
Citation: Li, M.; Feng, Y.; Wang, G.

Estimating Failure Probability with

Neural Operator Hybrid Approach.

Mathematics 2023, 11, 2762. https://

doi.org/10.3390/math11122762

Academic Editor: Theodore E. Simos

Received: 21 May 2023

Revised: 15 June 2023

Accepted: 16 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Estimating Failure Probability with Neural Operator
Hybrid Approach
Mujing Li 1, Yani Feng 1 and Guanjie Wang 2,∗

1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
limj@shanghaitech.edu.cn (M.L.); fengyn@shanghaitech.edu.cn (Y.F.)

2 School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance,
Shanghai 201209, China

* Correspondence: guanjie@lixin.edu.cn

Abstract: Evaluating failure probability for complex engineering systems is a computationally
intensive task. While the Monte Carlo method is easy to implement, it converges slowly and, hence,
requires numerous repeated simulations of a complex system to generate sufficient samples. To
improve the efficiency, methods based on surrogate models are proposed to approximate the limit
state function. In this work, we reframe the approximation of the limit state function as an operator
learning problem and utilize the DeepONet framework with a hybrid approach to estimate the failure
probability. The numerical results show that our proposed method outperforms the prior neural
hybrid method.
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1. Introduction

In practice, evaluating failure probability for systems that inherently contain uncer-
tainty is a fundamental problem encountered in various fields, such as structural safety,
risk management, reliability-based optimization, etc. Uncertainties in such systems are
abstracted in terms of the failure mode, and failure probability estimation is essentially a
problem of evaluating multivariate integrals in domains defined by certain failure modes.
While the mathematical formulation of the problem is well defined, evaluating such inte-
grals remains a challenging task in practice.

The most straightforward approach to evaluating the failure probability is to use the
Monte Carlo sampling (MCS) method [1,2]. However, due to its slow convergence, MCS
requires numerous samples, resulting in a heavy computational burden. This computa-
tional burden becomes even more pronounced when complex stochastic PDEs represent
the failure modes, since MCS necessitates repeatedly solving the model to estimate the
failure probability.

To address this issue, various approaches have been developed, including the first-
order reliability method (FORM) [3], second-order reliability method (SORM) [4], and re-
sponse surface method (RSM) [5,6]. These methods replace the limit state function with
a surrogate model that is easy to evaluate, thereby greatly reducing the simulation time.
Following this idea, a hybrid method was proposed by [7,8] to estimate the probability
based on the surrogate model while re-evaluating samples in a given suspicious region.
The design of the hybrid method significantly reduces the time complexity while ensur-
ing accuracy.

There are various methodologies for constructing surrogate models, such as the
stochastic Galerkin method [9,10], the reduced basis method [11,12], and deep learning.
Deep learning has rapidly developed in recent decades, particularly in scientific and
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engineering applications. Physics-informed neural networks (PINNs), which build upon
the widely known universal approximation capabilities of continuous functions for neural
networks (NNs) [13,14], were introduced in [15] and have demonstrated their efficiency in
numerous studies [16–18]. By utilizing established deep learning and machine learning
techniques, NN models can be employed as surrogate models to approximate the limit
state function, outperforming traditional surrogate models in certain problems, such as
those of high-dimensional systems [19–21].

As a significant area within the domain of deep learning, operator learning has
emerged in recent years. The underlying principle of operator learning resides in the obser-
vation that nonlinear operators can be effectively approximated by employing single-layer
neural networks [22,23] (Theorem 1). Operator learning aims to map infinite-dimensional
functions to infinite-dimensional functions. Since it is more expressive and can break
the curse of dimensionality in input space [24], operator learning has gained much at-
tention in recent years [24–26]. Among the operator learning techniques, the DeepONet
introduced in [24,26] has been demonstrated to be effective in numerous applications,
including [27–29].

In this work, we present a novel approach to failure probability estimation by re-
framing the approximation problem of the limit state function as an operator learning
problem and subsequently adapting the DeepONet framework to address it. The operator
learning formulation provides a more effective and generalized approach to constructing a
surrogate model for the limit state function, resulting in enhanced precision and reduced
simulation numbers. To further ensure the precision, we employed a hybrid method [7] for
estimating the failure probability. Our proposed neural operator hybrid (NOH) approach
significantly reduces the time complexity while maintaining high accuracy compared to
earlier neural hybrid and Monte Carlo simulation approaches. We posit that the efficiency
of our approach in estimating failure probability demonstrates the potential of operator
learning in various tasks.

This paper is structured as follows: In Section 2, we present the problem setting and
introduce a hybrid method for evaluating the failure probability. The neural operator
learning and proposed algorithm are then fully described in Section 3. To demonstrate the
effectiveness of our approach, we describe numerical experiments in Section 4 that cover
a variety of scenarios, including ODEs, PDEs, and multivariate models. Finally, we offer
concluding remarks and observations in Section 5.

2. Preliminaries

This section will provide an overview of the mathematical framework for failure
probability and introduce a hybrid method for solving this problem.

2.1. Problem Setting

Let Z = (Z1, Z2, . . . , Znz) be an nz-dimensional random vector with the distribution
function FZ(z) = Prob(Z ≤ z). The image of Z, i.e., the set of all possible values that Z can
take, is denoted by Ω. It is our interest to evaluate the failure probability Pf defined by
Equation (1):

Pf = Prob
(

Z ∈ Ω f

)
=
∫

Ω f

dFZ(z) =
∫

χΩ f (z)dFZ(z) = E[χΩ f (z)], (1)

where the characteristic function χΩ f (z) is defined as:

χΩ f (z) =
{

1 if z ∈ Ω f ,
0 if z /∈ Ω f ,

(2)

and the failure domain Ω f , where failure occurs, is defined as:

Ω f = {Z : g(Z) < 0}. (3)



Mathematics 2023, 11, 2762 3 of 15

Here, g(Z) is a scalar limit state function—also known as a performance function—that
characterizes the failure domain. It should be emphasized that, in many real-world systems,
g(Z) does not have an analytical expression and is instead characterized by a complex
system that requires expensive simulations to evaluate. Consequently, the evaluation of
g(Z) can be computationally expensive, leading to significant time complexity.

2.2. Hybrid Method

The most straightforward approach to estimating failure probability is the Monte
Carlo sampling (MCS) method [1,2], which is given by:

Pmc
f =

1
M

M

∑
i=1

χ{g(z)<0}

(
z(i)
)

, (4)

where {z(i)}M
i=1 is a set of sample points for the random vector Z. The characteristic

function χ{g(z)<0}(z(i)) takes a value of 1 if the limit state function g(Z) evaluated at z(i) is
less than zero and 0 otherwise. The failure probability Pmc

f is estimated as the average of
the characteristic function over the M sample points.

However, evaluating the limit state function g(Z) at numerous sample points can be a
computationally intensive task, especially when dealing with complex stochastic systems,
resulting in significant simulation time complexity. To address this issue, a surrogate model
can be used to approximate the limit state function g(Z) and avoid the need for direct
evaluation at each sample point. Specifically, a surrogate model of g(Z) is denoted by ĝ(Z),
which can be rapidly evaluated. The failure probability can then be estimated as:

P̂mc
f =

1
M

M

∑
i=1

χ{ĝ(z)<0}

(
z(i)
)

. (5)

While surrogate models can significantly reduce computational costs in Monte Carlo
methods, relying solely on them for estimating the failure probability may result in poor
precision or even failure. To address this issue, a hybrid approach that combines the
surrogate models ĝ and the limit state function g was proposed in [7,8]. In the following,
we give a brief review of the hybrid method.

Suppose that (−γ, γ) is a suspicious region, where γ is a non-negative real number.
In this case, we can approximate the failure domain Ω f with Ω̃ f as follows:

Ω̃ f = {ĝ(Z) < −γ} ∪ {{|ĝ(Z)| ≤ γ} ∩ {g(Z) < 0}}, (6)

where g is the limit state function, and ĝ represents the surrogate model of g. Enhanced
with the hybrid method, the failure probability can be estimable by MCS:

Ph
f =

1
M

M

∑
i=1

χΩ̂ f

(
z(i)
)

=
1
M

M

∑
i=1

[
χ{ĝ<−γ}

(
z(i)
)
+ χ{|ĝ|≤γ}

(
z(i)
)
· χ{g<0}

(
z(i)
)]

.

(7)

The hybrid method can be considered as an approach for estimating Pf by using a
surrogate ĝ, followed by a re-evaluation of the samples within the suspicious domain.
While increasing the value of γ leads to higher time complexity, it also results in more
accurate estimation. In Ref. [7], it was proved that for any surrogate ĝ(Z) and for all ε > 0,
there exists a critical value γN > 0 such that for all γ > γN , the difference between the
estimated Ph

f and the truth Pf is less than ε, i.e.,∣∣∣Pf − Ph
f

∣∣∣ < ε. (8)
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To be more precise,

γN =
1

ε1/p ‖g(Z)− ĝ(Z)‖Lp
Ω

, (9)

where the approximation is measured in the Lp-norm with p ≥ 1.

‖g(Z)− ĝ(Z)‖Lp
Ω
=

(∫
Ω
|g(z)− ĝ(z)|pdFZ(z)

)1/p
. (10)

Selecting an appropriate value of γ that balances accuracy and computational efficiency
can be a challenging task. To address this challenge, an iterative algorithm, as demon-
strated in Algorithm 1, is commonly employed in practice instead of directly selecting
γ. In Algorithm 1, the surrogate ĝ samples are gradually replaced with g samples in
the iteration procedure until either the stopping criterion is reached or the iteration step
reaches dM/δMe, which is equivalent to expanding the suspicious region at each iteration.
When k reaches dM/δMe, the iterative hybrid algorithm degenerates to the Monte Carlo
method (4), indicating that the convergence is achieved as P(k)

f → Pmc
f , k→ dM/δMe. It

is obvious that the time complexity of the iterative hybrid algorithm is heavily influenced
by the accuracy of the surrogate model used in Algorithm 1.

Algorithm 1 Iterative Hybrid Method [7].

Input: surrogate model ĝ, S = {z(i)}M
i=1 samples from random variable Z, tolerance ε, and

sample size in each iteration δM.
1: Initialization: k = 0.
2: Compute P(0)

f = 1
M ∑M

i=1 χ{ĝ(z)<0}

(
z(i)
)

.

3: Sort
{∣∣∣ĝ(z(i)

)∣∣∣}M

i=1
in ascending order; sort the correspond sample S accordingly.

4: for k from 1 to dM/δMe do

5: δSk =
{

z(j)
}kδM

j=(k−1)δM+1
.

6: δP = 1
M ∑z(j)∈δSk

[
−χ{ĝ<0}

(
z(j)
)
+ χ{g<0}

(
z(j)
)]

.

7: P(k)
f = P(k−1)

f + δP.
8: if |δP| ≤ ε for several times then
9: break

10: end if
11: end for
Output: P(k)

f

3. Neural Operator Hybrid Algorithm

In Section 2, we described the failure probability problem and the hybrid algorithm
for solving it. As we have mentioned, the accuracy of the surrogate model greatly af-
fects the performance of the iterative hybrid algorithm. In this section, we introduce
neural operator learning and present the neural operator hybrid (NOH) algorithm, which
reframes the approximation problem of the limit state function as an operator learning
problem. Unlike prior studies that used neural networks as surrogate models for mappings
(as in [19–21,30,31]), our algorithm constructs a surrogate model by using operator learning
techniques. The benefits of our method are mainly in two aspects: First, it increases the
generalization of the surrogate model. Second, it increases the precision of the surrogate
model with more information involved, which results in a more effective and generalized
approach to estimating failure probability.

3.1. Neural Operator Learning

Neural operator learning aims to accurately represent linear and nonlinear operators
that map input functions into output functions. More specifically, let U be a vector space of
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functions on set K1, and let V be a vector space of functions on set K2; G is an operator map
from U to V, i.e.,

G : u 7→ G(u) ∈ V, for u ∈ U, (11)

where u is a function defined on the domain K1, i.e.,

u : x 7→ u(x) ∈ R, for x ∈ K1, (12)

and G(u) is a function defined on the domain K2, i.e.,

G(u) : y 7→ G(u)(y) ∈ R, for y ∈ K2. (13)

In the context of this paper, U is referred to as the input function space, and V is
referred to as the output function space. It is of interest to design neural networks that can
approximate the mapping of the operator G from the input function space to the output
function space.

In this work, we employ the DeepONet framework [26], an ascendingoperator learning
approach based on the following theorem, to construct the surrogate of the operator G.

Theorem 1 (Universal Approximation Theorem for the Operator [23]). Suppose that σ is a
continuous non-polynomial function, X is a Banach Space, K1 ⊂ X, K2 ⊂ Rd are two compact sets
in X and Rd, respectively, U is a compact set in C(K1), and G is a nonlinear continuous operator
that maps U into C(K2). Then, for any ε > 0, there are positive integers n, p, m and constants
ck

i , ξk
ij, θk

i , ζk ∈ R, wk ∈ Rd, xj ∈ K1, i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . , m, such that

|G(u)(y)−
p

∑
k=1

n

∑
i=1

ck
i σ

(
m

∑
j=1

ξk
iju
(
xj
)
+ θk

i

)
︸ ︷︷ ︸

branch

σ(wk · y + ζk)︸ ︷︷ ︸
trunk

| < ε. (14)

holds for all u ∈ U and y ∈ K2.

In DeepONet, the operator G is approximated by taking the inner product of two
components, which can be expressed as follows:

G(u)(y) ≈ G(u)(y) :=
p

∑
k=1

bk(u)︸ ︷︷ ︸
branch

tk(y)︸ ︷︷ ︸
trunk

, (15)

where bk(u) is the output of the trunk network for a given input function u in U, and tk(y)
is the output of the branch network for a given y in K2. Figure 1 illustrates this architecture.

Figure 1. Illustrations of stacked and unstacked architectures of DeepONets [26]. DeepONets with
unstacked structures replace branch networks with a single multi-layer neural network.

In practical applications, the input function u is vectorized as [u(x1), . . . , u(xm)]
T ,

where the sample points [x1, x2 . . . xm]T are referred to as sensors. The input of the trunk
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network takes P specific values y(i)1 , . . . , y(i)P in K2 for each G(u(i)). The neural network can
be trained by using the training data:

T =
{(

u(1), G(u(1))
)

,
(

u(2), G(u(2))
)

, · · · ,
(

u(N), G(u(N))
)}

, (16)

and by minimizing the following loss function:

L(Θ) =
1

NP

P

∑
l=1

N

∑
i=1
‖GΘ(u(i))(y(i)l )− G(u(i))(y(i)l )‖2, (17)

where the neural network GΘ with parameter Θ approximates the operator G.

3.2. Neural Operator Hybrid Algorithm

Neural operator learning involves functions as both inputs and outputs, requiring us
to reframe our problem accordingly. Let U be the collection of all functions defined on [0, 1]
such that

u(x) = Z− kσ + 2kσx, for x ∈ [0, 1], (18)

where k is a selective parameter, and Z and σ are defined as:

Z =
Z1 + . . . + Znz

nz
, σ =

σ1 + . . . + σnz

nz
. (19)

Here, σ1, . . . , σnz are the variances of random variables Z1, . . . , Znz , respectively. We
can then define an operator G fromm U to V as follows:

G : u 7→ G(u) ∈ V, for u ∈ U, (20)

where V = span{g(x)}, and G(u) is defined by

G(u) : y 7→ g(y) ∈ R, for y ∈ Rnz . (21)

Here, g is the limit state function discussed in Section 2.1. Then, designing a surrogate
model for G is a standard operator learning problem.

The inspiration for this reframing is the establishment of a relationship between the
input function u(x) and the random variable Z. It is important to note that the prior
distribution of u(x) is entirely known, which enables us to generate training data by
using the following process: Firstly, we randomly sample z(i) according to the random
distribution Z, where i = 1, . . . , N. Next, we define u(i)(x) by using the following equation:

u(i)(x) = z(i) − kσ + 2kσx, x ∈ [0, 1], (22)

where

z(i) =
z(i)1 + . . . + z(i)nz

nz
. (23)

In practical implementation, we vectorize the input function u(i)(x) on a uniform grid of
the interval [0, 1]. Specifically, the vectorized input function is given by [u(i)(x1), . . . , u(i)(xm)],
where xj denotes the j-th sensor and is defined by

xj =
j− 1

m− 1
, j = 1, . . . , m. (24)
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Suppose that there are P observations y(i)l ∈ Rnz , l = 1, . . . , P for G(u(i)); then, by

Equation (21), we have G(u(i))(y(i)l ) = g(y(i)l ). Once the dataset is generated, the model is
trained by minimizing the following loss function:

L(Θ) =
1

NP

P

∑
l=1

N

∑
i=1
‖GΘ(u(i))(y(i)l )− g(y(i)l )‖2, (25)

where GΘ is a neural network with parameters Θ that approximates the operator G.
After constructing the surrogate for G by using the neural network GΘ, we can inte-

grate it into a hybrid algorithm to estimate the failure probability. This whole process is
called the neural operator hybrid (NOH) method, and it is shown in Figure 2.

As discussed in Section 2.2, the convergence of Algorithm 1 depends on the norm
measurement of the difference between the surrogate and the limit state function. Therefore,
it is crucial to have an accurate approximation ĝ(Z) for reliable estimation. The surrogate
model constructed for the reformulated operator learning problem using DeepONet may
achieve higher accuracy than that of the surrogate model constructed by using neural
networks that do not incorporate information from random variables, as the former model
utilizes additional information from random distribution functions. Moreover, DeepONet
exhibits less generalization error than that of simple neural networks [26].

Generating training dataset:

T =
{(

u(i), G(u(i))
)}

i=1:N

Training operator learning

neural network GΘ using T

Using GΘ as the surrogate

model ĝ in the hybrid Algorithm 1

Estimating the failure probability

Pf using the hybrid algorithm

Figure 2. A descriptive flowchart for the NOH method.

4. Numerical Experiments

In this section, we present three numerical examples to demonstrate the efficiency and
effectiveness of the proposed neural operator hybrid (NOH) method. Furthermore, we
compare the NOH method with the neural hybrid (NH) method. For the purpose of clarity
in presentation, we refer to the surrogate model constructed by using fully connected neural
networks for g in the NH method as the neural surrogate and the surrogate constructed by
using DeepONet for g in the NOH method as the neural operator surrogate. Both surrogate
models are designed to approximate limit state function g, and their main difference is the
structure of neural networks utilized.

For the NOH method, we use the simplest unstacked DeepONet to construct the neural
operator surrogate for the operator G, with the branch and trunk networks implemented
as fully connected neural networks (FNNs). The trunk network is employed with a depth
of 2 and a width of 40 FNNs, while the branch network has a depth of 2 and a width
of 40 FNNs. To facilitate a comparative analysis with the NH method, we built a neural
surrogate for g by using a simple FNN with a parameter size comparable to that of the
NOH method. Specifically, in the NH method, the FNN utilized for the neural surrogate
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has a depth of 3, and its width is adjusted to achieve a similar number of parameters to that
in the DeepONet. Both models were optimized by using the Adam optimizer [32] with a
learning rate of 0.001 on identical datasets.

The code was run by using PyTorch [33] and MATLAB 2019b on a workstation with
an Nvidia GTX 1080Ti graphics card and an Intel Core i5-7500 processor with 16 GB of
RAM. It is noteworthy that the evaluation of time complexity is based on the performance
function (PF) calls Ncall , which refers to the number of system simulations that need to be
executed, rather than the running time of the programs, as program running speeds may
vary significantly across different programming languages and platforms. The PF calls
consist of the evaluation of the hybrid algorithm in line 6 of Algorithm 1 and simulations
for generating training data in Equation (16). We do not evaluate the computational time
required for the neural surrogate or the neural operator surrogate, as a model trained by
using batch techniques can evaluate 105 samples in less than a second.

4.1. Ordinary Differential Equation

In this test problem, we consider a random ordinary differential equation (ODE)
proposed in [7]. The ODE is given by:

ds
dt

= −Zs, s(0) = s0, (26)

where s0 = 1, and Z ∼ N
(
µ, σ2) is a Gaussian random variable with a mean of µ = −2

and standard deviation of σ = 1. The limit state function is defined as g(Z) = g(s(t, Z)) =
s(t, Z) − sd, where sd = 0.5 and t = 1. The exact failure probability Pf = 0.003539 is
regarded as the reference solution, which can be computed by using the analytic solution
s(t, Z) = s0e−Zt.

To demonstrate the efficiency and effectiveness of the proposed NOH method, we
compare it with a Monte Carlo simulation (MCS) and the NH method. We used DeepONet
to train the neural operator surrogate in the NOH method and set the parameter k in
Equation (22) to 4, the number of input functions for training N to 500, P to 500, and the
number of sensors m to 100. In the NH method, we used the FNN as the neural surrogate.

Both surrogates in the NH and NOH methods were trained with identical datasets,
epochs, and optimizers. Additionally, in the MCS, 106 samples were generated to estimate
the failure probability.

Table 1 presents the performance of the MCS, the NOH method, and the NH method.
As shown in the table, the NOH method outperformed MCS by achieving the same level of
estimation precision with only approximately O(Ncall/1000) or 0.23% of the PF calls required
by the MCS. The NH method failed to estimate the failure probability, as all of the outputs of
the neural surrogate were greater than 0. In this special case, the hybrid iterative procedure
always terminated too early, while the estimated failure probability remained at 0.

Table 1. Comparison of a Monte Carlo simulation (MCS), the neural hybrid (NH) method, and the
neural operator hybrid (NOH) method. In the hybrid algorithm, we set δM to 25 and ε to 0, and we
terminated the iterative procedure when δP ≤ ε five times. The relative error is denoted by εe.

Method Ph
f Ncall εe

MCS 3.578× 10−3 106 0.11%

NOH 3.578× 10−3 500 (Training) + 1750
(Evaluating) 0.11%

NH - - -

Figure 3 illustrates the convergence of the NOH method and the NH method. In order
to compare the two methods, the iterative procedure in the hybrid algorithm was not ter-
minated until the limit state function g was recomputed for at least 105 samples. The figure
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shows that the estimate of the failure probability by the NH method remained at 0 until
around 100 iterations, and it converged after approximately 7000 iterations. In contrast,
the NOH method converged after only 70 iterations, demonstrating its superior efficiency
compared to that of the NH method.

Figure 3. Convergence of the NOH method and the NH method. In the hybrid algorithm, we set δM
to 25, and the iterative procedure was not terminated until the limit state function g was recomputed
for 4× 104 iterations.

In Figure 4, we compare the performance of the neural surrogate and the neural
operator surrogate in predicting the limit state function g. We observed that all of the
outputs of the neural surrogate were greater than 0, which led to the failure of the NH
method in estimating the failure probability. It is evident that the neural operator surrogate
outperformed the neural surrogate in predicting the limit state function g.

(a) (b)

Figure 4. Comparison of the neural surrogate and the neural operator surrogate. Both models are
compared to the ground truth g(Z) from the analytic solution. The right figure is the left figure on
the log scale. (a) Comparison of different surrogates. (b) Comparison on the log scale.
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4.2. Multivariate Benchmark

Next, we consider a high-dimensional multivariate benchmark problem (dimensional-
ity: n = 50) in the field of structural safety in [19,34]:

g(Z) = βn
1
2 −

n

∑
i=1

Zi, (27)

where β = 3.5 and each random variable Zi ∼ N (0, 1), i = 1, . . . , n. g(Z) is the limit state
function. In this test problem, the reference failure probability is Pmc

f = 2.218× 10−4, which

was obtained by using MCS with 5× 106 samples.
The proposed NOH method is compared with the NH method in terms of accuracy and

efficiency. For the NOH method, we set the parameter k in Equation (22) to 4, the number
of input functions N to 1000, P to 1000, and the number of sensors m to 100. In comparison,
a naive neural surrogate employing an FNN with a similar number of parameters was also
constructed and trained under conditions identical to those for the NH method.

The performance of the MCS, the NOH method, and the NH method are illustrated in
Table 2. Both the NOH method and the NH method demonstrated a substantial reduction
in the number of samples required—approximately 0.1% of the computational cost of MCS.
Notably, the NOH method outperformed the NH method by evaluating only 3% of the Ncall
while achieving a superior relative error 0.81% compared to the NH method’s relative error
of 8.92%. This indicated that the NOH method achieved higher accuracy with significantly
fewer samples, making it a more efficient and effective approach for the given task.

Table 2. A performance evaluation was conducted to compare the MCS, the NH, and the NOH
approaches. The NOH method was found to outperform the other methods, and it only evaluated
3% of Ncall compared to NH method. The NOH method also achieved the best relative error of 0.81%
while requiring the lowest number of samples with respect to the other methods.

Method Ph
f Ncall εe

MCS 2.22× 10−4 5× 106 -

NOH 2.20× 10−4 1000 (Training) + 150
(Evaluating) 0.81%

NH 2.02× 10−4 1000 (Training) + 4175
(Evaluating) 8.92 %

In Figure 5, the convergence of the NOH method is depicted and compared with that
of the NH method. Figure 5a demonstrates that the NOH method achieved an estimation
of Ph

f = 2.2× 10−4 with a relative error of εe = 0.81% in less than six iterations. Figure 5b
provides a comparison of convergent behaviors between the NH and NOH methods, clearly
demonstrating that the NOH method converged in significantly fewer iterations. As a
consequence, the NOH method required only 3% of the total evaluations Ncall . These
findings strongly suggest that neural operator surrogates offer improved precision and
ease of training when compared to FNNs. The reduced iteration times and lower number
of evaluations highlight the superior efficiency and accuracy of neural operator surrogates
in approximating complex functions or operators.
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(a) (b)

Figure 5. Convergence of the NOH method and the NH method. Panel (a) demonstrates the
convergence of the NOH method, where NOH terminates in six iterations, while in (b), a comparison
of the convergence rates between the NOH and the NH methods is conducted. The NH method
requires significantly more iterations than the NOH method to converge because its neural surrogate
lacks precision. For both methods, we set δM = 25 in each iteration. For NOH, ε was set to 0,
and the iterative procedure was terminated when δP ≤ ε for the first time. (a) Convergence of the
NOH method. (b) Comparison between the NOH and NH methods.

Figure 6 depicts the superior accuracy of the neural operator surrogates. It compares
the neural surrogate and the neural operator surrogate approximations from 50 randomly
selected samples. As illustrated in the figure, the predictions of the limit function g by
the neural operator surrogate are more accurate than those of the neural surrogate, as the
former closely approximated the ground truth.

The experimental results provide evidence of the precision exhibited by the neural
operator surrogate. The combination of reduced iteration times and a lower number of
evaluations further accentuates the efficiency and accuracy of neural operator surrogates in
approximating complex functions or operators. These findings emphasize that the NOH
method achieved higher levels of accuracy while utilizing significantly fewer samples.

Figure 6. Comparison of the neural surrogate and the neural operator surrogate by using 50 randomly
selected samples.
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4.3. Helmholtz Equation

We consider the Helmholtz equation on a disk with a square hole [19]. The equation is
given by:

−∆u− κ2u = 0, (28)

where coefficient κ is a Gaussian random variable with a mean of µ = 60 and variance
of σ = 1, i.e, κ ∼ N (60, 1). The system was set with a homogeneous term, and Dirichlet
boundary conditions (u = 0) were applied on the edges of the square hole, while general-
ized Neumann conditions (~ξ ·∇r− iκr = 0, and~ξ is the radial distance from the object) were
applied on the edge of the disk. The system was numerically solved by using the MATLAB
PDE solver to obtain an accurate solution. A snapshot of the solution of Helmholtz is shown
in Figure 7. A point sensor was placed at xp = [0.7264; 0.4912], and the failure probability
was defined as Prob(u(xp, κ) > 1.00). The reference solution was Pmc

f = 2.70× 10−4, which

was obtained with a Monte Carlo simulation with 105 samples.

Figure 7. A snapshot of the solution of the Helmholtz equation.

With a setup similar to that in the previous experiment, we used DeepONet to train
the neural operator surrogate in the NOH method and set the parameter k in Equation (22)
to 4, the number of input functions N to 1000, P to 1000, and the number of sensors m to
100. We used a fully connected neural network (FNN) as the neural surrogate in the NH
method and trained both models under identical conditions.

In Table 3, we present a performance analysis of the Monte Carlo simulation (MCS),
the NOH method, and the NH method. Similarly to the previous experiments, the results
indicate that the NOH method required fewer Ncall—about 11%—than the NH method did
while providing a more accurate estimation with 3.70% relative error versus 11.11%.

Table 3. A performance evaluation was conducted to compare the NH and the NOH approaches.
The NOH method was found to outperform the NH method in both efficiency and accuracy. Specifi-
cally, the NOH method achieved a relative error of just 3.70% while requiring fewer Ncall than the
NH method did.

Method Ph
f Ncall εe

MCS 2.70× 10−4 105 -

NOH 2.80× 10−4 1000 (Training) + 100
(Evaluating) 3.70%

NH 3.00× 10−4 1000 (Training) + 875
(Evaluating) 11.11%

The convergence of the NOH method is illustrated and compared with that of the
NH method in Figure 8. Although both methods converged quickly, NOH converged
in noticably fewer iterations compared to the NH method. With only 100 evaluations,
the NOH method could accurately estimate the failure probability as Ph

f = 2.80× 10−4,
with a relative error of 3.70%, while the NH method only achieved 11.11% while uti-
lizing 875 evaluations. The faster convergence and lower relative error observed in the
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NOH method signify the precision and capabilities of the neural operator surrogate when
compared to the neural surrogate.

These results highlight the potential of neural operator surrogates to significantly
enhance computational efficiency and accuracy in a variety of applications. Consequently,
the NOH method emerges as a more efficient and effective approach for estimating fail-
ure probability.

(a) (b)

Figure 8. Convergence of the NOH method and the NH method. Panel (a) demonstrates the
convergence of the NOH method, while in (b), a comparison of the convergence rates between the
NOH and the NH methods is conducted. For both methods, we set δM = 25 in each iteration.
For NOH, ε was set to 0, and the iterative procedure was terminated when δP ≤ ε for the first time.
(a) Convergence of the NOH method. (b) Comparison between the NOH and NH methods.

5. Conclusions

This paper introduced a neural operator hybrid method for the estimation of failure
probability. Instead of approximating the limit state function directly, we reframe the
problem as an operator learning task. This allows us to construct a highly efficient and
precise surrogate operator model that can accurately estimate the limit state function.
By integrating the surrogate operator model into the hybrid algorithm, we created the
neural operator hybrid method. The numerical results demonstrate that the proposed
method provides an efficient strategy for estimating failure probability, particularly in
systems governed by ODEs, multivariate functions, and the Helmholtz equation. Our
proposed method exhibited superior performance to that of the basic MCS approach,
particularly in terms of efficiency. Furthermore, it surpassed the previous neural hybrid
method in both efficiency and accuracy. Consequently, it is applicable and beneficial for
addressing general failure probability estimation problems. The obtained results not only
demonstrate the efficacy of neural operator learning frameworks in the context of failure
probability estimation, but also imply their promising potential in other areas, such as
Bayesian inverse problems and partial differential equations with random inputs. In our
future work, techniques such as importance sampling (IS) [8,35] or adaptive learning [20,36]
can further reduce the sample size required in the estimation process.
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