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Abstract: This paper introduces an improved sequential convex programming algorithm using
adaptive non-uniform discretization for the hypersonic entry problem. In order to ensure real-time
performance, an inverse-free precise discretization based on first-order hold discretization is adopted
to obtain a high-accuracy solution with fewer temporal nodes, which would lead to constraint
violation between the temporal nodes due to the sparse time grid. To deal with this limitation, an
adaptive non-uniform discretization is developed, which provides a search direction for purposeful
clustering of discrete points by adding penalty terms in the problem construction process. Numerical
results show that the proposed method has fast convergence with high accuracy while all the path
constraints are satisfied over the time horizon, thus giving potential to real-time trajectory planning.
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1. Introduction

With the increasing demand for spacecraft autonomy, not only the accuracy and opti-
mality of the result trajectory but also the stability and efficiency of the solving algorithm
are of crucial importance for real-time guidance. For the hypersonic entry problem, tra-
jectory optimization is a popular method due to its extensive application prospect, yet it
is still very challenging because of the highly nonlinear and complicated dynamics and
constraints involved [1–5].

For the trajectory optimization problem, the existing methods can be classified as indirect
methods and direct methods [6]. Based on Pontryagin’s maximum principle [7], indirect
methods derive the necessary conditions of optimality and solve a two-point boundary
value problem (TPBVP) to obtain the result trajectory [8,9]. Due to the inherent nonlinearity
in dynamics of the hypersonic entry problem, the solution of TPBVP presents significant
challenges and falls short of real-time requirements [10]. Despite theoretical guarantees on
the optimality of the solution, practical considerations limit its feasibility. The direct methods
convert the original problem into an approximated finite parameter optimization problem
and use a nonlinear programming (NLP) algorithm to solve it [11–13]. Although NLP-based
methods have been successful in many applications, the time-consuming solution process
and the lack of convergence guarantee are major challenges [10]. Furthermore, an appropriate
initial guess should be selected to achieve a high-quality solution, especially for the hypersonic
entry problem.

In recent years, the application of convex optimization in trajectory optimization has
shown great potential in many problem, including powered descent guidance [14] and
spacecraft rendezvous and proximity operations [15]. If a problem can be formulated in
a convex form, it can be solved in polynomial time with a strong convergence guarantee
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while obtaining the global optimal solution [16,17]. There are many state-of-the-art solvers
based on the interior-point method (IPM) [18], such as GUROBI [19], MOSEK [20], and
ECOS [21], to solve convex optimization problems efficiently. However, the majority of the
trajectory optimization problems are non-convex. To deal with the nonlinearity in dynamics
and constraints, the sequential convex programming (SCP) technique is developed to solve
a sequence of convex subproblems to approximate the original problem [22]. The sub-
problems are formulated by linearization about a reference trajectory and subsequently
solved via iterative refinement of the reference trajectory until convergence of the solution is
achieved. In order to ensure the convex approximation is accurate, a trust region is imposed
to make sure that the solution is not far from the reference trajectory. There are both hard
and soft methods to address the trust region [23,24]. Recently, this SCP technique has been
applied to hypersonic re-entry problems and has shown its effectiveness to obtain high-
accuracy solutions. Liu formulated the entry problem as a second-order cone programming
(SOCP) problem and applies the successive convexification method to solve it [25]. Wang
and Grant proposed an improved SCP algorithm and introduced a new control input for the
entry problem [26,27]. Wang and Cui developed a rapid trajectory optimization algorithm
with the pseudospectral method [28]. However, multiple hundreds of temporal nodes are
usually required to maintain the accuracy due to the nonlinearity of the hypersonic entry
problem and the long flight duration. Achieving a balance between real-time performance
and accuracy represents a significant challenge, as reducing the number of discrete points
may result in a loss of precision.

To deal with this issue, Kamath and Açıkmeşe et al. [29–31] propose an inverse-free
precise discretization based on first-order hold (FOH) discretization. Considering the
consistency of the original non-convex dynamics with the reference trajectory and addition
of the stitching condition, this discretization would guarantee high accuracy with few
temporal nodes and has been effectively applied to various problems, including powered
descent guidance [29], multi-phase rocket landing [30], and hypersonic entry guidance [31].
In [31], the amount of the temporal nodes is only 40 to achieve the commensurate accuracy
in [27], which necessitated an excess of 200 nodes. Nevertheless, for uniform discretization,
a reduced number of temporal nodes would generate a sparse time grid, which may lead
to constraint violation between the temporal nodes since the constraints are only imposed
at discrete points in the SCP subproblems, resulting in a new issue. In [30], an non-uniform
discretization with additional time interval dilation variables is introduced in multi-phase
rocket landing to adaptively decide the turning points of different phases. A similar idea is
extended to the hypersonic entry problem and the penalized trust region (PTR) algorithm,
a soft trust region method, is used to construct the SCP process [31]. However, the resulting
trajectory would still experience constraint violation. In addition, in our experiment for
the hypersonic entry problem, both hard and soft trust region methods with additional
time interval variables showed worse convergence compared with those with uniform
discretization. One of the reasons is that the dynamics are time-sensitive, and the other is
that an effective search direction should be given to achieve a purposeful distribution of
discrete points.

In this paper, we propose a novel adaptive non-uniform discretization method to
handle the above issues.

• An inverse-free precise discretization is adopted to obtain high accuracy with few
temporal nodes for real-time performance.

• An adaptive non-uniform discretizaiton is proposed to construct the SCP subproblem
with additional penalty terms. This would give the solver a search direction to cluster
the temporal nodes more purposefully and the propagated trajectory would satisfy all
the path constraints as a result, which is the main contribution of this paper.

• The validity of proposed method is substantiated through a numerical experiment
compared with other SCP methods.

This paper is organized as follows. Section 2 presents the model of the hypersonic
entry trajectory optimization problem including the dynamics and constraints. Section 3
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introduces the adaptive non-uniform discretization and constructs the SCP subproblem and
iteration process. Simulation and results analysis are shown in Section 4. The conclusions
are summarized in Section 5.

2. Problem Formulation

In this section, we consider a typical entry trajectory problem for an unpowered
hypersonic vehicle with multiple path constraints.

2.1. 3-DoF Entry Dynamics

The dimensionless dynamic equations over a spherical, rotating Earth can be modeled
as follows. More details can be referred to in [27].

ẋ = f (x, u) =



ṙ = V sin γ

θ̇ =
V cos γ sin ψ

r cos φ

φ̇ =
V cos γ cos ψ

r

V̇ = −D− L sin γ

r2 + ΩV

γ̇ =
L cos σ

V
+

(V2 − 1/r) cos γ

Vr
+ Ωγ

ψ̇ =
L sin σ

V cos γ
+

V cos γ sin ψ tan φ

r
+ Ωψ

(1)

where the state vectors are x = [r, θ, φ, V, γ, ψ], representing the orbital radius, longitude,
latitude, relative velocity, flight path angle, and heading angle, respectively. The Earth
rotation-dependent terms, ΩV , Ωγ, Ωψ, and the lift and drag accelerations, L, D, in (1) are
shown below.

ΩV = Ω2r cos φ(sin γ cos φ− cos γ sin φ cos ψ)

Ωγ = 2Ω cos φ sin ψ + Ω2r cos φ(cos γ cos φ + sin γ sin φ cos ψ)/V

Ωψ = −2Ω(tan γ cos ψ cos φ− sin φ) + Ω2r sin φ cos φ sin ψ/(V cos γ)

L = R0ρV2Sre f CL/(2m)

D = R0ρV2Sre f CD/(2m)

(2)

where Ω is the Earth self-rotation rate, ρ = ρ0e(−h/hs) is the atmospheric density depending
on the altitude h, Sre f , m is the reference area and mass of the vehicle, and CL, CD are the
aerodynamic lift and drag coefficients related to Mach number and the attack angle α.

As in [27], the control variable is restricted to bank angle u = σ. The attack angle α is
pre-specified as a function of Mach number, as described in Section 4. All the variables are
dimensionless and the dimensionless factors are shown in Table 1, where R0 = 6378.0 km
and g0 = 9.81 m/s2 represent the Earth’s radius and the acceleration of gravity, respectively.

Table 1. The dimensionless factors’ values.

Variable Unit Value

Time s
√

R0/g0
Distance m R0
Velocity m/s

√
R0g0

Acceleration m/s2 g0
Angle rad 1

Angle rate rad/s
√

g0/R0
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2.2. State, Control, and Path Constraints

The inital and terminal conditions are

x(t0) = x0

x(t f ) = x f
(3)

The control bounds and control rate constraints are given as follows:

−σmax ≤σ ≤ σmax

−dumax ≤σ̇ ≤ dumax
(4)

where σmax and dumax are the bounds of the bank angle and its rate, respectively.
Three typical path constraints, including heat rate, dynamic pressure, and normal

load, are considered:
Q̇ = p1(r, V) = kQ

√
ρV3.15 ≤ Q̇max

q = p2(r, V) = 0.5ρV2 ≤ qmax

n = p3(r, V) =
√

L2 + D2 ≤ nmax

(5)

In this paper, no-fly zone constraints are considered as well, which are defined as
cylinder zones with center (θNFZ, φNFZ), radius RNFZ, and infinite altitude. Thus, the
no-fly zone constraints are expressed as

(θ − θNFZ)
2 + (φ− φNFZ)

2 ≥ R2
NFZ (6)

2.3. Nonconvex Optimal Control Problem

The maximum terminal velocity hypersonic entry trajectory optimization problems
with fixed flight time are considered in this paper, which is the same as [27]. The nonconvex
optimal control problem is shown in Problem 1.

Problem 1.
min
x,u

J = −V(t f )

s.t. (1), (3)–(6)
(7)

3. Improved SCP Method with Adaptive Non-Uniform Discretization

In this section, we introduce the improved SCP algorithm using adaptive non-uniform
discretization for the hypersonic entry problem. In the interest of completeness, we provide
a brief introduction to the non-uniform scheme and precise discretization technique, both
of which, as in [31], are utilized in the proposed method. Further details will be presented
subsequently. In order to seek an appropriate search direction and achieve a purposeful
distribution of temporal nodes, additional penalty terms with respect to the nonlinear term
of path constraints and the distance term from the trajectory to the no-fly zone center are
considered in the SCP subproblem construction.

3.1. Time Interval Dilation

To introduce the non-uniform discretization, we consider the original nonlinear dy-
namics in the sub-interval [tk, tk+1), k = 1, . . . , N − 1,

ẋ(t) = f (t, x(t), u(t)), t ∈ [tk, tk+1) (8)

where t0 = t1 < t2 < · · · < tN = t f , and define an affine map to normalize the orginal time
interval (may not be equal) to a fixed interval, [0, 1):

τk(t) =
t− tk

sk
, t ∈ [tk, tk+1) (9)
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where sk = tk+1 − tk is the length of the kth time interval and can be referred to as the time
interval dilation [30]. So far, the dynamics Equation (8) can be rewritten with respect to the
normalized time τk:

ẋ(τk) = sk f (τk, x(τk), u(τk)) = F(τk, x(τk), u(τk), sk), τk ∈ [0, 1) (10)

By treating sk as additional decision variables, the solver is allowed to decide the
adaptive time grids rather than a uniform temporal grid.

What is more, some exact constraints should be added in practical implementation to
ensure physical meaning:

0 < ∆min ≤ sk ≤ ∆max (11)

to ensure the time order t0 = t1 < t2 < · · · < tN = t f and adjacent temporal nodes are not
far away, and

N

∑
k=1

sk = t f (12)

to ensure the fixed flight time.

3.2. Convexification and Discretization

A convex approximation of the dynamic (10) can be obtained by the first-order Tylor
expansion about a reference trajectory (x̄, ū, s̄). The approximate equation is a linear time-
varing (LTV) system as follows:

ẋ(τk) ≈ A(τk)x(τk) + B(τk)u(τk) + S(τk)sk + d(τk) (13)

where A(τk), B(τk), S(τk) are the Jacobians of the dynamics with state control and time
dilation, respectively.

A(τk) , ∇xF(τk, x̄(τk), ū(τk), s̄k)

B(τk) , ∇uF(τk, x̄(τk), ū(τk), s̄k)

S(τk) , ∇sk F(τk, x̄(τk), ū(τk), s̄k)

d(τk) , F(τk, x̄(τk), ū(τk), s̄k)

− A(τk)x̄(τk)− B(τk)ū(τk)− S(τk)s̄k

(14)

For discretization, a precise inverse-free discretization technique based on first-order
hold (FOH) is adopted [29–31]. In the FOH case, the control input signal is considered as a
piecewise affine function; thus, the control variables are only defined at the discrete time
nodes and the control signal in the sub-interval can be parameterized as follows:

u(τk) = (1− τk)uk + τkuk+1, k = 1, . . . , N − 1 (15)

where t ∈ [tk.tk+1) and τk ∈ [0, 1) as given in (9). Thus, The LTV dynamics (13) can be
easily rewritten with respect to the deviations from the reference trajectory.

∆ẋ(τk) = A(τk)∆x(τk) + B(τk)(1− τk)∆uk + B(τk)τk∆uk+1 + S(τk)∆sk (16)

where � denotes the reference quantity, ∆� denotes the deviations from the reference
trajectory, i.e., ∆� = �−� and ∆ẋ(τk) = ẋ(τk)− F(τk, x̄(τk), ū(τk), s̄k), and the coefficient
matrixes A, B, S are the same as (14). It can be considered that the reference trajectory in
the sub-interval [tk, tk+1) is in accordance with the original dynamics (10), rather than the
convex approximation (13), like the typical FOH discretization in [32].

According to the knowledge of the linear system [33], the unique solution of (16) for
t ∈ [tk.tk+1) and τk ∈ [0, 1) is

∆x(τk) = Ak(τk)∆x(0) + B−k (τk)∆uk + B+
k (τk)∆uk+1 + Sk∆sk (17)
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where
Ak(τk) = Φ(τk, 0),

B−k (τk) = Ak(τk)
∫ τk

0
Φ−1(ζ, 0)B(ζ)(1− ζ)dζ,

B+
k (τk) = Ak(τk)

∫ τk

0
Φ−1(ζ, 0)B(ζ)ζ dζ,

Sk(τk) = Ak(τk)
∫ τk

0
Φ−1(ζ, 0)S(ζ)dζ,

(18)

where Φ(τk, 0) is called the state transition matrix (STM) with the following properties:
Φ(0, 0) = I, Φ̇(τk, 0) = A(τk)Φ(τk, 0), and Φ−1(τ, η) = Φ(η, τ).

In order to eliminate the inversion operation to avoid numerical problems, the B∓k , Sk
in (18) have the closer forms, as shown in Thereom 1, which is not proven in [29–31].

Theorem 1. The coefficient matrixes (18) of the linear time-varying system (17) have the inverse-
free form: ∀τk ∈ [0, 1):

B−k (τk) =
∫ τk

0
A(ζ)B−k (ζ) + (1− ζ)B(ζ)dζ,

B+
k (τk) =

∫ τk

0
A(ζ)B−k (ζ) + ζB(ζ)dζ,

Sk(τk) =
∫ τk

0
A(ζ)Sk(ζ) + S(ζ)dζ

(19)

Proof. Choosing the B−k as an example, then taking the derivative and invoking the chain
rule yields

d
dτk

B−k (τk) =
d

dτk
Ak(τk)

∫ τk

0
Φ−1(ζ, 0)B(ζ)(1− ζ)dζ

+ Ak(τk)Φ
−1(τk, 0)B(τk)(1− τk)

= A(τk)Φ(τk, 0)
∫ τk

0
Φ−1(ζ, 0)B(ζ)(1− ζ)dζ

+ I · B(τk)(1− τk)

= A(τk)B−k (τk) + B(τk)(1− τk)

(20)

The first and second equal signs come from the properties of STM, while the last one is
a simplification of the original form of B−k from (18). With B−k (0) = 0, the inverse-free form
of B−k (τk) is obtained as shown in (19). B+

k and Sk can be obtained by the same process.

For simplicity, we define 0k and 1k as 0 and 1, respectively, which denote that t is in
the sub-interval [tk, tk+1). Then evaluating the LTV system (13) at τk = 1−k , we obtain

∆x(1−k ) = Ak∆x(0k) + B−k ∆uk + B+
k ∆uk+1 + Sk∆sk (21)

Since the reference trajectory may not satisfy the original dynamics (1) in the sub-
interval [tk, tk+1), Equation (22) would give N − 1 trajectory segments, which makes a
discontinuity occur in the temporal time nodes t2, . . . , tN . The stitching condition is in-
troduced to obtain a continuous trajectory over the time horizon, as shown in Figure 1.

∆x(1−k ) + x̄(1−k ) = ∆x(1k) + x̄(1k) (22)
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Figure 1. The discontinuity in the temporal nodes and the stitching condition, as in [31].

As a result, the discretized dynamics in terms of the deviations are as follows:

∆xk+1 = Ak∆xk + B−k ∆uk + B+
k ∆uk+1 + Sk∆sk + xprop

k+1 − x̄k+1 (23)

where ∆xk = ∆x(0k), x̄k+1 = ∆x(1k) and xprop
k+1 = x̄(1−k ) = x̄k +

∫ 1−k
0k

F(ζ, x̄(ζ), ū(ζ), s̄)dζ,
which denotes the integration of the original dynamic in [tk, tk+1) from the reference
trajectory.

Thus the discretized dynamics with respect to absolute variables are recovered from
Equation (23):

xk+1 = Akxk + B−k uk + B+
k uk+1 + Sksk + xprop

k+1 − (Ak x̄k + B−k ūk + B+
k ūk+1 + Sk s̄k) (24)

With the idea of consistency of the original dynamics of the reference trajectory in
sub-intervals and the addition of the stitching condition, the accuracy of the solution would
be improved even over a sparse time grid.

3.3. Additional Penalty Terms in SCP Subproblem

In our experiments for the non-uniform scheme, it is observed that regardless of a
hard trust region method with additional fixed constraints or a soft trust region method
by augmenting the objective function with penalty terms, the method may not converge
or converge very slowly, while the resulting propagated trajectory may violate the path
constraints between temporal nodes as well.

As mentioned above, one reason is that an effective search direction should be given.
Inspired by the PTR algorithm [24], we augment the objective function with additional
penalty terms with respect to the nonlinear term of path constraints and the distance
term of the no-fly zone, which would give a more purposeful direction to distribute the
temporal nodes. As the path constraints exhibit high levels of nonlinearity, the logarithm
transformation is used to mitigate this issue.

3.3.1. Log-Tranforms of Path Constraints

Consider the typical path constraints (5) of the hypersonic entry problem: heat rate,
dynamic pressure, and normal load. Since the Tylor expansion of the original path con-
straints (5) would obtain complicated nonlinear terms, we take the logarithm transforma-
tion of both sides of (5):
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ln(Q̇) = ln(kQ) + 0.5 ln(ρ0)−
R0

2hs
(r− 1) + 3.15 ln(V)

≤ ln(Q̇max)

ln(q) = ln(0.5) + ln(ρ0)−
R0

hs
(r− 1) + 2 ln(V)

≤ ln(qmax)

ln(n) = 0.5 ln(C2
L + C2

D) + ln(
R0ρ0Sre f

2m
)− R0

hs
(r− 1) + 2 ln(V)

≤ ln(nmax)

(25)

Due to the monotonicity of logarithmic transformations, Equation (25) is equivalent
to (5), while the transformed constraints are linear to orbital radius r and only nonlinear
to velocity V. Thus, the Tylor expansion of the transformed constraints has a simpler
nonlinear term ln(V) than that of the original constraints.

Consider the second-order Tylor series expansion of ln(V):

ln(V) = ln(V) +
1
V
(V −V)− 1

2V2 (V −V)2 (26)

Then we replace ln(V) in (25) with the primary term ln(V) + 1
V
(V − V) as the lin-

earization of the transformed constraints and augment the objective function with the
nonlinear term 1

V2 (V −V)2, since the quadratic term is convex. With the variable time-step
scheme and additional nonlinear penalty term, this would give the optimizer a target or
direction to incentivize the temporal nodes to cluster around the highly nonlinear region.

3.3.2. Distance Penalty Term of No-Fly Zone

The propagated trajectory between temporal nodes could be within the no-fly zone
because of the sparse time interval, as shown in Figure 2. In order to address the above
issue, prior work is to set a dense time grid around the no-fly zone in advance. Instead of
that, our method can allow discrete points to adaptively cluster around the no-fly zone
during iteration, which would take full advantage of the non-uniform scheme.

The nonlinear no-fly zone constraints (6) can be linearized with first-order Tylor expan-
sion:

2(θ̄ − θNFZ)θ + 2(φ̄− φNFZ)φ ≥ d (27)

where d = R2
NFZ − (θ̄ − θNFZ)

2 − (φ̄− φNFZ)
2 + 2(θ̄ − θNFZ)θ̄ + 2(φ̄− φNFZ)φ̄.

We penalize the distance from the trajectory to the center of the no-fly zone ∑(θ −
θNFZ)

2 + (φ − φNFZ)
2 in the objective function, which would give the solver a search

direction with physical significance. With the linear no-fly zone constraints (27), the
discrete points would tend to cluster around the no-fly zone and disperse beyond it.

Note that the penalty term of the no-fly zone should be restricted to several temporal
nodes to prevent all nodes from gathering around the no-fly zone.

3.4. Discrete Convex Subproblem and Iteration Algorithm

After the appeal discussion, we summarize the discrete convex sub-problem as shown
in Problem 2. The control difference is regarded as the control rate constraint because
of the FOH approximation of control. A hard trust region on time dilation is enforced
in constraints, while the objective function is augmented with trust region terms of state
and control, and two additional penalty terms: the nonlinear term of path constraints and
distance penalty term of the no-fly zone. The trust term of time dilation can be omitted
since the penalty terms of path constraints and the no-fly zone have shown a good iterative
performance in our experiment. Thus, the SCP iteration process is given in Algorithm 1
as follows:
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Algorithm 1: Improved SCP algorithm with adaptive non-uniform discretization
Input: Initial guess x̄, ū, s̄, convergence condition εx, εs, maximum iteration

number kmax
1 Set k = 1;
2 while k ≤ kmax do
3 Call for IPM solver to solve the subproblem Problem 2 and obtain the solution

x̂k, ûk, ŝk.
4 if |∆x| ≤ εx and |∆s| ≤ εs then
5 Optimal trajectory xopt = x̂k, uopt = ûk, sopt = ŝk,
6 break;
7 end
8 Update the reference trajectory x̄ = xk, ū = uk, s̄ = sk.
9 Set k = k + 1;

10 end
Result: Obtain optimal trajectory or reach maximum iteration.

Problem 2. Discrete convex subproblem in SCP iteration

min
x,u

J = −VN + ωtr,1

N

∑
k=1
‖xk − x̄k‖2

2 + ‖uk − ūk‖2
2︸ ︷︷ ︸

Jtr,1

+(ωtr,2

N−1

∑
k=1
‖sk − s̄k‖2

︸ ︷︷ ︸
Jtr,2

)

+ ωnl

N

∑
k=1

‖Vk −Vk‖2

V2
k︸ ︷︷ ︸

Jnl

+ωNFZ

inj

∑
k=i1j

‖θk − θNFZ‖2|+ ‖φk − φNFZ‖2

︸ ︷︷ ︸
JNFZ

s.t. ∀k = 1, . . . , N

xk+1 = Akxk + B−k uk + B+
k uk+1 + Sksk + dk

x1 = x0

xN = x f

− σmax ≤ uk ≤ σmax

− dumax ≤
uk+1 − uk

s̄k
≤ dumax

p̄1,k −
R0

2hs
r +

3.15
Vk

(V −Vk) ≤ ln(Q̇max)

p̄2,k −
R0

hs
r +

2
Vk

(V −Vk) ≤ ln(qmax)

p̄3,k −
R0

hs
r +

2
Vk

(V −Vk) ≤ ln(nmax)

2(θ̄k − θNFZ)θk + 2(φ̄k − φNFZ)φk ≥ dNFZ

∆min ≤ sk ≤ ∆max

k−1

∑
k=1

sk = t f

− ∆Tmax ≤ sk − s̄k ≤ ∆Tmax

(28)

where p̄i,k, i = 1, 2, 3 and dNFZ can be obtained from (25) and (27), and i1j , . . . in
j are the

temporal nodes set to cluster around the no-fly zone. Note that the augmented objective
with Jtr,1 and Jtr,2 is the general PTR algorithm for non-uniform scheme.
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Figure 2. The propagated trajectory within the no-fly zone.

4. Numerical Results

In this section, the effectiveness of the proposed method is verified compared with
a different SCP algorithm, as shown in Table 2. Two cases are considered to focus on
distinct instances of constraint violation. Case 1 does not include the no-fly zone constraint
and focuses on potential violations of path constraints as the number of discrete points
decreases. With an additional no-fly zone constraint, Case 2 focuses on the phenomenon
that the propagated trajectory may pass through the no-fly zone.

Table 2. Comparative SCP methods.

Name Method Reference

SCP1 non-uniform precise discretization [31]
SCP2 uniform precise discretization [29,32]
SCP3 uniform FOH discretization [27]

The reference area and the mass of the vehicle are Sre f = 391.22 m2 and m = 104,305.0 kg.
The aerodynamic coefficients depend on the attack angle α (in degrees), while the angle-of-
attack profile depends on the vehicle’s velocity:

CL = −0.041065 + 0.016292 α + 0.0002602 α2

CD = 0.080505− 0.03026 CL + 0.86495 C2
L

(29)

α =

{
40, if V > 4570 m/s

40− 0.20705(V − 4570)2/3402, else
(30)

The remaining simulation parameters are shown in Table 3, which is the same as [27].

Table 3. Parameters for entry problem.

Parameter Value Parameter Value

t f 1600 s
h0 100 km h f 25 km
θ0 0 deg θ f 12 deg
φ0 0 deg φ f 70 deg
V0 7450 m/s γ f −10 deg
γ0 0 deg ψ f 90 deg
ψ0 0 deg σmax 80 deg

dumax 10 deg/s kQ 1.65 × 10−4

Q̇max 1500 kW/m2 qmax 18,000 N/m2

nmax 2.5 g ∆min 10 s
∆max 150 s ∆Tmax 50 s

No-fly zone used in Case 2

θNFZ 5 deg φNFZ 50 deg
RNFZ 5.5 deg
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The subproblem is constructed in YALMIP [34], a MATLAB modeling toolbox, and
solved by ECOS [21], an open-source convex optimization solver. All of the numerical
simulations are running on a personal desktop with an Intel Core i9 3.1 GHz processor.

The initial reference is the trajectory obtained by integrating the original dynam-
ics (1) with the given initial control, as in [27]. The convergence condition is selected as
∆x = max

1≤i≤N
|x̂k

i − x̄i| ≤ εx = [1000 m, 1 deg, 1 deg, 100 m/s, 1 deg, 1 deg] and ∆s = max
1≤i≤N−1

|ŝk
i − s̄i| ≤ εs = 5 s, where x̂ and ŝ are the solution of the subproblem.

4.1. Iterative Performance

Comparisons of the state and control profiles for Case 1 and Case 2 are shown in
Figures 3–8. The account of temporal nodes for the proposed method are as follows. SCP1
and SCP2 are each 40, in which case the constraint violation is observed, and SCP3 is 300 in
order to maintain the same accuracy as the above methods.

It can be seen that the solutions of the proposed method are similar to those from SCP2
and SCP3. Note that the solutions of SCP1 are quite different due to its poor convergence.
As shown in Figures 5 and 8, one shortcoming of the proposed method is that the control
jitter in the segments where points cluster is obvious because of the dense time grid around
those points.
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The iterative performance of the proposed method and comparative methods is shown
in Figure 9. The iteration number of the proposed method is less than the comparative
methods. Note that the comparative methods would require more iterations to meet the
convergence condition when the objective function is near the optimal value, while the
proposed method required fewer iterations, demonstrating its fast convergence. What is
more, for the non-uniform scheme, SCP1 with light penalty weighting ωtr,2 < 1 in Jtr,2
reached the maximum number of iterations, while that with heavy weighting ωtr,2 > 1
would show negligible alterations for the distribution of temporal nodes; thus, the addition
of time interval dilation is not necessary in this case.
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Figure 9. The terminal velocity in each iteration.

For the non-uniform scheme, the discrete point distribution and the change of time
dilation, max |s− s̄|, with iterations are shown in Figure 10. It can be observed that there is
no obvious clustering rule for SCP1, while the position of discrete points always changes
with the number of iterations. In contrast, the discrete points of the proposed method
would cluster after a few iterations. In addition, the results of time interval change with
iterations show that the proposed method has stable convergence performance, since the
change between two adjacent iterations decreases progressively, which means the result
trajectory would become increasingly similar.

In order to guarantee that the result trajectory of the SCP process is feasible to meet
the original dynamics, the residual error between the optimized results and the trajectory
obtained by integrating the original dynamics is measured. The residual error results for
Case 1 and Case 2 are shown in Tables 4 and 5, averaged over 50 simulation runs.
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Table 4. Residual error with different temporal nodes for Case 1.

Method Temporal
Node Iteration CPU

Time (s) ∆r (m) ∆θ (deg) ∆φ (deg) ∆V (m/s) ∆γ (deg) ∆ψ (deg)

Proposed

40 8 1.409 22.577 0.044 0.011 1.910 0.022 0.072

50 8 1.452 18.457 0.042 0.010 1.509 0.018 0.046

60 10 1.758 3.798 0.035 0.005 1.249 0.019 0.027

SCP1

40 30 5.247 814.272 0.323 0.128 25.132 1.196 0.203

50 30 5.790 627.624 0.218 0.105 28.145 0.288 1.544

60 30 6.293 587.483 0.203 0.097 26.329 0.279 1.416

SCP2

40 14 2.085 5.201 0.005 0.002 0.236 0.001 0.010

50 14 2.2370 21.356 0.011 0.006 0.851 0.004 0.055

60 14 2.548 11.769 0.002 0.001 0.172 0.040 0.051

SCP3

200 15 5.5930 95.028 0.001 0.001 0.496 0.147 0.282

300 19 9.857 42.689 0.004 0.002 0.048 0.034 0.085

400 20 14.833 27.497 0.005 0.002 0.287 0.005 0.018
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Figure 10. Discrete point distribution and time dilation change with iteration.
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Table 5. Residual error for entry problem for Case 2.

Method Temporal
Node Iteration CPU

Time (s) ∆r (m) ∆θ (deg) ∆φ (deg) ∆V (m/s) ∆γ (deg) ∆ψ (deg)

Proposed

40 8 1.262 14.279 0.017 0.006 0.076 0.015 0.083

50 8 1.403 9.201 0.025 0.007 0.426 0.022 0.032

60 9 1.730 9.907 0.030 0.005 0.813 0.012 0.006

SCP1

40 30 4.234 1045.231 0.445 0.280 86.537 0.994 3.329

50 30 4.532 654.915 0.192 0.111 29.263 0.279 1.672

60 30 5.054 516.706 0.175 0.084 22.669 0.258 1.145

SCP2

40 11 1.437 5.142 0.002 0.004 0.234 0.002 0.015

50 15 1.771 5.453 0.001 0.001 0.164 0.004 0.016

60 15 1.932 5.285 0.001 0.0004 0.126 0.017 0.026

SCP3

200 11 3.891 97.585 0.002 0.001 0.682 0.224 0.573

300 13 6.760 47.728 0.002 0.002 0.462 0.094 0.281

400 15 10.334 36.177 0.005 0.006 0.586 0.057 0.182

It can be observed that for SCP2 and SCP3, the precise discretization can guarantee
commensurate accuracy with fewer temporal nodes, while more than 200 nodes are needed
to achieve the same result in [27], which demonstrates the effectiveness of the precise
discretization. Note that, with the non-uniform scheme, SCP1 showed worse convergence
performance and low accuracy as mentioned above, which means that the feasibility of
the result trajectory is not guaranteed. In contrast, the proposed method overcomes the
shortcomings, maintains the advantage of the precise discretization, and shows better
convergence performance, as shown in Tables 4 and 5.

4.2. Constraint Satisfaction Performance

As mentioned above, for the uniform precise discretization, the propagated trajectory
may violate the path constraints between temporal nodes due to the sparse time grid. This
phenomenon was observed to occur when the account of temporal nodes decreased to 40.
Thus, we choose the case of 40 nodes for presentation. The path constraints of the proposed
method for Case 1 are shown in Figure 11 and contrasted with SCP1 and SCP2.

It can be observed that the heat load would touch the boundary during the initial state
of flight. The constraint violations occur for the propagated trajectory of SCP1 and SPC2
due to the sparse time grid. In contrast, the propagated trajectory of the proposed method
satisfies the path constraints over the time horizon. In addition, the discrete points would
cluster around the peak value of heat load, as shown in Figure 11.

Furthermore, the same phenomenon may occur for the no-fly zone constraints as well.
Case 2 focuses on the no-fly zone constraint violation, and the numerical results are shown
in Figure 12. In this case, all the path constraints were satisfied for all methods in our
experiments. It can be observed that the propagated trajectories of SCP1 and SCP2 both
pass through the no-fly zone. Note that, for the non-uniform scheme, the discrete points
of SCP1 do not cluster around the no-fly zone. The 3D trajectory of tbe proposed method
is shown in Figure 12b; the points in red are set to cluster around the no-fly zone. The
propagated trajectory of the proposed method skimmed over the no-fly zone, while the
time interval between adjacent red points is the minimum set in (11), which indicated that
the point distribution of the proposed method is better than SCP2.
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Figure 11. Path constraints of propagated trajectories for Case 1.
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5. Conclusions

This paper proposes an improved SCP algorithm for the hypersonic entry problem
using a novel adaptive non-uniform discretization. The proposed method has advantages
in performance of path constraint satisfaction and convergence. Firstly, the proposed
method employs an inverse-free precise discretization to ensure high accuracy and real-
time performance. Then, an adaptive non-uniform scheme is developed to distribute
discrete points adaptively by adding additional penalty terms in the SCP subproblem,
which would guarantee constraint satisfaction. Finally, numerical results show that the
proposed method achieves a fast convergence while maintaining high accuracy with few
temporal nodes. More importantly, the discrete points of the proposed method would
cluster around the segment where the constraints may be violated, and the propagated
trajectory satisfies all the path constraints over the time horizon even for a small number of
discrete points.

Future work will focus on the following points: (1) Due to the non-uniform scheme,
a similar idea can extend to the hypersonic entry problem with the waypoint constraint
and other problems; (2) The simulation will be carried out on an embedded platform to
verify the effectiveness of the proposed method for a limited-power environment; (3) High-
performance solvers are considered to further improve the solving speed, such as the
proportional integral projected gradient method [35], a first-order method for the conic
convex problem.

Author Contributions: Methodology, J.M.; Validation, J.W.; Writing—original draft preparation, J.M.;
Writing—review and editing, J.W., Q.Z. and H.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Basic and Applied Basic Research Project of Guangzhou
Municipal Science and Technology Bureau, grant number 202201011187.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lu, P. Entry guidance and trajectory control for reusable launch vehicle. J. Guid. Control Dyn. 1997, 20, 143–149. [CrossRef]
2. Shen, Z.; Lu, P. Onboard generation of three-dimensional constrained entry trajectories. J. Guid. Control Dyn. 2003, 26, 111–121.

[CrossRef]
3. Lu, P. Entry guidance: A unified method. J. Guid. Control Dyn. 2014, 37, 713–728. [CrossRef]
4. Jorris, T.R.; Cobb, R.G. Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints. J. Guid.

Control Dyn. 2009, 32, 551–572. [CrossRef]
5. Grant, M.J.; Braun, R.D. Rapid indirect trajectory optimization for conceptual design of hypersonic missions. J. Spacecr. Rocket.

2015, 52, 177–182. [CrossRef]
6. Betts, J.T. Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [CrossRef]
7. Pontryagin, L.S. Mathematical Theory of Optimal Processes; CRC Press: Boca Raton, FL, USA, 1987.
8. Pan, B.; Lu, P.; Pan, X.; Ma, Y. Double-homotopy method for solving optimal control problems. J. Guid. Control Dyn. 2016,

39, 1706–1720. [CrossRef]
9. Zheng, Y.; Cui, H.; Ai, Y. Indirect trajectory optimization for mars entry with maximum terminal altitude. J. Spacecr. Rocket. 2017,

54, 1068–1080. [CrossRef]
10. Ben-Asher, J.Z. Optimal Control Theory with Aerospace Applications; American Institute of Aeronautics and Astronautics: Reston,

VA, USA, 2010.
11. Fahroo, F.; Ross, I.M. Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 2002,

25, 160–166. [CrossRef]
12. Kameswaran, S.; Biegler, L.T. Convergence rates for direct transcription of optimal control problems using collocation at Radau

points. Comput. Optim. Appl. 2008, 41, 81–126. [CrossRef]
13. Garg, D.; Patterson, M.; Hager, W.W.; Rao, A.V.; Benson, D.A.; Huntington, G.T. A unified framework for the numerical solution

of optimal control problems using pseudospectral methods. Automatica 2010, 46, 1843–1851. [CrossRef]
14. Acikmese, B.; Ploen, S.R. Convex programming approach to powered descent guidance for mars landing. J. Guid. Control Dyn.

2007, 30, 1353–1366. [CrossRef]

http://doi.org/10.2514/2.4008
http://dx.doi.org/10.2514/2.5021
http://dx.doi.org/10.2514/1.62605
http://dx.doi.org/10.2514/1.37030
http://dx.doi.org/10.2514/1.A32949
http://dx.doi.org/10.2514/2.4231
http://dx.doi.org/10.2514/1.G001553
http://dx.doi.org/10.2514/1.A33566
http://dx.doi.org/10.2514/2.4862
http://dx.doi.org/10.1007/s10589-007-9098-9
http://dx.doi.org/10.1016/j.automatica.2010.06.048
http://dx.doi.org/10.2514/1.27553


Mathematics 2023, 11, 2754 18 of 18

15. Lu, P.; Liu, X. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. J. Guid. Control
Dyn. 2013, 36, 375–389. [CrossRef]

16. Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
17. Liu, X.; Lu, P.; Pan, B. Survey of convex optimization for aerospace applications. Astrodynamics 2017, 1, 23–40. [CrossRef]
18. Wright, S.J. Primal-Dual Interior-Point Methods; SIAM: Philadelphia, PA, USA, 1997.
19. Gurobi Optimization, Ltd. Gurobi Optimizer Reference Manual. 2021. Available online: https://www.gurobi.com/documentation/

current/refman/index.html (accessed on 22 May 2023).
20. ApS, M. Mosek optimization toolbox for matlab. User’s Guide Ref. Man. Version 2019, 4, 1.
21. Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems. In Proceedings of the 2013 European Control

Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3071–3076.
22. Mao, Y.; Szmuk, M.; Xu, X.; Açikmese, B. Successive convexification: A superlinearly convergent algorithm for non-convex

optimal control problems. arXiv 2018, arXiv:1804.06539.
23. Szmuk, M.; Acikmese, B.; Berning, A.W. Successive convexification for fuel-optimal powered landing with aerodynamic drag

and non-convex constraints. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA,
4–8 January 2016; p. 0378.

24. Malyuta, D.; Reynolds, T.P.; Szmuk, M.; Lew, T.; Bonalli, R.; Pavone, M.; Acikmese, B. Convex optimization for trajectory
generation. arXiv 2021, arXiv:2106.09125.

25. Liu, X.; Shen, Z.; Lu, P. Entry trajectory optimization by second-order cone programming. J. Guid. Control Dyn. 2016, 39, 227–241.
[CrossRef]

26. Wang, Z.; Grant, M.J. Constrained trajectory optimization for planetary entry via sequential convex programming. J. Guid.
Control Dyn. 2017, 40, 2603–2615. [CrossRef]

27. Wang, Z.; Lu, Y. Improved sequential convex programming algorithms for entry trajectory optimization. J. Spacecr. Rocket. 2020,
57, 1373–1386. [CrossRef]

28. Wang, J.; Cui, N.; Wei, C. Rapid trajectory optimization for hypersonic entry using a pseudospectral-convex algorithm. Proc. Inst.
Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 5227–5238. [CrossRef]

29. Kamath, A.G.; Elango, P.; Kim, T.; Mceowen, S.; Yu, Y.; Carson, J.M.; Mesbahi, M.; Acikmese, B. Customized real-time first-order
methods for onboard dual quaternion-based 6-DoF powered-descent guidance. In Proceedings of the AIAA SCITECH 2023
Forum, Orlando, FL, USA, 8–12 January 2023; p. 2003.

30. Kamath, A.G.; Elango, P.; Yu, Y.; Mceowen, S.; Carson, J.M., III; Açıkmeşe, B. Real-Time Sequential Conic Optimization for
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