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Abstract: The equivalence of systems is a crucial concept in multidimensional systems. The Smith
normal forms of multivariate polynomial matrices play important roles in the theory of polynomial
matrices. In this paper, we mainly study the unimodular equivalence of some special kinds of
multivariate polynomial matrices and obtain some tractable criteria under which such matrices are
unimodular equivalent to their Smith normal forms. We propose an algorithm for reducing such nD
polynomial matrices to their Smith normal forms and present an example to illustrate the availability
of the algorithm. Furthermore, we extend the results to the non-square case.
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1. Introduction

Most multidimensional (nD) systems such as dynamical control systems, distributed
control systems and delay-differential systems are often represented by multivariate (nD)
polynomial matrices [1–9]. The equivalence of systems is a significant concept in nD
systems. From the perspective of system theory, the reduction involved must maintain the
relevant system properties. It is usually valuable to simplify the given system representation
to a simpler equivalent form. It is well-known that the equivalence of nD systems can be
reflected by the unimodular equivalence of nD polynomial matrices. Because the Smith
normal form of the polynomial matrix has good structure and properties, the unimodular
equivalence plays a key role for multivariate polynomial matrices simplified to their Smith
normal form. One of the purposes of reducing an nD polynomial matrix to its Smith
normal form is to be capable of simplifying a corresponding system to a new system while
including fewer equations and unknowns. Therefore, the problem of the unimodular
equivalence for the Smith normal form and nD polynomial matrices have made great
progress in the past decades.

For 1D polynomial matrices, the unimodular equivalence problem of a matrix to its Smith
normal form is well solved [2,4]. Storey and Frost gave an example for bivariate polynomial
matrices which is not unimodular equivalent to its Smith normal form [10]. For nD(n ≥ 2)
polynomial matrices, because nD polynomial rings are not Euclidean, Euclidean division prop-
erties do not hold in such rings, which become greatly difficult in algebra. Consequently, the
unimodular equivalence problem is still open. The unimodular equivalence and Smith normal
form problems of several special classes of polynomial matrices have been investigated and
some judgment conditions have been obtained [11–20]. For instance, Lin et al. [11] presented
that a polynomial matrix F(x) ∈ Kl×l [x1, x2, · · · , xn] with det(F) = x1 − f (x2, · · · , xn) is
unimodular equivalent to its Smith normal form. Furthermore, Li et al. [13] generalized
the above result to a new case when det(F) = (x1 − f (x2, · · · , xn))q, where q is a positive
integer. Moreover, Lu et al. [20] derived a tractable criterion under which matrix F may
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be unimodular equivalent to its Smith normal form diag{Il−1, pq} for F ∈ Kl×l [x, y] and
det(F) = pq, where p, q ∈ K[x] are irreducible and distinct polynomials.

In this paper, we mainly study the unimodular equivalence for several classes of nD
polynomial matrices and their Smith normal form. Li et al. [14] showed that a polynomial
matrix F(x) ∈ Kl×l [x1, x2, · · · , xn], det(F) = (x1 − f1(x2, · · · , xn))(x2 − f2(x3, · · · , xn))
is unimodular equivalent to its Smith normal form diag{Il−1, det(F)} if and only if the
(l− 1)× (l− 1) minors of F(x) have no common zeros. By extending the above conclusion,
we focus on the Smith normal forms of some nD polynomial matrices with special determi-
nants. Let F(x) ∈ Kl×l [x1, x2, · · · , xn] with det(F) = dq1

1 dq2
2 = (x1 − f1(x2, · · · , xn))q1(x2 −

f2(x3, · · · , xn))q2 , where q1, q2 are positive integers. We study the question as to what is the
sufficient and necessary condition for the polynomial matrix F(x) unimodular equivalent
to its Smith normal form. Moreover, we extended the above results to the non-square case.
The following problems are investigated.

Problem 1. Let F(x) ∈ Kl×l [x] and det(F) = dq
1dq

2, d1 = x1 − f1(x2, · · · , xn),
d2 = x2 − f2(x3, · · · , xn), where q is a positive integer. When is the F(x) unimodular equiv-
alent to its Smith normal form

S(x) =


dr1

1 dr1
2

dr2
1 dr2

2
. . .

drl
1 drl

2

?

Problem 2. Let F(x) ∈ Kl×l [x] and det(F) = (ds
1dt

2)
r, d1 = x1 − f1(x2, · · · , xn),

d2 = x2 − f2(x3, · · · , xn), where s, t are two positive integers. When is the F(x) unimodular
equivalent to its Smith normal form

S(x) =


Il−r

ds
1dt

2
. . .

ds
1dt

2

?

We now summarize the rest of this paper. Some basic concepts on the unimodular
equivalence of a polynomial matrix, the main results of this paper and the positive answers
of Problems 1 and 2 are presented in Section 2. In Section 3, we give an executable algorithm
and an example to illustrate the usefulness of our method. In Section 4, we provide some
concluding comments.

2. Preliminaries and Results

Let R = K[x1, x2, · · · , xn] denote the set of polynomials in n variables x1, x2, · · · , xn
with coefficients in the field K. R1 = K[x2, · · · , xn]. Rl×m denotes the set of l ×m matrices
with entries from R. Ir denotes the r × r identity matrix and 0r×t denotes the r × t zero
matrix. For convenience, we use diag{ f1, · · · , fl} to denote the diagonal matrix in Rl×l ,
where diagonal elements are f1, · · · , fl , and f1, · · · , fl ∈ R. In addition, we use A(x) ∼ B(x)
to denote that A(x) is unimodular equivalent to B(x). As long as the omission of parameter
(x) does not lead to confusion, we omit it.

Definition 1 ([21]). Let F(x) ∈ Rl×m with rank r, where 1 ≤ r ≤ min{l, m}. For any integer
k with 1 ≤ k ≤ r, let a1, · · · , aβ be all the k× k minors of F(x) and denote the greatest common
divisor (g.c.d.) of a1, · · · , aβ by dk(F). Extracting dk(F) from a1, · · · , aβ yields

ai = dk(F) · bi, i = 1, · · · , β.
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The k× k reduced minors of F(x) are denoted by b1, · · · , bβ. For simplicity, Jk(F) denotes the ideal
in R generated by b1, · · · , bβ.

Definition 2. Let F(x) ∈ Rl×m (l ≤ m) be of rank r. The Smith normal form of F(x) is defined as

S = (diag{Φi} 0l×(m−l)),

where

Φi =

{
di/di−1, 1 ≤ i ≤ r,

0, r < i ≤ m,

and let d0 ≡ 1, where di is the greatest common divisor of the i× i minors of F(x) and Φi satisfies
the following property:

Φ1 | Φ2 | · · · | Φr.

Definition 3 ([22]). Let F(x) ∈ Rl×m be of full row(column) rank. F(x) is said to be zero left
prime (zero right prime) if the l× l(m×m) minors of F(x) have no common zeros. If F(x) ∈ Rl×m

is zero left prime (zero right prime), we simply say that F(x) is ZLP (ZRP).

Definition 4. Let F1(x) and F2(x) be two matrices in Rl×m. F1(x) and F2(x) are said to be
unimodular equivalent if there exist two invertible matrices P(x) ∈ Rl×l and Q(x) ∈ Rm×m such
that F2(x) = P(x)F1(x)Q(x).

We first provide several important lemmas, which are of great help to prove our main
results.

Lemma 1 ([14]). Let F(x) ∈ Rl×m(l ≤ m) be of rank r. If the reduced minors of F(x) generate
unit idea R, then there is a ZLP matrix V(x) ∈ R(l−r)×l such that V(x) · F(x) = 0(l−r)×m.

Lemma 2 ([17]). Let g(x) ∈ R and f (x) ∈ R1. If g( f , x2, · · · , xn) = 0, then x1− f (x2, · · · , xn)
is a divisor of g(x).

Lemma 3 ([17]). Let F(x), F1(x), F2(x) ∈ Rl×l , F(x) = F1(x) · F2(x). If the (l − r)× (l − r)
minors of F(x) have no common zeros, then the (l− r)× (l− r) minors of Fi(x) (i = 1, 2) have no
common zeros.

In 1976, Quillen [23] and Suslin [24] proved Serre’s conjecture independently, and then
found a relationship between a unimodular matrix and a ZLP matrix. Now, we introduce
this conclusion.

Lemma 4 ([23,24]). Let F(x) ∈ Rl×m(l ≤ m) be a ZLP matrix. Then, there exists a unimodular
matrix H(x) ∈ Rm×m such that

F(x) · H(x) =
(

Il 0l×(m−l)
)
.

Lemma 5. Let F(x) ∈ Rl×l and det F(x) = dp
1 dq

2, where d1 = x1 − f1(x2, · · · , xn),
d2 = x2 − f2(x3, · · · , xn) and p, q are nonnegative integers.

(1) If dr(F) = 1, Jr(F) = R and d1|dr+1(F), then there exists a unimodular matrix
U1(x) ∈ Rl×l such that

U1(x) · F(x) =
(

Ir
d1 Il−r

)
· G1(x)

where G1(x) ∈ Rl×l .
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(2) If dr(F) = 1, Jr(F) = R and d2|dr+1(F), then there exists a unimodular matrix
U2(x) ∈ Rl×l such that

U2(x) · F(x) =
(

Ir
d2 Il−r

)
· G2(x),

where G2(x) ∈ Rl×l .
(3) If dr(F) = 1, Jr(F) = R and d1d2|dr+1(F), then there exists a unimodular matrix

U3(x) ∈ Rl×l such that

U3(x) · F(x) =
(

Ir
d1d2 Il−r

)
· G3(x),

where G3(x) ∈ Rl×l .

Proof. Suppose that the r× r minors of F(x) are a1, a2, · · · , aβ, let F′(x) = F( f1, x2, · · · , xn),
and the r× r minors of F′(x) are b1, b2, · · · , bβ. It is obvious that ( f1, x2, · · · , xn) is a zero of
det F(x) for every (x2, · · · , xn) ∈ R1 and d1|dr+1(F). Therefore, rank(F′(x)) ≤ r.

(1) Assume exists (x20, · · · , xn0) ∈ R1 such that

bi(x20, · · · , xn0) = 0, i = 1, 2, · · · , β.

Let x10 = f1(x20, · · · , xn0), and then

ai(x10, x20, · · · , xn0) = 0, i = 1, 2, · · · , β.

Because dr(F) = 1, Jr(F) = R, we have the r× r minors of F(x) generate R. Leads to
a contradiction. Thus, the r× r minors of F′(x) generate R, rank(F′(x)) ≥ r, and then
rank(F′(x)) = r. By Lemma 1, there exists a ZLP matrix T(x) ∈ R(l−r)×l such that

T(x) · F′(x) = 0(l−r)×l .

By Lemma 4, a unimodular matrix U1(x) ∈ Rl×l can be established and T(x) is its
last l − r row. By Lemma 2, the last l − r row of U1(x) · F(x) has the common divisor
d1, i.e.,

U1(x) · F(x) =
(

Ir
d1 Il−r

)
· G1(x).

(2) If dr(F) = 1, Jr(F) = R and d2|dr+1(F), we apply a similar method to prove that there
exists a unimodular matrix U2(x) ∈ Rl×l such that

U2(x) · F(x) =
(

Ir
d2 Il−r

)
· G2(x).

(3) If dr(F) = 1, Jr(F) = R and d1d2|dr+1(F). Obviously, d1|dr+1(F), and then there exists
a unimodular matrix U1(x) ∈ Rl×l such that

U1(x) · F(x) =
(

Ir
d1 Il−r

)
· G1(x).

Note that U1(x) is unimodular, assume r× r minors of G1(x) are r1, r2, · · · , rβ, because
the r× r minors of F(x) generate unit idea R, by Lemma 3, the r× r minors of G1(x) have
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no common zeros and dr+1(F) = dr+1(

(
Ir

d1 Il−r

)
· G1(x)), let G1(x) =

(
W1(x)
W2(x)

)
,

where W1(x) ∈ Rr×l , W2(x) ∈ R(l−r)×l , and then(
Ir

d1 Il−r

)
· G1(x) =

(
W1(x)

d1 ·W2(x)

)
.

Note that dr+1(

(
Ir

d1 Il−r

)
· G1(x)) = d1 · dr+1(G1(x)) and d2|dr+1(F), and thus

d2|d1 · dr+1(G1(x)), combined with d2 - d1, so that d2|dr+1(G1(x)). Therefore, there exists a
unimodular matrix U4(x) ∈ Rl×l such that

U4(x) · G1(x) =
(

Ir
d2 Il−r

)
· G′3(x),

further, we can obtain

U1(x) · F(x) =
(

Ir
d1 Il−r

)
·U−1

4 (x) ·
(

Ir
d2 Il−r

)
· G′3(x).

According to Lemma 2.6 in Li et al. [16], there are two unimodular matrices U(x),
V(x) ∈ Rl×l such that(

Ir
d1 Il−r

)
·U−1

4 (x) ·
(

Ir
d2 Il−r

)
= U(x) ·

(
Ir

d1d2 Il−r

)
·V(x).

Setting U3(x) = U−1(x) ·U1(x), G3(x) = V(x) · G′3(x), we have

U3(x) · F(x) =
(

Ir
d1d2 Il−r

)
· G3(x).

The proof is completed.

Lemma 6 ([19]). Let matrices A(x), B(x) ∈ Rl×m, if A(x) is unimodular equivalent to B(x),
then dk(A) = dk(B) and Jk(A) = Jk(B), where k = 1, 2, · · · , min{m, l}.

Let F
(

i1i2 · · · it
j1 j2 · · · js

)
be a t× s submatrix of F(x) consisting of the i1_th, i2_th, · · · , it

_th

rows and j1_th, j2_th, · · · , js_th columns of F(x).

Lemma 7. Let F(x) ∈ Rl×l be of full row rank, d(F) = (d1d2)
q, where d1 = x1− f1(x2, · · · , xn),

d2 = x2 − f2(x3, · · · , xn), and q is a positive integer. If there exist two subsets {i1, i2, · · · , ik} and
{j1, j2, · · · , jk} of {1, 2, · · · , l} such that

d1d2 - det
(

i1 i2 · · · ik
j1 j2 · · · jk

)
, d1d2 | det

(
i1 i2 · · · ik ik+1
p1 p2 · · · pk pk+1

)
for any ik+1(ik+1 6= i1, · · · , ik) and any permutation p1 · · · pk pk+1 of 1, 2, · · · , l. Then,
d1d2 | dk+1(F).

Proof. The proof is similar to Lemma 3.6 in [19], so we omit it here.

Lemma 8 ([19]). Let F(x), M(x), N(x) ∈ Rl×l and F(x) = M(x) · N(x). For some
k(1 ≤ k ≤ l), if dk(M) = dk(F), Jk(F) = R, then Jk(M) = R, dk(N) = 1, Jk(N) = R.
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Lemma 9. Let F(x), D(x), C(x) ∈ Rl×l , F(x) = D(x) ·C(x), di(F) = dqi
1 dqi

2 , i = 1, 2, · · · , k +
1, and

D(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drk+1
1 drk+1

2 Il−k

,

where d1 = x1 − f1(x2, · · · , xn), d2 = x2 − f2(x3, · · · , xn), r1 ≤ r2 ≤ · · · ≤ rk+1,
qi = r1 + · · ·+ ri, i = 1, 2, · · · , k. If Jk(F) = R, qk+1 > r1 + · · ·+ rk+1. Then, dk(C) = 1,
Jk(C) = R, d1d2 | dk+1(C).

Proof. By assumption Jk(F) = R, qk+1 > r1 + · · · + rk+1. Because dk(F) = dk(D) =
(d1d2)

r1+···+rk , by Lemma 8, dk(C) = 1, Jk(C) = R. Because

det F
(

a1 a2 · · · ap
l1 l2 · · · lp

)
= (d1d2)

ra1+···+rap · det C
(

a1 a2 · · · ap
l1 l2 · · · lp

)
.

(1) If r1 = r2 = · · · = rk+1, because dk(C) = 1, it is obvious that there exists a k× k minor
λ(x) of C(x) such that d1d2 - λ(x). For any permutation i1 · · · ikik+1 and j1 · · · jk jk+1
in 1, · · · , l, combined with r1 = r2 = · · · = rk+1, we have that

det F
(

i1 i2 · · · ik ik+1
j1 j2 · · · jk jk+1

)
=

(d1d2)
r1+···+rk+1 · det C

(
i1 i2 · · · ik ik+1
j1 j2 · · · jk jk+1

)
Because dk+1(F) = (d1d2)

qk+1 and qk+1 > r1 + · · ·+ rk+1, we have

d1d2 | det C
(

i1 i2 · · · ik ik+1
j1 j2 · · · jk jk+1

)
.

By Lemma 7, d1d2|dk+1(C).
(2) If there is an integer k0 with k0 ≤ k such that rk0 < rk0+1 = rk0+2 · · · = rk+1 or rk <

rk+1. Because dk(F) = (d1d2)
r1+···+rk , there are ik0+1, · · · , ik and j1, · · · , jk such that

d1d2 - det C
(

1 2 · · · k0 ik0+1 · · · ik
j1 j2 · · · jk0 jk0+1 · · · jk

)
If the assertion would not hold, then we have qk ≥ r1 + · · ·+ rk + 1, and this is a con-
tradiction. For any ik+1(ik+1 > k0, ik+1 6= ik0+1, · · · , ik), any permutation j1 · · · jk jk+1.
We have

det F
(

1 · · · k0 ik0+1 · · · ik+1
j1 · · · jk0 jk0+1 · · · jk+1

)
=

(d1d2)
r1+···+rk+1 · det C

(
1 · · · k0 ik0+1 · · · ik+1
j1 · · · jk0 jk0+1 · · · jk+1

)
Because dk+1(F) = (d1d2)

qk+1 and qk+1 > r1 + · · ·+ rk+1, we have

d1d2|det C
(

1 · · · k0 ik0+1 · · · ik+1
j1 · · · jk0 jk0+1 · · · jk+1

)
By Lemma 7, d1d2|dk+1(C).
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Theorem 1. Let F(x), G(x) ∈ Rl×l , di(F) = dqi
1 dqi

2 , d1 = x1 − f1(x2, · · · , xn),
d2 = x2 − f2(x3, · · · , xn), Ji(F) = R, where qi are positive integers, i = 1, 2, · · · , l; and,

F(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drt
1 drt

2 Il−k

 · G(x),

where q0 ≡ 0, ri = qi − qi−1 and i = 1, 2, · · · , k + 1.
If r1 ≤ r2 ≤ · · · ≤ rk ≤ rt < rk+1, then F(x) is unimodular equivalent to M(x), where

M(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drt+1
1 drt+1

2 Il−k

 · N(x),

and N(x) ∈ Rl×l .

Proof. It is obvious that qi = r1 + r2 + · · · + ri, i = 1, 2, · · · , k + 1, and then
qk+1 = r1 + · · ·+ rk + rk+1 > r1 + · · ·+ rk + rt, by Lemma 9, dk(G) = 1, Jk(G) = R, d1d2 |
dk+1(G). By Lemma 5, there exists a unimodular matrix U1(x) ∈ Rl×l such that

U1(x) · G(x) =
(

Ik
d1d2 Il−k

)
· G1(x).

(1) If r1 = r2 = · · · = rk = rt, then

F(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drt
1 drt

2 Il−k

 ·U−1
1 (x) ·

(
Ik

d1d2 Il−k

)
· G1(x)

= U−1
1 (x) ·


dr1

1 dr1
2

. . .
drk

1 drk
2

drt+1
1 drt+1

2 Il−k

 · G1(x).

Thus, F(x) is unimodular equivalent to

M(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drt+1
1 drt+1

2 Il−k

 · G1(x).

(2) If there is an integer m with 1 ≤ m < k such that rm < rm+1 = rm+2 · · · = rk = rt.
Setting P(x) = U−1

1 (x), let

P(x) =
(

P1 P2
P3 P4

)
,
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where P1 ∈ Rm×k, P2 ∈ Rm×(l−k), P3 ∈ R(l−m)×k, P4 ∈ R(l−m)×(l−k).
Then,

F(x) =


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 Il−m

 · P(x) ·
(

Ik
d1d2 Il−k

)
· G1(x).

We claim that (P1, d1d2P2) is a ZLP matrix. Otherwise, the m×m minors of (P1, d1d2P2)
have a common zero. We compute all the m × m reduced minors of F(x), because
dm(F) = (d1d2)

r1+···+rm , and every m×m minor of P1 is a factor of some m×m reduced
minors of F(x) and the other m×m reduced minors of F(x) have a common divisor d1d2.
Then, the m×m reduced minors of F(x) have a common zero, and this contradicts that the
hypothesis Jm(F) = R.

By Lemma 4, there exists a unimodular matrix Q ∈ Rl×l such that (P1, d1d2P2) ·Q =(
Im 0m×(l−m)

)
.

Setting (P3, d1d2P4) ·Q = (P31, P32), furthermore, we partition P31 to

P31 = (α1, · · · , αm),

where P31 ∈ R(l−m)×m, P32 ∈ R(l−m)×(l−m), α1, · · · , αm ∈ R(l−m)×1, and then we have

F(x) =


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 Il−m

 ·
(

P1 d1d2P2
P3 d1d2P4

)
·Q ·Q−1 · G1(x)

=


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 Il−m

 ·
(

Im 0m,l−m
P31 P32

)
·Q−1 · G1(x)

=


dr1

1 dr1
2

. . . 0m,l−m
drm

1 drm
2

drt
1 drt

2 α1 · · · drt
1 drt

2 αm drt
1 drt

2 P32

 ·Q−1 · G1(x).

By elementary transformations, we have that F(x) is unimodular equivalent to C(x), where

C(x) =


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 P32

 ·Q−1 · G1(x),

In the following, we prove that d1d2 | dk−m+1(P32).

Let e =
m
∑

i=1
ri + (k−m + 1)rt + 1. Because (d1d2)

e | dk+1(F) and F(x) ∼ C(x), we

have (d1d2)
e | dk+1(C). Assume W is one of all (k−m + 1)× (k−m + 1) submatrices of

P32; therefore,

C′(x) =


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 W
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is a (k + 1)× (k + 1) submatrix of C(x). So, (d1d2)
e | dk+1(C′) implies that d1d2 | det(W).

It is easy to see that d1d2 | dk−m+1(P32). Then, by Lemma 5, there exists a unimodular
matrix U(x) ∈ R(l−m)×(l−m) such that

U(x) · P32 =

(
Ik−m

d1d2 Il−k

)
· G2(x),

where G2(x) ∈ R(l−m)×(l−m).
By some elementary transformations, we have

C(x) ∼


dr1

1 dr1
2

. . .
drm

1 drm
2

drt
1 drt

2 Ik−m
drt+1

1 drt+1
2 Il−k

 ·
(

Im
G2(x)

)
·Q−1 · G1(x).

From the transmissibility of matrix equivalent, F(x) is unimodular equivalent to

M(x) =


dr1

1 dr1
2

. . .
drk

1 drk
2

drt+1
1 drt+1

2 Il−k

 · N(x),

where N(x) =
(

Im
G2(x)

)
·Q−1(x) · G1(x).

(3) If r1 ≤ r2 ≤ · · · ≤ rk < rt. Through the above methods, we can obtain the same
conclusion.

Theorem 2. Let F(x) ∈ Rl×l , det F(x) = dq
1dq

2, d1 = x1 − f1(x2, · · · , xn),
d2 = x2 − f2(x3, · · · , xn), where q is a positive integer. Then, Ji(F) = R and di(F) = (d1d2)

qi if
and only if F(x) is unimodular equivalent to its Smith normal form S(x), where

S(x) =


dr1

1 dr1
2

dr2
1 dr2

2
. . .

drl
1 drl

2


and ri = qi − qi−1, q0 ≡ 0, i = 1, 2, · · · , l.

Proof. Sufficiency: Suppose that F(x) ∼ S(x) = diag{dr1
1 dr1

2 , dr2
1 dr2

2 , · · · , drl
1 drl

2 }. By Lemma
6, Ji(F) = Ji(S) = R and di(F) = di(S) = (d1d2)

qi , where qi = r1 + · · ·+ ri, i = 1, · · · , l.
Necessity: Because d1(F) = (d1d2)

r1 , then we have F = (d1d2)
r1 Il · N1. Furthermore,

we assume that d2(F) = (d1d2)
r1+r2 , by Definition 2, we have r2 ≥ r1, and then we consider

two cases. If r2 = r1, it is obvious that F(x) ∼ diag{dr1
1 dr1

2 , dr2
1 dr2

2 , · · · , dr2
1 dr2

2 } · N2, where
N2 = N1. If r2 > r1, by Theorem 1, we have F(x) ∼ diag{dr1

1 dr1
2 , dr1+1

1 dr1+1
2 , · · · , dr1+1

1 dr1+1
2 } ·

N21. Repeating the preceding procedure r2 − r1 times, we obtain

F(x) ∼ diag{dr1
1 dr1

2 , dr2
1 dr2

2 , · · · , dr2
1 dr2

2 } · N2.

Repeat the above steps l− 2 times, and we have F(x) ∼ diag{dr1
1 dr1

2 , dr2
1 dr2

2 , · · · , drl
1 drl

2 } ·N.
It is clear that N is a unimodular matrix. Thus, we have that

F(x) ∼ diag{dr1
1 dr1

2 , dr2
1 dr2

2 , · · · , drl
1 drl

2 }.

Thus, F(x) is unimodular equivalent to its Smith normal form S(x).
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Remark 1. Based on Theorem 2, we give a positive answer to Problem 1. In the following, we
generalize the above result to the case of a non-square matrix.

We first give a useful lemma.

Lemma 10 ([25]). Let F(x) ∈ Rl×m be of full row rank, and denote the greatest common divisor
of all the l × l minors of F(x) by d. If the l × l reduced minors of F(x) generate R, then there
exist G(x) ∈ Rl×l and F1(x) ∈ Rl×m such that F(x) = G(x)F1(x), detG(x) = d and F1(x) is a
ZLP matrix.

Denote

A(x) =


dr1

1 dr1
2

dr2
1 dr2

2
. . .

drl
1 drl

2

.

Theorem 3. Let F(x) ∈ Rl×m(l ≤ m) have full row rank, dl(F) = dq
1dq

2, d1 = x1− f1(x2, · · · , xn),
d2 = x2 − f2(x3, · · · , xn), where q is a positive integer. Then, Ji(F) = R, i = 1, 2, · · · , l if and
only if F(x) is unimodular equivalent to its Smith normal form S(x), where

S(x) = ( A(x) 0l×(m−l) ).

Proof. Sufficiency: If F(x) is unimodular equivalent to the Smith normal form S(x), it is
obvious that Ji(S) = R, i = 1, · · · , l. By Lemma 6, Ji(F) = Ji(S) = R for i = 1, 2, · · · , l.

Necessity: According to Lemma 10, there exists a matrix G(x) ∈ Rl×l and a ZLP
matrix F1(x) ∈ Rl×m such that F(x) = G(x)F1(x), where det G(x) = dq

1dq
2. By Lemma 8, we

can obtain that Ji(G) = R. From Theorem 2, there exist two l × l unimodular polynomial
matrices P(x), Q(x) such that G(x) = P(x)A(x)Q(x). Then, we have

F(x) = P(x)A(x)Q(x)F1(x).

It is obvious that Q(x)F1(x) is also a ZLP. According to Lemma 4, there exists an m×m
unimodular matrix U1(x) such that Q(x)F1(x)U1(x) = ( Il 0l×(m−l) ). Then, we have

F(x)U1(x) = P(x)A(x)Q(x)F1(x)U1(x) = P(x)A(x)( Il 0l×(m−l) ) = P(x)S(x).

Therefore, F(x) is unimodular equivalent to S(x).

So as to prove Problem 2, we first give a helpful lemma.

Lemma 11. Let U(x) ∈ Rl×l be an invertible matrix, F(x) = P1(x) ·U(x) · P2(x) = diag{Il−r, pIr} ·U(x)·
diag{Il−r, qIr}, where p, q ∈ R satisfy q | p. Then, F(x) is equivalent to diag{Il−r, pqIr} if and
only if the (l − r)× (l − r) minors of F(x) generate R.

Remark 2. The above lemma is a generalization of Theorem 3 in Li et al. [16], so the proof is
omitted here. When p | q, the Lemma still holds.

Based on Lemma 11, we can solve Problem 2.

Theorem 4. Let F(x) ∈ Rl×l with det F(x) = (ds
1dt

2)
r, d1 = x1 − f1(x2, · · · , xn),

d2 = x2 − f2(x3, · · · , xn), where s, t are positive integers. Then, all the (l − r) × (l − r) mi-
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nors of F(x) generate R and ds
1dt

2 | dl−r+1(F) if and only if F(x) is unimodular equivalent to its
Smith normal form

S(x) =


Il−r

ds
1dt

2
. . .

ds
1dt

2

.

Proof. Sufficiency: Because F(x) is unimodular equivalent to the Smith normal form
S(x). By Lemma 3 and Lemma 6, the (l − r) × (l − r) minors of F(x) generate R and
ds

1dt
2 | dl−r+1(F).

Necessity: Without loss of generality, suppose that 1 ≤ s ≤ t. Using Lemma 5
repeatedly, we have

F(x) ∼ P1(x)U1(x)P2(x)V1(x) · · · P1(x)Us(x)P2(x)Vs(x)P2(x)Vs+1(x) · · ·Vt−1(x)P2(x),

where P1(x) = diag{Il−r, d1 Ir}, P2(x) = diag{Il−r, d2 Ir}, and Ui(x), Vj(x) ∈ Rl×l are
unimodular matrices. According to Lemma 2.6 in Li et al. [16], we obtain

F(x) ∼ L(x)W1(x)L(x)W2(x) · · · L(x)Ws(x)P2(x)Vs+1(x) · · ·Vt−1(x)P2(x),

where L(x) = diag{Il−r, d1d2 Ir} and Wi(x) ∈ Rl×l are unimodular matrices. If all the
(l − r)× (l − r) minors of F(x) generate R and ds

1dt
2 | dl−r+1(F), then by Lemma 6 and

Lemma 11 repeatedly we obtain that F(x) is unimodular equivalent to its Smith normal
form S(x).

In the following, we generalize the above result to a more general case where F(x) is a
non-square matrix. Denote

B(x) =


Il−r

ds
1dt

2
. . .

ds
1dt

2

.

Theorem 5. Let F(x) ∈ Rl×m(l ≤ m) be of full row rank, Jl(F) = R, dl(F) = (ds
1dt

2)
r,

d1 = x1 − f1(x2, · · · , xn), d2 = x2 − f2(x3, · · · , xn), where s, t are positive integers. Then, the
(l− r)× (l− r) minors of F(x) generate R and ds

1dt
2 | dl−r+1(F) if and only if F(x) is unimodular

equivalent to its Smith normal form

S(x) = ( B(x) 0l×(m−l) ).

Proof. Sufficiency: Because F(x) is unimodular equivalent to S(x), it is clear that the
(l − r) × (l − r) minors of S(x) generate R and ds

1dt
2 | dl−r+1(S). By Lemma 6, we can

obtain that the (l − r)× (l − r) minors of F(x) generate R and ds
1dt

2 | dl−r+1(F).
Necessity: According to Lemma 10, there is a matrix G(x) ∈ Rl×l and a ZLP matrix

F1(x) ∈ Rl×m such that F(x) = G(x)F1(x), where det G(x) = (ds
1dt

2)
r. Combining with

Lemma 8, we can obtain that all the (l − r) × (l − r) minors of G(x) generate R and
ds

1dt
2 | dl−r+1(G). By Theorem 4, there exist two l × l unimodular polynomial matrices

P(x), Q(x) such that G(x) = P(x)B(x)Q(x). Then, we have

F(x) = P(x)B(x)Q(x)F1(x).
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It is obvious that Q(x)F1(x) is also a ZLP matrix. According to Lemma 4, there exists
an m×m unimodular matrix U1(x) such that Q(x)F1(x)U1(x) = ( Il 0l×(m−l) ). Then,
we have

F(x)U1(x) = P(x)B(x)Q(x)F1(x)U1(x) = P(x)B(x)( Il 0l×(m−l) ) = P(x)S(x).

Therefore, F(x) is unimodular equivalent to S(x).

3. Example

In this section, we propose an executable algorithm to handle the unimodular equiv-
alence of the matrices we discussed to their Smith normal forms. Meanwhile, we give a
3D example to illustrate the main results of this paper and the computation process of
Algorithm 1.

Algorithm 1: Smith normal form.

Input: F ∈ Rl×l with det F = (d1d2)
q = (x1 − f1(x2, · · · , xn))q(x2 − f2(x3, · · · , xn))q.

Output: U, V ∈ Rl×l are two unimodular matrices such that F = USV,
S is the Smith normal form of F.

1. Calculate di(F) and Ji(F), where i = 1, · · · , l such that S = {(d1d2)
r1 , · · · , (d1d2)

rl}.
2.If there exist some integers i such that Ji(F) 6= R for i = 1, · · · , l

Return: matrix F is not unimodular equivalent to S.
3. Extract (d1d2)

r1 from every row of F, then obtain a polynomial matrix N1 that satisfies
F = (d1d2)

r1 Il N1;
4. Presume U, V are two identity matrices;
5. When 2 ≤ i ≤ l, perform step 6; otherwise, go to step 11.
6. Check that ri 6= ri−1. If yes, perform step 7; otherwise, i = i + 1, go to step 5;
7. For j from 1 to ri − ri−1 do
8. Calculate two unimodular matrices U′, V′ and a matrix N′ such that

N1 = U′diag{Ii−1, d1d2 Il−i+1}N′V′;
Then,
9. Calculate two unimodular matrices U′′, V′′ and a matrix N′′ such that
diag{(d1d2)

r1 , · · · , (d1d2)
ri−1 , (d1d2)

ri−1+j−1, · · · , (d1d2)
ri−1+j−1}U′diag{Ii−1, d1d2 Il−i+1}

= U′′diag{(d1d2)
r1 , · · · , (d1d2)

ri−1 , (d1d2)
ri−1+j, · · · , (d1d2)

ri−1+j}V′′;
10. N1 = V′′N′, U = UU′′ and V = V′V;
11. V = N1V;
12. Return U, V.

Example 1. Consider a 3D polynomial matrix of R3×3

F(x, y, z) =

 1 −z2 x− y
x− y a22 (x− y)2

(x− y)(y− z)2 −z2(x− y)(y− z)2 a33

,

where
a22 = (x− y)2(y− z)2 − (x− y)z2,

a33 = (x− y)3(y− z)3 + (x− y)2(y− z)2.

By computing d1(F) = 1, d2(F) = (x− y)2(y− z)2, det F(x, y, z) = (x− y)5(y− z)5.
Let d1 = x− y, d2 = y− z. Then, calculate the reduced Gröbner bases of the ideal generated by the
i× i reduced minors of F(x, y, z) which is {1}, so we have that Ji(F) = R, i = 1, 2, 3. According
to Theorem 2, F(x, y, z) is unimodular equivalent to its Smith normal form S(x, y, z), where

S(x, y, z) =

 1
(d1d2)

2

(d1d2)
3

.
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We first consider

F1(x, z, z) =

 1 −z2 x− z
x− z −(x− z)z2 (x− z)2

0 0 0

.

Then, construct a unimodular matrix

U1 =

 1 0 0
−(x− z) 1 0

0 0 1

,

such that

U1 · F1(x, z, z) =

 1 −z2 x− z
0 0 0
0 0 0


Then,

U1 · F =

 1
d2

d2

F1,

where

F1 =

 1 −z2 −y + x
−1 −(y− x)2(z− y) + z2 y− x

(y− x)(z− y) −z2(y− x)(z− y) a′33

,

and a′33 = (x− y)3(y− z)2 + (x− y)2(y− z).
Then, consider F1 again

F1(y, y, z) =

 1 −z2 0
−1 z2 0
0 0 0

,

Construct a unimodular matrix

U2 =

 1 0 0
1 1 0
0 0 1

,

such that

U2 · F1(y, y, z) =

 1 −z2 0
0 0 0
0 0 0

,

then

U2 · F1 =

 1
d1

d1

F2,

where

F2 =

 1 −z2 −y + x
0 (y− x)(z− y) 0

−z + y z2(z− y) b

,

and b = (x− y)2(y− z)2 + (x− y)(y− z). Now, we have

F = U−1
1

 1
d2

d2

U−1
2

 1
d1

d1

F2.
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By Lemma 2.6 in Li et al. [16], we obtain 1
d2

d2

U−1
2

 1
d1

d1

 = U3

 1
d1d2

d1d2

,

where U3 =

 1 0 0
−d2 1 0

0 0 1

 is a unimodular matrix, then repeat the above process for F2, and

we have

F2 = U4

 1
d1d2

d1d2

F3,

where

U4 =

 1 0 0
0 1 0
d2 0 1

, F3 =

 1 −z2 x− y
0 1 0
0 0 (x− y)(y− z)

.

Hence,

F = U−1
1 U3U′4

 1
(d1d2)

2

(d1d2)
2

F3,

where

U′4 =

 1 0 0
0 1 0

d1d2
2 0 1

.

It is obvious that

F3 =

 1
1

d1d2

F4,

where F4 =

 1 −z2 x− y
0 1 0
0 0 1

 is a unimodular matrix.

Thus,

F = U−1
1 U3U′4

 1
(d1d2)

2

(d1d2)
3

F4

= U

 1
(d1d2)

2

(d1d2)
3

V,

where U = U−1
1 U3U′4 and V = F4 are unimodular matrices.

4. Conclusions

In this paper, we considered the unimodular equivalence problem for two classes of nD
polynomial matrices, and we obtained some tractable necessary and sufficient conditions
that such polynomial matrices are unimodular equivalent to their Smith normal forms.
Meanwhile, we designed an algorithm for simplifying such matrices to their Smith normal
forms and provided an example at the end of the article to illustrate our approach. All of
these are helpful for reducing nD systems.

However, the unimodular equivalence problem of many other types of multivariate
polynomial matrices has not been solved, such as F(x) ∈ Rl×l with det(F) = dq1

1 dq2
2 =



Mathematics 2023, 11, 2745 15 of 15

(x1 − f1(x2, · · · , xn))q1(x2 − f2(x3, · · · , xn))q2 , where q1, q2 are two positive integers. What
is the criteria for the unimodular equivalence between F(x) and its Smith normal form

diag{dr1
1 ds1

2 , dr2
1 ds2

2 , · · · , drl
1 dsl

2 }.
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