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Abstract: The greenhouse effect caused by carbon dioxide (CO2) emissions has forced the shipping
industry to actively reduce the amount of CO2 emissions emitted directly into the atmosphere over
the past few years. Carbon capture, utilization, and storage (CCUS) is one of the main technological
methods for reducing the amount of CO2 emissions emitted directly into the atmosphere. CO2

transport, i.e., shipping CO2 to permanent or temporary storage sites, is a critical intermediate step
in the CCUS chain. This study formulates a mixed-integer programming model for a carbon storage
and transport problem in the CCUS chain to optimally determine ship allocation, ship departure
scheduling, and CO2 storage and transport. Taking advantage of the structure of the problem,
we transform the mixed-integer programming model into a simpler model that can be computed
efficiently. To evaluate the performance of the simpler model, numerous computational experiments
are conducted. The results show that all small-scale instances (each with 10 power plants) and
medium-scale instances (each with 30 power plants) can be solved optimality by Gurobi within
14.33 s. For large-scale instances with 60 and 65 power plants, feasible solutions with average gap
values of 0.06% and 6.93% can be obtained by Gurobi within one hour, which indicates that the
proposed methodology can be efficiently applied to practical problems. In addition, important
parameters, including the unit fuel price, the time-charter cost, and the ship sailing speed, are
examined in sensitivity analyses to investigate the impacts of these factors on operations decisions.
In summary, a lower fuel price, a lower charter cost, or a higher ship sailing speed can increase the
profit of the CCUS chain.

Keywords: ship allocation and scheduling optimization; maritime decarbonization; carbon capture;
utilization; storage

MSC: 90-10

1. Introduction

As climate change continues to worsen, the need to establish a low-carbon society
has become the consensus of the international community [1–6]. Globally, more and more
countries and regions are taking action to issue corresponding policies for low-carbon
development goals and implement various emission reduction measures. For example,
the United States rejoined the Paris Agreement, committing to reduce greenhouse gas
emissions by 50–52% from 2005 levels by 2030 [7]; the European Union issued the European
Green Deal policy aimed at achieving carbon neutrality by 2050 [8]; China announced
new goals related to carbon dioxide (CO2) emissions which aim to reduce carbon intensity
by more than 65% by 2030 from 2005 levels [9]. At the same time, an increasing number
of companies are adopting low-carbon development strategies, such as reducing energy
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consumption, using renewable energy sources, and changing production methods, with
the aim of lowering carbon emissions and achieving sustainable development [10–12].

As part of the effort to enable the realization of a low-carbon society, many countries,
such as Norway [13], the Netherlands [14], and Sweden [15], are exploring CO2 ship
transportation, which is a part of the carbon capture, use, and storage (CCUS) chain.
Specifically, CCUS technology refers to capturing CO2 from emission sources, such as
factories and power plants, and then utilizing or storing it, thereby reducing the amount
of CO2 emissions emitted directly into the atmosphere [16–18]. The aim of CCUS is to
transport CO2 emitted by emission sources to storage and reuse locations in a safe, cost-
effective, and efficient manner. Although CCUS technology can reduce CO2 emissions, its
cost is high [19], which implies that technical innovation and operations management are
needed to reduce costs. Fortunately, according to the estimates of the National Petroleum
Council (NPC), by 2030, the cost of CCUS is expected to drop by 30–50% [20]. In terms
of operations management, CO2 ship transportation is an important intermediate step
of CCUS because the CO2 shipping cost is high. After capturing CO2, if it cannot be
transported to the storage and reuse locations safely and efficiently, the goal of CCUS
cannot be achieved. Therefore, finding a way to optimize CO2 operations management
is crucial.

The deployment of CCUS technology has rapidly expanded over the past decade, with
global CCUS contributing to the handling of 44 metric tons of CO2 emissions in 2021 [18].
Moreover, global CCUS uptake needs to grow 120-fold by 2050, to at least 4.2 gigatons per
annum of CO2 captured, to achieve the net-zero CO2 emissions target [21]. Faced with such
a large volume of transport, shipping companies inevitably need to investigate cost control.
Therefore, how to address the problem of carbon storage and transport optimization for
the CCUS chain is crucial for the operations management of shipping companies.

Motivated by this real-world challenge in the development of the low-carbon society,
this study focuses on a carbon storage and transport optimization problem for CCUS
and proposes a mixed-integer programming (MIP) model to optimally determine ship
allocation, ship departure scheduling, and CO2 storage and transport planning. In order to
accelerate the solving process, a proposition is found based on model characteristics and is
used to transform the previous model into a simpler model, which can be solved quickly
by Gurobi. Computational results show the proposed methodology meets the solution
requirements for practical instances. Moreover, three important parameters, including the
fuel price, the time-charter cost, and the ship sailing speed, are examined to seek useful
managerial insights for CCUS companies.

The remainder of this study is organized as follows. Section 2 reviews and discusses
related papers. Section 3 formulates an MIP model and converts the model to a simpler one
based on a proposition. Computational experiments are conducted in Section 4. Section 5
summarizes the conclusions.

2. Literature Review

With the increase in greenhouse gas emissions, the need for efficient and effective
solutions to deal with CO2 has become a crucial issue. CCUS technology is currently
the primary means of centralized CO2 treatment. This complex system is capable of
preventing CO2 emissions from entering the atmosphere at a technical level by sequestering
the captured CO2 and making full use of CO2 as chemical feedstock and injection fluid.
Readers who are interested in comprehensive overviews of the CCUS technology problem
can refer to [22–24]. To improve overall efficiency and reduce costs, numerous studies, such
as [25–28], investigate how to optimize the CCUS chain from a techno-economic perspective.
The existing literature, such as [24], finds that implementing an efficient transport network
for the CCUS chain is important because transportation is a key component of this process.
Pipeline transport and maritime transport are the two main methods used to transport
CO2. According to related studies [28–31], the choice between the above two methods
depends on several factors, such as distance and transport volume. In general, when
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transporting a small amount of CO2 over long distances, which conforms to the setting of
this study, maritime transport is more cost-effective. Since this study focuses on maritime
transport optimization in the CCUS chain, this study reviews two streams of related works:
advantages, and operations management of CO2 maritime transport.

Research on CO2 shipping began in the early 2000s. CO2 maritime transport has
unique advantages, which are summarized in Table 1. For example, according to [24], when
pipeline technology is impractical, ships with low sunk costs can be used as an alternative.
This is because pipeline transport requires high capital expenditures, especially in areas
where the geology is unsuitable for pipeline construction. However, when transporting
a small amount of CO2 over long distances, the impact of potential sunk costs related to
shipping is significantly reduced, making maritime transport a more cost-effective option.
Moreover, according to [32], maritime transport is cost-effective in areas where CO2 sources
are decentralized. In addition, according to [33], the CO2 shipping system involves multiple
regional and even national stakeholders. Due to the flexibility of CO2 maritime transport,
the CO2 shipping system can be adjusted to better satisfy the need of each region over time.
Furthermore, CO2 maritime transport may enable industrial clusters that release a large
amount of CO2 emissions, especially those lacking sufficient spaces for CO2 storage, to
achieve industrial decarbonization and comply with relevant emission standards. Similarly,
for regions with CO2 storage capacity exceeding the required amount, carbon management
and storage services can be offered to other countries by CO2 maritime transport.

Table 1. Summary of the advantages of shipping CO2.

Literature Advantages of Shipping CO2

[24] Ships with low sunk costs can replace pipelines for CO2 transport, especially
in areas where the geology is unsuitable for pipeline construction.

[32] Shipping CO2 is cost-effective in areas where CO2 sources are decentralized.
[33] Shipping CO2 is flexible to satisfy the need of each region.

Few studies explore the operations management of CO2 maritime transport. Ref. [34]
indicates that CO2 maritime transport plays a key role in commercialized CO2 capture and
storage projects, as well as demonstration projects. Ref. [35] claims that it is more financially
efficient for ships to carry CO2 throughout the voyage than to sail with ballast on the return
voyage. Additionally, according to [36], transporting CO2 by ship is similar to the way
liquified natural gas (LNG) is transported by LNG carriers, which is a widely studied
process. According to [37], ships carrying CO2 follow the same international standards and
regulations as ships carrying LNG. Ref. [38] studies a short-term LNG delivery problem
and proposes an MIP model with the aim of maximizing the net profit to determine cargo
selection, speed optimization, and fleet deployment. Ref. [39] studies a capacitated vehicle
routing problem to optimize distribution routes of small-scale LNG carriers and conducts
an economic analysis on five mobile power plants located in remote areas of western
Indonesia. Furthermore, Ref. [40] considers a scenario in which dual-purpose ships can
carry CO2 on the return trip after transporting LNG to the destination. These papers and
their research contents are summarized in Table 2. Unlike the LNG transport problem,
which only considers delivery targets, the CCUS problem allows for two CO2 processing
approaches, i.e., CO2 transported by ship and CO2 directly emitted into the atmosphere,
which means that both the amount of CO2 transported by ship and the amount of CO2
emitted into the atmosphere need to be determined in this study. This feature complicates
the original CO2 maritime transport problem, making the CCUS problem require a new
methodology to deal with the unique feature.
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Table 2. Related works on shipping CO2 and LNG.

Literature CO2 Capture CO2 Transport CO2 Storage LNG Transport

[34]
√ √

[35]
√ √

[36]
√ √

[38]
√

[39]
√

[40]
√ √

In summary, existing studies related to the CCUS problem focus on techno-economic
analysis and planning. Although few studies optimize the management of CO2 maritime
transport in the CCUS chain, they do not provide a quantitative methodology for the
ship allocation and scheduling problem in the CCUS chain. To fill this research gap, this
study proposes an MIP model to optimize the allocation and scheduling of CO2 maritime
transport, as well as the storage and transport planning of CO2.

3. Problem Description and Model Formulation

CO2 maritime transport is an intermediate step in the CCUS chain and can be achieved
by ship. Therefore, this study focuses on a carbon storage and transport problem to
optimally determine ship allocation, ship departure scheduling, and CO2 storage and
transport planning. This section first introduces the problem background in Section 3.1 and
formulates an MIP model in Section 3.2.

3.1. Problem Background

We consider a network consisting of a set N of power plants indexed by i and a storage
location indexed by 0. These power plants generate electricity by burning fossil fuels during
a planning horizon containing a set T of time periods, emitting tremendous CO2. A time
period in the planning horizon is defined as a day and indexed by t. Let wit represent the
amount of CO2 produced by power plant i in day t. CO2 produced by all power plants can
be treated in two ways. First, CO2 can be captured and transported to the storage location,
i.e., through the CCUS chain. Second, CO2 can be emitted directly into the atmosphere.
Specifically, CO2 produced by all power plants can be transported to the storage location
(i.e., location 0) by ships of a set of K ship types. As shown in Figure 1, CO2 produced
does not have to be immediately transported to the storage location, which means that CO2
produced by power plant i can be temporarily stored in the power plant whose storage
capacity is denoted by qi and then transported to the storage location, i.e., 0. Furthermore,
there are benefits to transporting CO2 to the storage location rather than emitting CO2
directly into the atmosphere. Thus, let the benefit of transporting a ton of CO2 from power
plants to the storage location compared to emitting a ton of CO2 into the atmosphere be
denoted by r.

Let ak, b, ck, and mk represent the fuel consumption per unit distance traveled by ships
of type k, unit fuel price, time-charter cost of renting a ship of type k for |T| days, and the
CO2 tank capacity of ships of type k, respectively. Let li, and vk represent the total length
of a trip from power plant i (i ∈ N) to the storage location 0 and then back to the power
plant, and the sailing speed of ships of type k, respectively. Therefore, the sailing time
(day), represented by nik, of ships of type k, k ∈ K, to complete a trip from power plant
i (i ∈ N) to the storage location 0 and then back to the power plant can be calculated by
nik = dli/24vke.
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Suppose it is day 0 now, all power plants have no CO2 temporarily stored, and all
ships are at the allocated power plant. All power plants are assumed to produce CO2 and
emit CO2 via the above mentioned two ways. Furthermore, CO2 loading and unloading
time is assumed to be 0. Therefore, all scheduled ships depart from the power plant at
the beginning of each day. An MIP model is formulated in the next section to maximize
the benefit of CCUS minus the associated costs. Specifically, the CCUS benefit can be
calculated by ∑i∈N ∑t∈T γitr, where γit is defined as the amount of CO2 transported by
ships departing from power plant i to the storage location in day t. In terms of the associated
costs, two types of costs are considered. The first type of cost is the time-charter cost which
can be calculated by ∑i∈N ∑k∈K ckαik, where αik is defined as the number of charter-in ships
of type k, k ∈ K, allocated to power plant i, i ∈ N. The second type of cost is the fuel cost
which can be calculated by ∑i∈N ∑k∈K ∑t∈T εiktbakli, where εikt represents the number of
ships of type k, k ∈ K, departing from power plant i, i ∈ N, at the beginning of day t, t ∈ T.

For constraints, several factors need to be considered. Specifically, CO2 flow calculation
at each power plant on each day is first introduced. Let δit represent the amount of CO2
stored at power plant i at the end of the day t, t ∈ T ∪ {0}, and δi0 = 0 because all power
plants have no CO2 temporarily stored on day 0. Therefore, δit at power plant i, i ∈ N, at
the end of the day t, t ∈ T, can be calculated by δi,t−1 + wit − βit − γit, where βit is denoted
as the amount of CO2 emitted by power plant i to the atmosphere at the beginning of day
t. Moreover, the amount of CO2 stored at power plant i at the end of the day t cannot
exceed the CO2 storage capacity of power plant i, i.e., qi. For ship chartering constraints,
we assume that once a ship is chartered in a power plant, it needs to be chartered in that
power plant for the entire planning period, and each ship can serve only one power plant
during the entire planning period. Moreover, the total number of charter-in ships of type
k allocated to all power plants cannot be greater than the maximum number of ships of
type k that can be chartered in, represented by dk. Finally, the total number of ships sailing
along the trip from power plant i to the storage location and back to the power plant each
day cannot be greater than the total number of charter-in ships allocated to power plant i.
For CO2 transport constraints, the total amount of CO2 transported from each power plant
on each day cannot be greater than the total capacity of all ships departing on that day.

In summary, this study investigates a carbon storage and transport problem for the
CCUS chain to optimally determine ship allocation, ship departure scheduling, and CO2
storage and transport planning. From the perspective of the power plants’ profitability,
this study develops an MIP model to maximize the benefit of the CCUS chain minus the
associated costs, including the time-charter cost and fuel cost.
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3.2. Model Formulation

Based on the above analysis of the problem, we formulate an MIP model in this section.
This study assumes that CO2 loading and unloading time is 0. Before formulating the
mathematical model for this problem, we list the notation used in this paper as follows.

Indices and sets:

N set of all power plants, i ∈ N.
0 index of the storage location.
K set of all ship types, k ∈ K.
T set of all days in the planning horizon, t ∈ T.
Z+ set of all non-negative integers.

Parameters

ak fuel consumption per unit distance traveled by ships of type k (ton/n mile).
b unit fuel price (USD/ton).
ck time-charter cost of renting a ship of type k for |T| days (USD).
dk maximum number of ships of type k that can be chartered in.
li total length of a trip from power plant i (i ∈ N) to the storage location 0 and then back

to the power plant (n mile).
mk CO2 tank capacity of ships of type k (ton).
vk sailing speed of ships of type k (k ∈ K) (n mile/hour).
qi CO2 storage capacity of power plant i (ton).
r benefit of transporting a ton of CO2 from power plants to the storage location (i.e., 0)

compared to emitting a ton of CO2 into the atmosphere (USD/ton).
nik sailing time of ships of type k to complete a trip from power plant i (i ∈ N) to the

storage location 0 and then back to the power plant, which is related to li and vk (day).
wit amount of CO2 produced by power plant i in day t (ton).

Variables

αik integer, the number of charter-in ships of type k, k ∈ K, allocated to power plant i,
i ∈ N.

εikt integer, the number of ships of type k, k ∈ K, departing from power plant i, i ∈ N, at
the beginning of day t, t ∈ T.

βit continuous, the amount of CO2 emitted by power plant i to the atmosphere at the
beginning of day t.

γit continuous, the amount of CO2 transported by ships departing from power plant i to
the storage location in day t.

δit continuous, the amount of CO2 stored at power plant i at the end of the day t,
t ∈ T ∪ {0}, where, by convention, δi0:=0 .

Mathematical model
Based on the above definition of parameters and variables, an MIP model is formulated

as follows.

[M1] Max∑i∈N ∑t∈T γitr−∑i∈N ∑k∈K ckαik −∑i∈N ∑k∈K ∑t∈T εiktbakli (1)
subject to: ∑i∈N αik ≤ dk ∀k ∈ K (2)

∑t′∈T(t−nik<t′≤t) εikt′ ≤ αik
∀i ∈ N, k ∈ K, t ∈
T/{1, 2, · · · , nik − 1} (3)

∑t
t′=1 εikt′ ≤ αik

∀i ∈ N, k ∈ K, t ∈
{1, 2, · · · , nik − 1} (4)

δit = δi,t−1 + wit − βit − γit ∀i ∈ N, t ∈ T (5)
δi0 = 0 ∀i ∈ N (6)
γit ≤ ∑k∈K mkεikt ∀i ∈ N, t ∈ T (7)
δit ≤ qi ∀i ∈ N, ∀t ∈ T ∪ {0} (8)
αik ∈ Z+ ∀i ∈ N, k ∈ K (9)
εikt ∈ Z+ ∀i ∈ N, k ∈ K, t ∈ T (10)
βit, γit ≥ 0 ∀i ∈ N, t ∈ T (11)
δit ≥ 0 ∀i ∈ N, t ∈ T ∪ {0} (12)
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Objective (1) maximizes the benefit of the CCUS chain minus the time-charter cost
and fuel cost. Constraints (2) guarantee that the total number of charter-in ships of type k
allocated to all power plants cannot exceed the maximum number of ships of type k that
can be chartered in. Constraints (3)–(4) ensure that the total number of ships sailing along
the trip from power plant i to the storage location and back to the power plant on each day
cannot exceed the total number of charter-in ships allocated to power plant i. Constraints (5)
are the CO2 flow constraints at each power plant on each day. Constraints (6) guarantee
that all power plants have no CO2 temporarily stored on day 0. Constraints (7) ensure
that the total amount of CO2 transported from each power plant on each day cannot be
greater than the total capacity of all allocated ships departing on that day. Constraints (8)
guarantee that the amount of CO2 stored at power plant i on each day cannot exceed the
CO2 storage capacity of power plant i. Constraints (9)–(12) state the ranges of the defined
decision variables.

Proposition 1. The following model [M2] is equivalent to the previous model [M1].

[M2] Objective (1)
subject to: Constraints (2), (3), (5)–(12).

Proof. For Constraints (3), when the value of t is equal to nik, we have εik1 + εik2 + · · ·+
εik(nik−1) + εiknik

≤ αik, ∀i ∈ N, k ∈ K. All Constraints (4) are summarized as follows:

εik1 ≤ αik, ∀i ∈ N, k ∈ K
εik1 + εik2 ≤ αik, ∀i ∈ N, k ∈ K

...
εik1 + εik2 + · · ·+ εik(nik−1) ≤ αik, ∀i ∈ N, k ∈ K.

Since εikt ∈ Z+, and for any i ∈ N, any k ∈ K, and any t ∈ T, we have εik1 ≤
εik1 + εik2 ≤ · · · ≤ εik1 + εik2 + · · · + εik(nik−1) ≤ εik1 + εik2 + · · · + εik(nik−1) + εiknik

. If
constraints (3) are satisfied, constraints (4) must be satisfied. Therefore, constraints (4) can
be removed, and model [M2] is equivalent to the previous model [M1]. �

4. Computational Experiments

Numerous computational experiments are conducted on a PC (14 cores of CPUs,
2.5 GHz, Memory 64 GB) to assess the proposed model. The mathematical model proposed
in this study is implemented in Gurobi 10.0.0 (Anaconda, Python). This section first
summarizes the value setting of the parameters in Section 4.1, reports experimental results
in Section 4.2, and carries out sensitivity analyses to seek managerial insights in Section 4.3.

4.1. Experimental Setting

The total duration of the planning horizon is set to one week, namely 7 days. A 300 by
300 (n mile) simulation environment is developed to simulate a network area. All power
plants and a storage location are uniformly distributed over the network area. The total
length of a trip from a power plant to the storage location and then back to the power plant
(li) is the Euclidean distance. Then, values of nik can be calculated by nik = dli/24vke. Since
a 25-year-old coal-fired 425 megawatt (MW) power plant in Australia currently produces
about two million tons per annum (Mtpa) of CO2 [41], the average value of the amount of
CO2 produced by each power plant on each day is set to 6040 tons (a normal distribution
with a standard deviation of 200). [41] indicates that the value of the CCUS benefit is
described as the carbon social cost or the real value of the damage caused to society by a ton
of CO2 emitted to the atmosphere. According to a technical guidance document issued by
an interagency working group on the social cost of greenhouse gases (SC-GHG) reconvened
by the Biden administration [42], the new interim value for the social cost of CO2 is 51 USD
per metric ton of CO2 at a 3% discount rate. Therefore, r is set to 46.3 USD/ton. Three
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types of ships are available in the computational experiments, and the value settings of
relevant parameters, namely vk, ak, mk, ck, and dk, are summarized in Table 3. The setting
of parameters vk, ak, mk, and ck is the same as the setting in [43]. Since the average price of
very low sulfur fuel oil (VLSFO) in 20 global ports from the beginning of September 2021
to the end of August 2022 is 717 USD/ton [44], the unit fuel price (b) is set to 717 USD/ton.
The average value of the CO2 storage capacity of each power plant is set to 10,000 tons
(a normal distribution with a standard deviation of 100).

Table 3. Setting summary of five parameters.

Ship Type 1 2 3

Ship size small medium large
vk (n mile/hour) 13 14 16
ak (ton/n mile) 0.0641 0.0893 0.1172

mk (ton) 9400 11,000 15,000
ck (USD) 46,900 54,600 74,550

dk 20 20 20

4.2. Experimental Results

Model [M2] is directly solved by Gurobi. We conduct 10 sets of small-scale instances
(each with 10 power plants), 10 sets of medium-scale instances (each with 30 power plants),
and 10 sets of large-scale instances (five with 60 power plants and five with 65 power
plants). The solution time limit for each computational instance is one hour.

Table 4 records the computing time and objective values of the solutions obtained by
Gurobi. To enhance readability and better highlight the results, we keep objective values as
integers and round the computing time to two decimal places in the following tables. The
“Gap” value is expressed as a percentage, representing the relative difference between the
current best solution and the current best dual bound. As shown in Table 4, the number
of power plants has a significant impact on the difficulty of solving the proposed MIP
model. A small increase in the number of power plants may greatly affect the solution
quality of the model. All small- and medium-scale instances can be solved to optimality
by Gurobi within 14.33 s. Specifically, for small-scale instances with 10 power plants,
the problems can be solved quickly (within 3.56 s). The solution time of medium-scale
instances with 30 power plants varies. The fastest-solving and slowest-solving medium-
scale instances can be solved to optimality within 6.27 s and 14.33 s, respectively. For large-
scale instances with 60 and 65 power plants, feasible solutions with average gap values
of 0.06% and 6.93% can be obtained by Gurobi within one hour, which is by far enough
to meet the solution requirements of practical examples. Hence, the solution efficiency
of the proposed mathematical model for small-, medium-, and large-scale computational
instances is verified.

Table 4. Comparison of Different Scale Instances.

Scale Type Number of
Power Plants No. Objective

Value (USD) Time (s) Gap (%)

Small 10

1 18,488,070 3.51 –
2 18,685,312 0.61 –
3 18,718,096 0.50 –
4 18,932,070 0.48 –
5 18,680,620 0.58 –
6 18,610,402 3.56 –
7 18,609,668 0.64 –
8 18,637,785 0.53 –
9 18,896,223 0.62 –

10 18,737,553 0.53 –
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Table 4. Cont.

Scale Type Number of
Power Plants No. Objective

Value (USD) Time (s) Gap (%)

Medium 30

1 56,453,748 6.27 –
2 56,661,330 6.62 –
3 56,404,237 7.23 –
4 56,200,587 6.83 –
5 55,932,114 11.45 –
6 56,180,227 14.33 –
7 56,141,059 7.58 –
8 55,905,737 11.47 –
9 56,315,341 12.51 –

10 56,223,681 9.03 –

Large

60

1 112,083,178 3600.50 0.04
2 111,322,988 3605.51 0.08
3 111,676,064 3603.92 0.05
4 111,193,998 3605.55 0.05
5 111,616,979 3605.57 0.07

65

1 111,943,020 3600.73 7.03
2 112,109,654 3603.69 6.85
3 112,178,272 3604.25 6.94
4 111,723,484 3606.13 6.98
5 112,352,265 3603.52 6.83

Note: The en dash denotes an optimal solution is found within one hour.

4.3. Sensitivity Analyses

In the above computational experiments, some critical parameters, such as the unit
fuel price (b), the time-charter cost of renting a ship k for |T| days (ck), and the ship sailing
speed (vk), are set fixed, even though they are not always the same in real life. As a result,
we use the instance with 10 power plants (No.10) in Table 4 to conduct sensitivity analyses
on these parameters to explore their impacts on operations decisions.

4.3.1. Impact of the Fuel Price

First, the impact of the fuel price on the allocation and scheduling of ships transporting
CO2 is investigated. In the experiments in Section 4.2, the unit fuel price (b) is set to
717 USD/ton. Since the highest and lowest prices of VLSFO in 20 global ports from the
beginning of September 2021 to the end of August 2022 are 1021 USD/ton and 491 USD/ton,
respectively [44], the unit fuel price (b) in this analysis varies from 450 to 1050. As shown
in Table 5, the objective value decreases as the fuel price increases, which implies that a
higher fuel price leads to a higher fuel cost, further leading to a lower profit for the CCUS
chain. This is reasonable because the fuel cost is one of the main operating costs and is in
line with the conclusions of [45].

Table 5. Impact of the fuel price on the profit of the CCUS chain.

b (USD/Ton) Objective Value (USD)

450 18,864,030
550 18,816,661
650 18,769,291
750 18,721,921
850 18,674,552
950 18,627,182
1050 18,579,813
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4.3.2. Impact of the Time-Charter Cost

Next, this study investigates the impact of the time-charter cost on the allocation and
scheduling of ships transporting CO2. In the experiments in Section 4.2, the time-charter
costs of renting a ship k for |T| days (ck) are set to 46,900 USD, 54,600 USD, and 74,550 USD,
corresponding to ship types 1, 2, and 3, respectively. Table 6 shows the objective value
when the relative change of the charter cost (namely the current charter cost minus the
original charter cost and then divided by the original charter cost) ranges between –60%
and +60%, which is consistent with the setting in [43]. It can be concluded from Table 6 that
the higher the time-charter cost, the lower the objective value, which is reasonable because
the objective value is the revenue of the CCUS chain minus the time-charter cost and fuel
cost, and a greater relative change in the charter cost leads to a higher time-charter cost,
further leading to a lower objective value.

Table 6. Impact of the time-charter cost on the profit of the CCUS chain.

Relative Change of
Charter Cost

Objective Value
(USD)

Relative Change of
Charter Cost

Objective Value
(USD)

−60% 19,018,953 10% 18,690,653
−50% 18,972,053 20% 18,643,753
−40% 18,925,153 30% 18,596,853
−30% 18,878,253 40% 18,549,953
−20% 18,831,353 50% 18,503,053
−10% 18,784,453 60% 18,456,153

4.3.3. Impact of the Ship Sailing Speed

Finally, this study investigates the impact of ship sailing speed on the allocation and
scheduling of ships transporting CO2. In the experiments in Section 4.2, ship sailing speeds
(vk) of ship types 1, 2, and 3 are set to 13 n mile/hour, 14 n mile/hour, and 16 n mile/hour,
respectively. Considering the variation of the ship sailing speed under different conditions
in related studies [43,46], this study adopts eight different speed combinations of three
ship types to carry out this sensitivity analysis. Relevant results are recorded in Table 7,
which records sailing speeds of ship types 1, 2, and 3, represented by “v1”, “v2”, and
“v3”, respectively. From Table 7, it can be seen that the objective value goes up with the
increase in ship sailing speed, but when values of v1, v2, and v3 exceed 10, 11, and 12,
respectively, the objective value does not change. This is reasonable because the higher the
ship sailing speed, the shorter the ship sailing time. Increasing the profit of the CCUS chain
by transporting more CO2 outweighs the increasing fuel cost, resulting in an increase in the
objective value. As ship sailing speed increases to a certain level where the increased profit
of the CCUS chain is in balance with the increased fuel costs, the objective value remains
the same.

Table 7. Impact of the ship sailing speed on the profit of the CCUS chain.

No. v1
(n Mile/Hour)

v2
(n Mile/Hour)

v3
(n Mile/Hour)

Objective Value
(USD)

1 6 7 8 18,549,953
2 8 9 10 18,724,714
3 10 11 12 18,737,553
4 12 14 15 18,737,553
5 14 16 17 18,737,553
6 16 18 19 18,737,553
7 18 20 21 18,737,553
8 20 22 23 18,737,553
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4.4. Summary of Test Results and Managerial Insights

This study first conducts 10 sets of small-scale instances (each with 10 power plants),
10 sets of medium-scale instances (each with 30 power plants), and 10 sets of large-scale
instances (five with 60 power plants and five with 65 power plants). The results show
that the proposed model can be solved quickly by Gurobi, namely within 14.33 s for all
small- and medium-scale instances. For large-scale instances with 60 and 65 plants, feasible
solutions with average gap values of 0.06% and 6.93% can be obtained within one hour,
which is by far enough to meet the solution requirements for practical examples. Then, this
study conducts sensitivity analyses with three important parameters, including the fuel
price, the time-charter cost, and the ship sailing speed, to obtain useful managerial insights
for CCUS companies. Through our sensitivity analysis experiments, we find that the total
profit decreases as the fuel price or the time-charter cost increase. Furthermore, the total
profit increases with the increase in ship sailing speed, but when sailing speeds of ships of
types 1, 2, and 3 exceed 10, 11, and 12, respectively, the total profit remains unchanged as
the speeds increase.

5. Conclusions

The greenhouse effect with increasing CO2 emissions is a major environmental prob-
lem for mankind. To address the greenhouse effect issue, CCUS technology is an important
means of centralized CO2 treatment. However, most of the existing studies focus on the
techno-economic analysis and planning of CCUS. Although few studies explore how to
optimize the management of CO2 transport by ship in the CCUS chain, they lack quantita-
tive approaches to the ship allocation and scheduling problems in the CCUS chain. To fill
this research gap, this study first formulates an MIP model [M1] and transforms it to an
equivalent model [M2] based on a proposed proposition to optimize ship allocation, ship
departure scheduling, and CO2 storage and transport planning in a carbon storage and
transport problem for the CCUS chain.

Contributions of this paper are summarized in the following two aspects: first, the
proposed model [M1] may help CCUS companies to optimally determine the number of
charter-in ships allocated to each plant, the number of ships departing from power plants,
the amount of CO2 emitted to the atmosphere, the amount of CO2 transported by ship,
and the amount of CO2 stored at power plants. Taking advantage of the structure of the
problem, we transform the mixed-integer programming model [M1] into a simpler model
[M2] that can be computed efficiently. The model [M2] can be solved quickly by Gurobi,
which is by far enough to meet the solution requirements for practical examples. Second,
sensitivity analyses with three important parameters, i.e., the fuel price, the time-charter
cost, and the ship sailing speed, are conducted to obtain useful managerial insights for
CCUS companies. In general, a lower fuel price, a lower charter cost, or a higher ship
sailing speed can increase the profit of the CCUS chain.

However, this study has some potential extensions for the current methodology. First,
a real case study with realistic settings could be conducted for more managerial insights.
Second, the study does not take into account the uncertainty of the fuel price [47–51].
Considering the fuel price uncertainty may make the study more realistic as the fuel price
fluctuates with time, refueling location, and other factors [52]. Third, this study assumes
that ships sail at a constant speed. However, ship sailing speed has a significant impact on
ship fuel consumption and thus influences the fuel cost [53], which may be considered in
future studies. Finally, the applications of multi-purpose ships in CO2 transport [35], big
data [54–62], digitalization technologies [48,63,64], as well as blockchain in logistics [65–67],
and green supply chain management [68–71] can be studied in the future.
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