives, such as SPR-HTP,
SPARTA, and CoPRAM in terms of both the recovery success rate and the recovery time.

The rest of the paper is organized as follows: we describe the SPR-HBHTP in Section 2.
A theoretical analysis of the proposed algorithm is conducted in Section 3. Numerical
experiments to illustrate the performance of the algorithm are given in Section 4, and
conclusions are drawn in the last section.

2. Preliminary and Algorithms
2.1. Notations

We introduce some notations that are used throughout the paper. Let [N] denote the
set {1, 2, . . . , N} and |S| be the cardinality of a set S. Denote by S̄ the complement [N]\S of
a set S in [N]. At x ∈ Rn, the signum function sgn(x) ∈ Rn is defined as

[sgn(x)]i :=


1 xi > 0,
0 xi = 0,
−1 xi < 0.

The Hard Thresholding operator Hs(x) keeps the s largest absolute entries and sets
other ones to zeros. For an index set Ω ⊆ [N], AΩ denotes the matrix obtained from
A ∈ Rm×n by keeping only the columns indexed by Ω, and xΩ stands for the vector
obtained by retaining the components of x indexed by Ω and zeroing out the remaining
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components of x. The set supp(x) := {i ∈ [N] : xi 6= 0} is called the support of x, and
Ls(x) stands for the support of Hs(x). For two sets, S and S̃, S4 S̃ := (S \ S̃)

⋃
(S̃ \ S) is

the symmetric difference between S and S̃. For x, z ∈ Rn, the distance between x and z is
defined as

dist(x, z) := min{‖x− z‖2, ‖x + z‖2}. (6)

The notation � represents the Hadamard product of two vectors, i.e.,

a� b := (a1b1, a2b2, . . . , anbn)
T .

2.2. New Algorithms

The alternative initialization methods include orthogonality-promoting initializa-
tion [38], spectral initialization [39], or the other initialization [40], etc. In this paper, we
use spectral initialization to constitute the initial step of the algorithm.

Algorithm 1 Heavy-Ball-Based Hard Thresholding Pursuit for sparse phase retrieval
(SPR-HBHTP).
Input: a matrix {ai}m

i=1, a vector {yi}m
i=1, and two parameters α > 0 and β ≥ 0.

Initialization:

φ2 :=
1
m

m

∑
i=1

y2
i , vj :=

1
m

m

∑
i=1

y2
i a2

ij, j = 1, . . . n, S̃ := LS(v),

W :=
1
m

m

∑
i=i

y2
i [ai]S̃[ai]

T
S̃ , x0 := φũ,

where ũ is the unit principal eigenvector of W. Set x1 = x0.
Repeat:

zn+1 = Axn, yn+1 = y� sgn(zn+1),

Sn+1 = supp
(

Hs

(
xn + αAT(yn+1 − zn+1) + β(xn − xn−1)

))
,

xn+1 = arg min
{

1
2
‖Az− yn+1‖2

2 : supp(z) ⊆ Sn+1
}

.

Output: the s-sparse vector x.

The following is a brief explanation of initialization in the Algorithm 1. For a more
rigorous and in-depth discussion of this aspect, please refer to [15,39].

Estimate the support: Since E
[

1
m ∑m

i=1 y2
i a2

ij

]
= ‖x‖2

2 + 2x2
j , S̃ = Ls

({
1
m ∑m

i=1 y2
i a2

ij

}n

j=1

)
contains a mass of correct support, it could be a good approximation of the support of x.

Compute the signal: Note that

E

[
1
m

m

∑
i=i

y2
i aiaT

i

]
=

(
I + 2

x
‖x‖2

· xT

‖x‖2

)
‖x‖2

2, E

[
1
m

m

∑
i=1

y2
i

]
= E[‖y‖2] = ‖x‖2.

Hence, the principal eigenvector of the matrix W in Algorithm 1 gives a good initial
direction guess of the true signal x. We select the principal eigenvector vector with a length
of ‖y‖2 as the initial point x0 to ensure that the power of the initial estimate x0 is close to
that of the true signal x.

The most important conclusion of the initialization process is that the initial point can
fall within a certain neighborhood of the real signal relative to the distance measurement
defined in (6).
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Lemma 1 ([39] [Theorem IV.1]). Let {ai}m
i=1 be i.i.d Gaussian random vectors with a mean of

0 and variance matrix of I. Let x0 be generated by initialization in Algorithm 1 with the input
yi =

∣∣aT
i x
∣∣ for i = 1, . . . , m, where x ∈ Rn is a signal satisfying ‖x‖0 ≤ s. Then, for any

λ0 ∈ (0, 1), there exists a positive constant C depending only on λ0 ∈ (0, 1), such that if
m ≥ Cs2 log n, we have

dist(x0, x) ≤ λ0‖x‖2

with a probability of at least 1− 8m−1.

3. Convergence Analysis

We first list some of the main Lemmas and present our results on the local convergence
of the proposed algorithm (SPR-HBHTP).

Lemma 2 ([30] [Theorem 9.27]). Let {ai}m
i=1 be i.i.d Gaussian random vectors with a mean of 0

and variance matrix of I. Let A be defined in (3). Some universal positive constants C1, C2 exist,
such that for any natural number r ≤ n and any δr ∈ (0, 1), if m ≥ C1δ−2

r r log(n/r), then A
satisfies the following r-RIP with a probability of at least 1− e−C2m,

(1− δr)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δr)‖x‖2
2, ∀ ‖x‖0 ≤ r. (7)

Lemma 3 ([36] [Lemma 3.1]). Suppose that the non-negative sequence {τn} ⊆ R (n =
0, 1, ...) satisfies

τn+1 ≤ b1τn + b2τn−1 + b3, n ≥ 1, (8)

where b1, b2, b3 ≥ 0 and b1 + b2 < 1. Then,

τn ≤ θn−1
[
τ1 + (θ − b1)τ

0
]
+

b3

1− θ

with

0 ≤ θ :=
b1 +

√
b2

1 + 4b2

2
< 1.

Lemma 4 ([29,41]). Let u ∈ Rn, v ∈ Rm and S ⊆ {1, . . . , n}. Assume that the condi-
tion (7) holds.

(i). If |S ∪ supp(u)| ≤ r, then

‖
(
(I − AT A)u

)
S
‖2 ≤ δr‖u‖2. (9)

(ii). If |S| ≤ r, then

‖
(

ATv
)

S
‖2 ≤

√
1 + δr‖v‖2. (10)

Lemma 5 ([15] [Lemma 2]). Let {ai}m
i=1 be i.i.d. Gaussian random vectors with a mean of 0 and

variance matrix of I. Let λ0 be any constant in (0, 1
8 ]. After fixing any given ε0 > 0, the universal

positive constants C3, C4 exist. If
m ≥ C3s log(n/s),

then with a probability of at least 1− e−C4m, it holds that

1
m

m

∑
i=1
|aT

i x\|2 · 1{(aT
i x)(aT

i x\)≤0} ≤
1

(1− λ0)
2

(
ε0 + λ0

√
21
20

)2

‖x− x\‖2
2, (11)

whenever x, x\ satisfies ‖x‖0 ≤ s and ‖x− x\‖2 ≤ λ0‖x\‖2.
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Lemma 6. Let {ai}m
i=1 be i.i.d. Gaussian random vectors with a mean of 0 and variance matrix of

I. Let z, x, ŷ, λ0 be given as

ŷ = |Ax| � sgn(Az), ‖z− x‖2 ≤ λ0‖x‖2, ‖z‖0 ≤ s, λ0 ∈ (0,
1
8
].

For any ε0 > 0, the universal positive constants C5 and C6 exist, such that if

m ≥ C5s log(n/s), (12)

then the following inequality holds with a probability of at least 1− e−C6m :

‖
(

AT(ŷ− Ax)
)

S
‖2 ≤ θ(λ0)

√
1 + δs‖z− x‖2,

where θ(λ0) := 2
1−λ0

(
ε0 + λ0

√
21
20

)
and S ⊂ {1, 2, . . . , m} with |S| ≤ s.

Proof of Lemma 6. Pick C5 := max{C1δ−2
s , C3}, where C1, C3 comes from Lemmas 2 and 5.

The condition (12) ensures the validity of (7) with a probability of at least 1− e−C2m and (11)
with a probability of at least 1− e−C4m, respectively. Let

C6 :=
ln
(

e−C2m + e−C4m − e−(C2+C4)m
)

−m
.

It is easy to see that
(
1− e−C2m)(1− e−C4m) = 1− e−C6m. In other words, the prob-

ability of (7) and (11) being true is at least 1− e−C6m. By replacing yk+1, xk and x\ used
in [15] [Equation (16)] by ŷ, z and x, we obtain

‖ŷ− Ax‖2
2 ≤

4

(1− λ0)
2

(
ε0 + λ0

√
21
20

)2

‖z− x‖2
2 = θ(λ0)

2‖z− x‖2
2.

This, together with (10) in Lemma 4, leads to

‖
(

AT(ŷ− Ax)
)

S
‖2 ≤

√
1 + δs‖ŷ− Ax‖2 ≤ θ(λ0)

√
1 + δs‖z− x‖2.

The local convergence property of Algorithm 1 is established in the following result.

Theorem 1. (Local convergence). Let {ai}m
i=1 be i.i.d. Gaussian random vectors with a mean of 0

and variance matrix of I. Let λ0 be any constant in (0, 1
8 ]. Suppose that the RIC, δ3s, of matrix A

and the parameters α and β obey

0 < δ3s < δ], 0 ≤ β <

1
η + 1− θ(λ0)

√
1+δs

η(1−δ2s)

1 + δ3s + θ(λ0)
√

1 + δ2s
− 1, (13)

1 + 2β− 1
η + θ(λ0)

√
1+δs

η(1−δ2s)

1− δ3s − θ(λ0)
√

1 + δ2s
< α <

1
η + 1− θ(λ0)

√
1+δs

η(1−δ2s)

1 + δ3s + θ(λ0)
√

1 + δ2s
, (14)

where

θ(λ0) :=
2

1− λ0

(
ε0 + λ0

√
21
20

)
, ε0 := 10−3, η :=

√
2√

1− δ2
2s

, (15)
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and δ] is the unique root in the interval (0, 1) of the equation γ(x) = θ(λ0) with

γ(x) :=
(1− x)

√
1 + x− x

√
2(1− x)

1 + x +
√

2(1− x2)
.

For a s-sparse signal x ∈ Rn, the universal positive constants C7, C8 exist, such that if

m ≥ C7s log(n/s), dist(x0, x) ≤ λ0‖x‖2,

then the sequence {xn} generated by Algorithm 1 with input measured data y = |Ax| satisfies

dist(xn+1, x) ≤ τn
(

min{‖x1 − x‖2 + (τ − b)‖x0 − x‖2, ‖x1 + x‖2 + (τ − b)‖x0 + x‖2}
)

(16)

with a probability of at least (1− e−C8m)n, where

τ :=
b +

√
b2 + 4ηβ

2
, b := η

(
|1− α + β|+ α

(
δ3s + θ(λ0)

√
1 + δ2s

))
+

θ(λ0)
√

1 + δs

1− δ2s
, (17)

and τ < 1 is guaranteed under the conditions (13) and (14).

Proof of Theorem 1. Note that x0 = x1 in the design of Algorithm 1 and x0 is generated by
utilizing the initialization process. Hence, dist(x0, x) = dist(x1, x) ≤ λ0‖x‖2 by Lemma 1.
Since dist(x0, x) = min{‖x0 − x‖2, ‖x0 + x‖}, we can assume without a loss of general-
ization that dist(x0, x) = ‖x0 − x‖2 (the case of dist(x0, x) = ‖x0 + x‖2 can be proved by
following a similar argument). Hence, ‖x0− x‖2 ≤ λ0‖x‖2, ‖x1− x‖2 ≤ λ0‖x‖2. Our proof
is based on mathematical induction, and hence, we further assume that ‖xn−1 − x‖2 ≤
λ0‖x‖2, ‖xn − x‖2 ≤ λ0‖x‖2.

The first step of the proof is a consequence of the pursuit step of Algorithm 1.
Recall that

xn+1 = argmin
{

1
2
‖yn+1 − Az‖2

2 : supp(z) ⊂ Sn+1
}

.

As the best l2-approximation to yn+1 from the space
{

Az| supp(z) ⊂ Sn+1}, the vector xn+1

is characterized by

〈yn+1 − Axn+1, Az〉 = 0 whenever supp(z) ⊂ Sn+1,

i.e., 〈AT(yn+1− Axn+1), z〉 = 0 whenever supp(z) ⊂ Sn+1 or (AT(yn+1− Axn+1))Sn+1 = 0.
We derive, in particular,

‖(xn+1 − x)Sn+1‖2
2

= 〈(xn+1 − x)Sn+1 , (xn+1 − x)Sn+1 〉

= 〈(xn+1 − x)Sn+1 ,
(

xn+1 − x + AT(yn+1 − Axn+1)
)

Sn+1
〉 (18)

= 〈(xn+1 − x)Sn+1 ,
[
(I − AT A)(xn+1 − x)

]
Sn+1
〉+ 〈(xn+1 − x)Sn+1 ,

(
AT(yn+1 − Ax)

)
Sn+1
〉

≤ ‖(xn+1 − x)Sn+1‖2

{
‖
[
(I − AT A)(xn+1 − x)

]
Sn+1
‖2 + ‖

(
AT(yn+1 − Ax)

)
Sn+1
‖2

}
.

Due to supp
(

xn+1) ⊆ Sn+1,
∣∣supp

(
xn+1 − x

)
∪ Sn+1

∣∣ ≤ 2s and |Sn+1| ≤ s. It follows
from Lemmas 4 and 6 that if m ≥ max{C1δ−2

2s (2s)log(n/2s), C5slog(n/s)}, then

‖((I − AT A)(xn+1 − x))Sn+1‖2 ≤ δ2s‖xn+1 − x‖2 (19)
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with a probability of at least 1− e−C2m and

‖(AT(yn+1 − Ax))Sn+1‖2 ≤ θ(λ0)
√

1 + δs‖xn − x‖2 (20)

with a probability of at least 1− e−C6m. Combining (18), (19) with (20) leads to

‖(xn+1 − x)Sn+1‖2 ≤ δ2s‖xn+1 − x‖2 + θ(λ0)
√

1 + δs‖xn − x‖2. (21)

Hence,

‖xn+1 − x‖2
2 = ‖(xn+1 − x)Sn+1‖2

2 + ‖(xn+1 − x)Sn+1‖2
2

≤ ‖(xn+1 − x)Sn+1‖2
2 +

(
δ2s‖xn+1 − x‖2 + θ(λ0)

√
1 + δs‖xn − x‖2

)2
.

Denote ϑ := θ(λ0)
√

1 + δs‖xn − x‖2. This reads as g(‖xn+1 − x‖2) ≤ 0 for the
quadratic polynomial defined by

g(t) := (1− δ2
2s)t

2 − 2ϑδ2st− (‖(xn+1 − x)Sn+1‖2
2 + ϑ2).

Hence, ‖xn+1 − x‖2 is bounded by the largest root of g, i.e.,

‖xn+1 − x‖2 ≤
ϑδ2s +

√
(1− δ2

2s)‖(xn+1 − x)Sn+1‖2
2 + ϑ2

1− δ2
2s

.

Based on
√

a2 + b2 ≤ a + b for a, b ≥ 0, we obtain

‖xn+1 − x‖2 ≤
1√

1− δ2
2s

‖(xn+1 − x)Sn+1‖2 +
ϑ

1− δ2s
. (22)

The second step of the proof is a consequence of the Hard Thresholding step of
Algorithm 1. Denote

un := xn + αAT
(

yn+1 − Axn
)
+ β

(
xn − xn−1

)
. (23)

Since Sn+1 = supp(Hs(un)) and S := supp(x), we have

‖(un)Sn+1‖2
2 ≥ ‖(un)S‖2

2.

According to Sn+1\
(
S ∩ Sn+1) = Sn+1\S and S\

(
S ∩ Sn+1) = S\Sn+1, we yield

‖(un)Sn+1\S‖2
2 ≥ ‖(un)S\Sn+1‖2

2.

Taking (x)Sn+1\S = 0 and (xn+1)S\Sn+1 = 0 into consideration, we write

‖(un − x)Sn+1\S‖2 ≥ ‖(x− xn+1 + un − x)S\Sn+1‖2 ≥ ‖(x− xn+1)Sn+1‖2 − ‖(un − x)S\Sn+1‖2.

Hence,

‖(x− xn+1)Sn+1‖2 ≤ ‖(un − x)S\Sn+1‖2 + ‖(un − x)Sn+1\S‖2

≤
√

2
(
‖(un − x)S\Sn+1‖2

2 + ‖(un − x)Sn+1\S‖2
2

)
(24)

=
√

2‖(un − x)Sn+14S‖2.

Note from (23) that
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un − x

= xn + αAT
(

yn+1 − Axn
)
+ β

(
xn − xn−1

)
− x

= (1− α + β)(xn − x)− β
(

xn−1 − x
)
+ α
(

I − AT A
)
(xn − x) + αAT

(
yn+1 − Ax

)
.

Then,
‖(un − x)Sn+14S‖2

≤ |1− α + β| · ‖(xn − x)Sn+14S‖2 + α‖
[
(I − AT A)(xn − x)

]
Sn+14S

‖2

+ α‖
(

AT(yn+1 − Ax)
)

Sn+14S
‖2 + β‖

(
xn−1 − x

)
Sn+14S

‖2

≤
(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)
‖xn − x‖2 + β‖xn−1 − x‖2, (25)

where the second inequality is based on the fact that

‖
(
(I − AT A)(xn − x)

)
Sn+14S

‖2 ≤ δ3s‖xn − x‖2 (26)

with a probability of at least 1− eC2m as m ≥ C1δ−1
3s (3s)log(n/3s) by (9) in Lemma 4 due to

|Sn+1∆S ∪ supp(xn − x)| ≤ 3s, and

‖(AT(yn+1 − Ax))Sn+14S‖2 ≤ θ(λ0)
√

1 + δ2s‖xn − x‖2 (27)

with a probability of at least 1− eC6m as m ≥ C5(2s)log(n/2s) by Lemma 6 due to |Sn+14
S| ≤ 2s. Combining (24) with (25), we have

‖(x− xn+1)Sn+1‖2 ≤
√

2
[(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)
‖xn − x‖2

+ β‖xn−1 − x‖2

]
. (28)

Putting (22) and (28) together yields

‖xn+1 − x‖2

≤

√2
(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)√
1− δ2

2s

+
θ(λ0)

√
1 + δs

1− δ2s

‖xn − x‖2

+

√
2β√

1− δ2
2s

‖xn−1 − x‖2

= b‖xn − x‖2 + ηβ‖xn−1 − x‖2,

(29)

where b is given by (17). The recursive inequality (29) is in the form (8) in Lemma 3 by letting
b3 = 0. Note that, to ensure the validity of (19), (20), (26) and (27) with a corresponding
probability of at least (1− e−C2m)2(1− e−C6m)2, the number of measurements must satisfy

m ≥ max{C1δ−2
2s (2s)log(n/2s), C1δ−1

3s (3s)log(n/3s), C5slog(n/s), C5(2s)log(n/2s)}.

Hence, we can pick C7 and C8, satisfying

C7 ≥ max
{

C5, 2C5

(
1− log 2

log(n/s)

)
, 2C1δ−2

2s

(
1− log(2)

log(n/s)

)
, 3C1δ−2

3s

(
1− log(3)

log(n/s)

)}
and

C8 ≤
1
m

ln
[

1
1− (1− e−C2m)2(1− e−c6m)2

]
.



Mathematics 2023, 11, 2744 10 of 24

In other words, the above choices of C7 and C8 guarantee that (19), (20), (26), and (27)
hold with a probability of at least (1− e−C8m) as m ≥ C7slog(n/s). This, in turn, means
that the (29) holds accordingly.

In the following, we need to show that the coefficients of the right-hand side of the (29)
satisfy the conditions required for Lemma 3, i.e., b + ηβ < 1.

First, we clarify that the parameters α, β appearing in (13) and (14) are well-defined.
On the interval (0, 1), define

γ(x) :=
(1− x)

√
1 + x− x

√
2(1− x)

1 + x +
√

2(1− x2)
and g(x) := 1 + x +

√
2(1− x2).

Note that g′(x) = 1− (2x/
√

2(1− x2)) and the root of g′(x) = 0 is x =
√

3/3. It is
easy to see

max{g(x) : x ∈ (0, 1)} = g(
√

3/3) = 1 +
√

3.

Thus,

γ(x) =
(1− x)

√
1 + x− x

√
2(1− x)

1 + x +
√

2(1− x2)
≥ (1− x)

√
1 + x− x

√
2(1− x)

1 +
√

3
=: h(x). (30)

Note that

h′(x) =
1

1 +
√

3

(
−1− 3x
2
√

1 + x
− 2− 3x√

2(1− x)

)
. (31)

Then, h′(x) = 0 is equivalent to saying that (−1− 3x)
√

2(1− x) = 2(2− 3x)
√
(1 + x).

Taking the square on both sides yields (x− 1/3)(27x2 − 21) = 27x3 − 9x2 − 21x + 7 = 0.
The roots of the above equation in the interval (0, 1) are x = 1/3,

√
7/3. By substituting

these into (31), we obtain the root of h′(x) = 0 in (0,1) is
√

7/3. It is easy to see that h
is monotonically decreasing on (0,

√
7/3) and increasing on (

√
7/3,1). Due to h(1) = 0,

h(x) < 0 as x ∈ [
√

7/3, 1) by the monotonicity of h. On the other hand, θ is monotonically
increasing and 0 ≤ θ(λ0) ≤ θ(1/8) ≈ 0.295 < 0.366 ≈ h(0) as λ0 ∈ (0, 1/8]. Hence for the
given λ0 ∈ (0, 1/8] and θ(λ0), there is a unique solution in the interval (0,

√
7/3), denoted

by δ], satisfying h(x) = θ(λ0). In addition according to the decreasing monotonicity of h
on this interval, we know h(x) > θ(λ0) for all x ∈ (0, δ]). Thus, h(δ3s) > θ(λ0) as δ3s < δ].
This, together with (30), yields γ(δ3s) > θ(λ0), i.e.,√

1− δ2
3s −
√

2δ3s

1+δ3s√
1−δ3s

+
√

2(1 + δ3s)
=

(1− δ3s)
√

1 + δ3s − δ3s
√

2(1− δ3s)

1 + δ3s +
√

2
(
1− δ2

3s
) > θ(λ0). (32)

It follows from (32) that√
1− δ2

3s√
2

− δ3s > θ(λ0)
1 + δ3s√
2(1− δ3s)

+ θ(λ0)
√

1 + δ3s

= θ(λ0)

√
1− δ2

3s√
2

√
1 + δ3s

1− δ3s
+ θ(λ0)

√
1 + δ3s,

(33)

where the second step comes from

1 + δ3s√
2(1− δ3s)

=

√
1− δ2

3s√
2

√
1 + δ3s

1− δ3s
.
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Multiplying
√

2√
1−δ2

3s
on both sides of (33) yields

1− θ(λ0)

√
1 + δ3s

1− δ3s
>

√
2√

1− δ2
3s

(
δ3s + θ(λ0)

√
1 + δ3s

)
≥ η

(
δ3s + θ(λ0)

√
1 + δ3s

)
, (34)

where the last step comes from
√

2√
1− δ2

3s

≥
√

2√
1− δ2

2s

= η (35)

due to δ2s ≤ δ3s. Note that (35) can be rewritten as

1
η
− θ(λ0)

√
1 + δ3s

η(1− δ3s)
> δ3s + θ(λ0)

√
1 + δ3s. (36)

Using the fact δs ≤ δ2s ≤ δ3s again, (36) rearranges into

0 <

1
η + 1− θ(λ0)

√
1+δs

η(1−δ2s)

1 + δ3s + θ(λ0)
√

1 + δ2s
− 1.

This shows that the range for β in (13) is well-defined. Since β <
1
η +1− θ(λ0)

√
1+δs

η(1−δ2s)
1+δ3s+θ(λ0)

√
1+δ2s

− 1,
then

1 + 2β− (1− δ3s − θ(λ0)
√

1 + δ2s)β = 1 + [2− (1− δ3s − θ(λ0)
√

1 + δ2s)]β

<
1
η
− θ(λ0)

√
1 + δs

η(1− δ2s)
+ (1− δ3s − θ(λ0)

√
1 + δ2s),

implying

1 + 2β− 1
η + θ(λ0)

√
1+δs

η(1−δ2s)

1− δ3s − θ(λ0)
√

1 + δ2s
< 1 + β <

1
η + 1− θ(λ0)

√
1+δs

η(1−δ2s)

1 + δ3s + θ(λ0)
√

1 + δ2s
.

This means that the range for α in (14) is also well-defined.
To show b + ηβ < 1, let us consider the following two cases.

Case 1: if

1 + 2β− 1
η + θ(λ0)

√
1+δs

η(1−δ2s)

1− δ3s − θ(λ0)
√

1 + δ2s
< α ≤ 1 + β,

then

α
(

1− δ3s − θ(λ0)
√

1 + δ2s

)
> 1 + 2β− 1

η
+

θ(λ0)
√

1 + δs

η(1− δ2s)
,

and hence

b = η
(
|1− α + β|+ α

(
δ3s + θ(λ0)

√
1 + δ2s

))
+

θ(λ0)
√

1 + δs

1− δ2s

= η
(

1 + β− α
(

1− δ3s − θ(λ0)
√

1 + δ2s

))
+

θ(λ0)
√

1 + δs

1− δ2s

< 1− ηβ.
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Case 2: if

1 + β < α <

1
η + 1− θ(λ0)

√
1+δs

η(1−δ2s)

1 + δ3s + θ(λ0)
√

1 + δ2s
,

then

α
(

1 + δ3s + θ(λ0)
√

1 + δ2s

)
<

1
η
+ 1− θ(λ0)

√
1 + δs

η(1− δ2s)
,

and hence

b = η
(
|1− α + β|+ α

(
δ3s + θ(λ0)

√
1 + δ2s

))
+

θ(λ0)
√

1 + δs

1− δ2s

= η
(
−1− β + α

(
1 + δ3s + θ(λ0)

√
1 + δ2s

))
+

θ(λ0)
√

1 + δs

1− δ2s

< 1− ηβ.

On both sides, we always obtain b < 1− ηβ, i.e., b + ηβ < 1. Therefore, τ < 1 by
Lemma 3.

According to the recursive relation (29) and b + ηβ < 1, as shown above, we obtain

‖xn+1 − x‖2 ≤ b‖xn − x‖2 + ηβ‖xn−1 − x‖2 ≤ λ0(b + ηβ)‖x‖2 < λ0‖x‖2.

Hence, it follows from (29) and Lemma 3 that

‖xn+1 − x‖2 ≤ τn(‖x1 − x‖2 + (τ − b)‖x0 − x‖2
)
. (37)

Following the above proof process, we can show that (37) holds true by replacing x by
−x, i.e.,

‖xn+1 + x‖2 ≤ τn(‖x1 + x‖2 + (τ − b)‖x0 + x‖2
)
. (38)

By putting (37) and (38) together and taking into account the definition of ’dist’ given
in (6), the desired result (16) follows.

The above analysis assumes that the measurements are noiseless. The following result
demonstrates that the Algorithm 1 is robust in the presence of noise.

Theorem 2. (The noisy case): Let {ai}m
i=1 be i.i.d. Gaussian random vectors with a mean of 0 and

variance matrix of I. Suppose that the RIC, δ3s, of matrix A and the parameters α and β satisfy the
conditions (13) and (14). Take a s-sparse signal x ∈ Rn and e ∈ Rm, satisfying

‖e‖2 ≤
λ0

(
1− δ\

)
(1− b− ηβ)√

2
(
1− δ\

)
+
√

1 + δ\
‖x‖2,

where λ0 ∈ (0, 1/8], b, η, δ] are given in Theorem 1. The universal positive constants C7, C8 exist,
such that if

m ≥ C7s log(n/s), dist(x0, x) ≤ λ0‖x‖2,

then the sequence {xn} generated by Algorithm 1 with the input measured data y = |Ax|+ e
satisfies

dist(xn+1, x) ≤ τn
(

min{‖x1 − x‖2 + (τ − b)‖x0 − x‖2, ‖x1 + x‖2 + (τ − b)‖x0 + x‖2}
)

+
1

1− τ

(
αη
√

1 + δ2s +

√
1 + δs

1− δ2s

)
‖e‖2, ∀n,

with a probability of at least (1− e−C8m)n, where τ < 1 is given by (17).
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Proof of Theorem 2. Let {(xn, yn)}n≥1 be the iterate sequence generated by Algorithm 1 in
the framework of noisy data. Thus, in this case yn+1 = (|Ax|+ e)� sgn(Axn). Following
a similar argument to that in [15] [Equation (27)], we obtain from Lemma 6 that

‖
[

AT
(

yn+1 − Ax
)]

Sn+1
‖2

= ‖
[

AT((|Ax|+ e)� sgn(Axn)− Ax)
]

Sn+1
‖2

≤ ‖
[

AT(|Ax| � sgn(Axn)− Ax)
]

Sn+1
‖2 + ‖

[
AT(e� sgn(Axn))

]
Sn+1
‖2

≤ θ(λ0)
√

1 + δs‖xn − x‖2 +
√

1 + δs‖e‖2.

Now, we need to modify the proof of Theorem 1 for the noisy case, i.e., some formula
appearing in the proof of Theorem 1 should be replaced. Precisely, (21) and (22) take the
following forms:

‖(xn+1 − x)Sn+1‖2 ≤ δ2s‖xn+1 − x‖2 + θ(λ0)
√

1 + δs‖xn − x‖2 +
√

1 + δs‖e‖2

and

‖xn+1 − x‖2 ≤
1√

1− δ2
2s

‖(xn+1 − x)Sn+1‖2 +
ϑ + ω

1− δ2s
, (39)

where ω :=
√

1 + δs‖e‖2 and ϑ := θ(λ0)
√

1 + δs‖xn − x‖2. In addition, (25) is modified to

‖(un − x)Sn+14S‖2 ≤
(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)
‖xn − x‖2

+ β‖xn−1 − x‖2 + α
√

1 + δ2s‖e‖2. (40)

Combining (24) with (40), the inequality (28) is revised as

‖(xn+1 − x)Sn+1‖2 ≤
√

2
[(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)
‖xn − x‖2

+ β‖xn−1 − x‖2 + α
√

1 + δ2s‖e‖2

]
. (41)

Putting (39) and (41) together and recalling the definitions of ϑ and ω above, we
then have

‖xn+1 − x‖2

≤

√2
(
|1− α + β|+ αδ3s + αθ(λ0)

√
1 + δ2s

)√
1− δ2

2s

+
θ(λ0)

√
1 + δs

1− δ2s

‖xn − x‖2

+

√
2β√

1− δ2
2s

‖xn−1 − x‖2 +

α
√

2(1 + δ2s)√
1− δ2

2s

+

√
1 + δs

1− δ2s

‖e‖2

= b‖xn − x‖2 + ηβ‖xn−1 − x‖2 +

(
αη
√

1 + δ2s +

√
1 + δs

1− δ2s

)
‖e‖2,

(42)

where b, η, β are given exactly as shown in Theorem 1. Hence, b + ηβ < 1, as α, β satisfy
conditions (13) and (14). This further ensures that τ < 1 by applying Lemma 3 to the
recursive Formula (42).
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It remains to be shown that the iterative sequence xn belongs into a neighbor of x.
First, ‖x0 − x‖2 ≤ λ0‖x‖2, ‖x1 − x‖2 ≤ λ0‖x‖2. Now, assume ‖xn−1 − x‖2 ≤ λ0‖x‖2,
‖xn − x‖2 ≤ λ0‖x‖2. We claim that ‖xn+1 − x‖2 ≤ λ0‖x‖2. Indeed, recall that

‖e‖2 ≤
λ0

(
1− δ\

)
(1− b− ηβ)

α
√

2
(
1− δ\

)
+
√

1 + δ\
‖x‖2,

i.e.,

α
√

2
(
1− δ\

)
+
√

1 + δ\

1− δ\
‖e‖2 ≤ λ0(1− b− ηβ)‖x‖2. (43)

Since 0 ≤ δs ≤ δ2s ≤ δ3s < δ\ and η =
√

2/
√

1− δ2
2s, we obtain

α
√

2
(
1− δ\

)
+
√

1 + δ\

1− δ\
=

√
2α√

1− δ\
+

√
1 + δ\

1− δ\
>

√
2α√

1− δ3s
+

√
1 + δ3s

1− δ3s

≥
√

2α√
1− δ2s

+

√
1 + δs

1− δ2s
= αη

√
1 + δ2s +

√
1 + δs

1− δ2s
.

(44)

It follows from (43), (44) and the recursive relation (42) that

‖xn+1 − x‖2 ≤ b‖xn − x‖2 + ηβ‖xn−1 − x‖2 +

(
αη
√

1 + δ2s +

√
1 + δs

1− δ2s

)
‖e‖2

< λ0(b + ηβ)‖x‖2 +

α
√

2
(
1− δ\

)
+
√

1 + δ\

1− δ\

‖e‖2

≤ λ0(b + ηβ)‖x‖2 + λ0(1− b− ηβ)‖x‖2

= λ0‖x‖2.

Taking into account (42) and applying Lemma 3, we obtain

‖xn+1 − x‖2 ≤ τn
(
‖x1 − x‖2 + (τ − b)‖x0 − x‖2

)
+

1
1− τ

(
αη
√

1 + δ2s +

√
1 + δs

1− δ2s

)
‖e‖2.

Moreover, this inequality holds true by following symmetrical arguments, such as
replacing x by −x. Thus, according to the definition of ’dist’ given in (6), the desired
result follows.

Finite Termination

In the framework of accurate measurements, the true signal can be recovered after a
finite number of iterations. An estimation of the iteration number is given below.

Theorem 3. Let {ai}m
i=1 be i.i.d. Gaussian random vectors with a mean of 0 and variance matrix

of I. Suppose that the RIC, δ3s, of the matrix A and the parameters α and β satisfy the condi-
tions (13) and (14) with λ0 ∈ (0, 1

8 ]. For a s-sparse signal x ∈ Rn and an initial point x0 given in
Algorithm 1, the universal positive constants C7, C8 exist, such that if

m ≥ C7s log(n/s), dist(x0, x) ≤ λ0‖x‖2,
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then the s-sparse signal sgn(‖x + x0‖2 − ‖x− x0‖2)x is recovered by Algorithm 1 with y = |Ax|
in, at most,

p := max




log
(√

2λ0(τ − b + 1)‖x‖2/ηξ1

)
log(1/τ)

,


log
(

λ0θ(λ0)(1 + δs)‖x‖2
2/|ξ2|2

)
log(1/τ)


+ 1

iterations with a probability of at least (1− e−C8m)p, where θ(λ0), η and τ, b are given by (15) and (17),
respectively, in Theorem 1, and ξ1, ξ2 are the smallest nonzero entries of x, y in the modulus.

Proof of Theorem 3. The case of x = 0 is trivial. Indeed, under this case, the initial point
x0 generated by the initial step of the Algorithm 1 is 0. This means that the true signal x is
recovered in, at most, one step. Therefore, we only need to consider the case of x 6= 0.

We first assume that dist(x0, x) = ‖x0 − x‖2. Now, we need to determine an integer n
such that Sn+1 = S. Recall that un is given as shown in (23). According to the definitions of
Sn+1, for all j ∈ S and l ∈ S̄, we have

|(un)j| ≥ |(u
n)l |. (45)

Note that

|(un)j| = |xj + (1− α + β)(xn − x)j + α
[(

I − AT A
)
(xn − x)

]
j
+ α
[

AT
(

yn+1 − Ax
)]

l

− β
(

xn−1 − x
)

j
|

≥ ξ1 − |1− α + β| · |(xn − x)j| − α|
[(

I − AT A
)
(xn − x)

]
j
|

− α|
[

AT
(

yn+1 − Ax
)]

j
| − β|

(
xn−1 − x

)
j
|,

where ξ1 is the smallest nonzero entry of x in the modulus, and

|(un)l | = |xl + (1− α + β)(xn − x)l + α
[(

I − AT A
)
(xn − x)

]
l
+ α
[

AT
(

yn+1 − Ax
)]

l

− β
(

xn−1 − x
)

l
|

≤ |1− α + β| · |(xn − x)l |+ α|
[(

I − AT A
)
(xn − x)

]
l
|+ α|

[
AT
(

yn+1 − Ax
)]

l
|

+ β|
(

xn−1 − x
)

l
|,

where xl = 0 due to l ∈ S̄. Combining the above two inequalities yields

|(un)l | − |(u
n)j|

≤ |1− α + β| ·
(
|(xn − x)l |+ |(xn − x)j|

)
+ α
(
|
[(

I − AT A
)
(xn − x)

]
l
|

+ |
[(

I − AT A
)
(xn − x)

]
j
|
)
+ α

(
|
[

AT
(

yn+1 − Ax
)]

l
|+ |

[
AT
(

yn+1 − Ax
)]

j
|
)

+ β

(
|
(

xn−1 − x
)

l
|+ |

(
xn−1 − x

)
j
|
)
− ξ1

≤
√

2
(
|1− α + β| · ‖(xn − x){l,j}‖2 + α‖

[(
I − AT A

)
(xn − x)

]
{l,j}
‖2

+ α‖
[

AT
(

yn+1 − Ax
)]
{l,j}
‖2 + β‖

(
xn−1 − x

)
{l,j}
‖2

)
− ξ1.

(46)

It follows from (17) that

η
(
|1− α + β|+ α

(
δ3s + θ(λ0)

√
1 + δ2s

))
< b, τ(τ − b) = ηβ, and b < τ.



Mathematics 2023, 11, 2744 16 of 24

Note that supp(xn − x) ∪ {l, j} ⊆ S ∪ {l} due to j ∈ S. Hence, by (9), (17), and
Lemma 6, we have

|(un)l | − |(u
n)j|

≤
√

2
(
|1− α + β|+ α

(
δ3s + θ(λ0)

√
1 + δ2s

)
‖xn − x‖2 + β‖xn−1 − x‖2

)
− ξ1

<

√
2

η

(
b‖xn − x‖2 + τ(τ − b)‖xn−1 − x‖2

)
− ξ1

<

√
2

η
τ
(
‖xn − x‖2 + (τ − b)‖xn−1 − x‖2

)
− ξ1.

(47)

According to (29), we have

‖xn − x‖2 + (τ − b)‖xn−1 − x‖2

≤ b‖xn−1 − x‖2 + ηβ‖xn−2 − x‖2 + (τ − b)‖xn−1 − x‖2

= τ
(
‖xn−1 − x‖2 + (τ − b)‖xn−2 − x‖2

)
≤ τn−1

(
‖x1 − x‖2 + (τ − b)‖x0 − x‖2

)
≤ τn−1(λ0‖x‖2 + (τ − b)λ0‖x‖2)

= τn−1λ0(τ − b + 1)‖x‖2.

Taking into account the definition of un in (23), we know that Sn+1 = S is satisfied as
soon as (45) holds. Due to (47), this can be ensured, provided that

√
2λ0(τ − b + 1)‖x‖2

η
τn ≤ ξ1, i.e., n ≥

log
(√

2λ0(τ − b + 1)‖x‖2/ηξ1

)
log(1/τ)

.

We next demonstrate that y = |Ax| 6= 0 by contradiction. If y = |Ax| = 0, i.e., Ax = 0,
according to Lemma 2, then A satisfies (1− δs)‖x‖2

2 ≤ ‖Ax‖2
2 with a probability of at least

1− e−C2m as m ≥ C1δ−2
s s log(n/s). Due to Ax = 0 and δ3s < 1, we can deduce that x = 0.

This contradicts the hypothesis.
Now, we also need to determine an integer n, such that yn+1 = Ax. Denote

n1 :=


log
(√

2λ0(τ − b + 1)‖x‖2/ηξ1

)
log(1/τ)

+ 1

and

n2 :=


log
(

λ1θ(λ0)(1 + δs)‖x‖2
2/|ξ2|2

)
log(1/τ)

+ 1,

where θ(λ0) and τ are given by (15) and (17), respectively, in Theorem 1, and ξ2 is the
minimum nonzero entry of y. According to the argument of proof given in part (b) of [15]
[Theorem 1], we can obtain that yn+1 = Ax as n ≥ max{n1, n2}. Since it is already known
from the previous proof that n1 is the smallest positive integer, such that Sn+1 = S, then,
as n ≥ max{n1, n2}, we have both Sn+1 = S and yn+1 = Ax. This ensures that, in the
Algorithm 1,

xn+1 = arg min
{

1
2
‖Az− Ax‖2

2 | supp(z) ⊆ S
}

. (48)

Thus, xn+1 = x = sgn(‖x + x0‖2 − ‖x − x0‖2)x due to dist(x0, x) = ‖x − x0‖2 ≤
‖x + x0‖2. Therefore, Algorithm 1 successfully recovers the s-sparse signal sgn(‖x + x0‖2−
‖x− x0‖2)x after a finite number of iterations.
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Similarly, if dist(x0, x) = ‖x + x0‖2, we can obtain that Sn+1 = S and yn+1 = A(−x)
as n ≥ max{n1, n2}. In this case, (48) takes the form

xn+1 = arg min
{

1
2
‖Az + Ax‖2

2 | supp(z) ⊆ S
}

.

Thus, xn+1 = −x = sgn(‖x + x0‖2 − ‖x − x0‖2)x due to dist(x0, x) = ‖x + x0‖2 ≤
‖x− x0‖2. This completes the proof.

4. Numerical Experiments

In order to make our paper more convenient and clear to read, we give Table 1 before
the numerical experiments.

Table 1. The descriptions of the parameters and the abbreviations of the algorithm names.

α The stepsize of the algorithm
β The coefficient of the momentum term

HTP Hard thresholding pursuit
HBHTP Heavy-Ball-Based Hard Thresholding Pursuit
CoSaMP Compressive Sampling Matching Pursuit
SPARTA SPARse Truncated Amplitude Flow

TWF Thresholded Wirtinger Flow
TAF Truncated Amplitude Flow

SPR-HTP Hard Thresholding Pursuit for sparse phase retrieval
SPR-HBHTP Heavy-Ball-Based Hard Thresholding Pursuit for sparse phase retrieval

CoPRAM Compressive Phase Retrieval with Alternating Minimization

All experiments were performed on a laptop with an Apple M1 processor and 8GB
memory by using MATLAB R2021a. In terms of the recovery capability and average run-
time, a comparison of SPR-HBHTP with three popular algorithms, including SPR-HTP [15]
(an extension of HTP from traditional compressed sensing to sparse phase recovery), Co-
PRAM [39] (a combination of the classical alternating minimization approach for phase
retrieval with the CoSaMP algorithm for sparse recovery) and SPARTA [38] (a combination
of TWF and TAF) for the sparse phase retrieval problem is shown in this section.

In the following experiments, the s-sparse vector x ∈ Rn with a fixed dimension
of n = 3000 is randomly generated, whose nonzero entries are independent identically
distributed (i.i.d) and follow the standard normal distribution N (0, 1). Particularly, the
indices in support of x follow a uniform distribution. The measurement matrix A is the
i.i.d Gaussian matrix whose elements followN (0, 1/m), which satisfies the RIP with a high
probability as m is large enough (Chapter 9, [30]). On the other hand, the observed modulus
data y are expressed as follows: y = |Ax| in noiseless environments, and y = |Ax|+ κe in
noisy environments, where e is the noise vector with elements following N (0, 1/m) and
κ > 0 is the noise level.

The maximum number of iterations for all algorithms was set as 50. All initial points of
the algorithms were generated by initialization in SPR-HBHTP, in which two initial points
x1 = x0 were produced for SPR-HBHTP, while the other algorithms just needed an initial
point x0. The algorithmic parameters of SPARTA were γ = 0.7, µ = 1, and I = bm/6c [38],
and the stepsize of SPR-HTP was set as µ = 0.75 [15]. The choice of algorithmic parameters
for SPR-HBHTP is discussed in Section 4.1. For each sparsity level s, 100 independent trials
were used to test the success rates of the algorithms. The trial was said to be a ’success’ if
the following recovery condition

dist(x, xn)

‖x‖2
≤ 10−3

was satisfied, where x is the target signal, xn is the corresponding approximated value
generated by the algorithm, and the distance dist(x, xn) is given by (6).
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4.1. Choices of Parameters α and β

In order to choose suitable algorithmic parameters (α, β) in terms of the recovery
capability, we considered the success rates of SPR-HBHTP for recovery with a fixed value
of m = 3000 in noiseless environments. The numerical results are displayed in Figure 1, in
which the sparsity level s ranges from 40 to 260 with a stepsize of 10. Figure 1a corresponds
to the case with β ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9} and α = 8, while Figure 1b corresponds to
the case with α ∈ {1, 2, 3, 4, 6, 8} and β = 0.7. Figure 1a shows that the recovery ability
of SPR-HBHTP becomes stronger with an increase in the coefficient β of the momentum.
Note that SPR-HBHTP reduces to SPR-HTP as β = 0, which indicates that an important
role played by the momentum is to enlarge the range of the stepsize α of SPR-HBHTP.
From Figure 1b, we can see that SPR-HBHTP is sensitive to the stepsize α, and its recovery
capability with α = 2 is stronger than that of α = 1, 3, 8. However, the recovery effect of
SPR-HBHTP with α = 2 is worse than that of α = 4, 6 for large sparsity levels s, while the
former is slightly better than the latter for small s. Thus, we use α = 2 and β = 0.7 for the
rest of the article.
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Figure 1. Comparison of the success rates of SPR-HBHTP with different parameters. (a) Different
momentum coefficients β. (b) Different stepsizes α.

4.2. Phase Transition

In this section, we use the phase transition curve (PTC) [42,43] and grayscale map to
compare the recovery capabilities of the algorithms.

4.2.1. Phase Transition Curves

The phase transition curve is a logistic regression curve identifying a 50% success rate
for the given algorithms in this paper. Indeed, a ratio of 50% can be replaced by other values
in the interval (0, 1) based on the practical background. Denote δ = m/n and ρ = s/m.
The (δ, ρ)-plane is separated by the PTC of an algorithm into success and failure regions (see
Figure 2). The former corresponds to the region below the PTC, wherein the algorithm can
reconstruct the target sparse signal successfully; the latter corresponds to the region above
the PTC. In other words, the higher the PTC, the stronger the recovery capability of the
algorithm.

To generate the PTC, (δ, ρ) are taken as follows

δ ∈ {0.05, 0.07, 0.09, 0.1, 0.1445, . . . , 0.99}, ρ = s/m, (49)

where the interval [0.1, 0.99] is equally divided into 20 parts. For each δ given in (49), the
‘glmfit’ function in Matlab is used to generate the logistic regression curve based on the
success rates with different sparsity levels s. The PTC is obtained directly by identifying
the point in the logistic regression curve with a 50% success rate. This technique is almost
the same as that shown in [36], except that the ‘glmfit’ function is replaced by the logistic



Mathematics 2023, 11, 2744 19 of 24

regression model. Thus, the process of the generation of the PTC is omitted here, and the
interested reader can consult [36] for detailed information.
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Figure 2. Comparison of the PTCs for the algorithms with accurate/inaccurate measurements.
(a) Accurate measurements. (b) Inaccurate measurements with κ = 0.01.

The comparison of the PTCs for algorithms including SPR-HBHTP, SPR-HTP, Co-
PRAM, and SPARTA is shown in Figure 2, wherein Figure 2a,b correspond to accurate
and inaccurate measurements, respectively. From Figure 2a, we see that SPR-HBHTP has
the highest PTC as δ > 0.2, which indicates that the recovery capability of SPR-HBHTP
is stronger than that of the other three algorithms, especially for larger δ. The PTCs in
Figure 2b are similar to those in Figure 2a as δ > 0.1; that is, all algorithms are stable under
small disturbances. However, when δ ≤ 0.1, all PTCs in Figure 2b decrease rapidly with a
decrease in δ, which is different from the phenomena shown in Figure 2a. This indicates
that all algorithms require more measurements to ensure the recovery effect under the
disturbance for the sparse phase retrieval problem. Finally, it should be noted that the PTCs
of SPR-HTP, CoPRAM, and SPARTA are close to each other in Figure 2a,b, which means that
the reconstruction capability of these three algorithms is almost the same. Comparatively
speaking, the recovery capability of SPR-HTP is slightly better than those of CoPRAM
and SPARTA.

4.2.2. Greyscale Maps

A grayscale map is an image that contains only brightness information and does not
contain color information. In grayscale maps, the successful recovery rate of the algorithms
is expressed by the different gray levels of the corresponding blocks, where black indicates
a successful recovery rate of 0%, white is 100%, and gray is 0% to 100%.

Grayscale maps for different algorithms, such as SPR-HBHTP, SPR-HTP, CoPRAM
and SPARTA, with signal lengths of n = 3000 are displayed in Figure 3. In our experiments,
the sample size m ranged from 250 to 3000 with a stepsize of 250 and the sparsity s ranged
from 20 to 100 with a stepsize of 5. By comparing the four graphs in Figure 3, it can be seen
that when the sparsity is relatively large, the recovery ability of SPR-HBHTP is stronger
than that of other algorithms. For smaller sparsity s values, SPR-HTP and CoPRAM have
almost the same recovery ability, and similarly, SPARTA and SPR-HBHTP have comparable
recovery abilities. This is consistent with our results for phase transition curves.
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Figure 3. Grayscale map for different algorithms with n = 3000. (a) SPR-HBHTP. (b) SPR-HTP.
(c) CoPRAM. (d) SPARTA.

4.3. Algorithm Selection Maps

In practice, the algorithm that consumes the least amount of time should be selected
naturally when more than one algorithm can reconstruct the target signal successfully.
Hence, it is meaningful to choose the fastest algorithm at the intersection of the success
regions of the algorithms, which builds the algorithm selection maps (ASM) proposed
in [42,43]. Note that the algorithm will be selected automatically if it is the only one that
can recover the signal successfully.

Denote δ = m/n and ρ = s/m. Next, we establish the ASM in the (δ, ρ)-plane with
(δ, ρ) given as follows

δ ∈ {0.05, 0.07, 0.09, 0.1, 0.1445, . . . , 0.99}, ρ ∈ {0.02, 0.022, . . . , 0.1},

where the intervals [0.1, 0.99] and [0.02, 1] are equally divided into 20 and 40 parts, re-
spectively. For each δ, we tested 10 problem instances at (δ, ρ) for each algorithm with an
increase in ρ until the success frequency was less than 50%. The ASM and average runtime
of the fastest algorithm with accurate measurements are summarized in Figure 4. Figure 4a
indicates that SPR-HBHTP or SPR-HTP is the fastest algorithm in most areas, and CoPRAM
is a slower algorithm relatively, since it does not appear in the ASM. Figure 4b shows us
that the average runtime of the fastest algorithm is less than one second in most regions,
and it increases by up to 3–7 s for larger δ and ρ. This demonstrates that all algorithms will
take more time, as the sparsity level s becomes larger.
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Figure 4. ASM and the shortest average runtime with accurate measurements. (a) ASM. (b) Average
runtime of the fastest algorithm.

For comparing the algorithms thoroughly, we collected detailed information about
their average runtimes, as shown in Figure 5, and the ratios of the average runtimes for
the algorithms against the fastest one are shown in Figure 4b. Figure 5a,b reveal that the
ratios of SPR-HBHTP and SPR-HTP are close to 1 in most areas, which indicates that they
are faster than CoPRAM and SPARTA. In particular, the advantage value of SPR-HBHTP
lies in the region with a larger ρ compared to SPR-HTP. In Figure 5c, the ratio of CoPRAM
is about 5–20 in most regions, and the minimum value is 5, which means that it is slower
than the other three algorithms. Finally, by comparing Figure 5d with Figure 5a–c, we find
that SPARTA is slower than SPR-HBHTP and SPR-HTP in most cases, but it is much faster
than CoPRAM.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=m/n

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

=
s
/m

5

10

15

20

25

30

35

40

45

(c)

Time ratio: SPARTA/Fast algorithm with n=3000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

=m/n

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

=
s
/m

1

1.5

2

2.5

3

3.5

4

(d)

Figure 5. The ratios of average runtimes for the algorithms against the fastest one. (a) SPR-HBHTP.
(b) SPR-HTP. (c) CoPRAM. (d) SPARTA.
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5. Conclusions

We introduced a second-order accelerated method for the Hard Thresholding Pursuit,
named the Heavy-Ball-Based Hard Thresholding Pursuit, to reconstruct a sparse signal
from phaseless measurements. Under the restricted isometry property, SPR-HBHTP enjoys
an exact provable recovery in the finite steps as soon as the number of noiseless Gaussian
measurements exceeds a certain bound. It is remarkably different from the existing phase
recovery algorithms in terms of theoretical analysis. Moreover, numerical experiments
on random problem instances indicate that our algorithm outperforms the state-of-the-art
algorithms, such as SPR-HTP, CoPRAM, and SPARTA, in terms of its recovery success rate
and computational times through the phase transition analysis. Conducting experiments
on realistic situations to truly verify the practical performance of SPR-HBHTP is worthy of
further research. In addition, studying the random alternating minimization method based
on Heavy-Ball acceleration is an interesting research topic.
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