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Abstract

:

Deep learning models with convolutional operators have received widespread attention for their good image denoising performance. However, since the convolutional operation prefers to extract local features, the extracted features may lose some global information, such as texture, structure, and color characteristics, when the object in the image is large. To address this issue, this paper proposes an N-shaped convolutional neural network with the ability to extract multi-scale features to capture more useful information and alleviate the problem of global information loss. The proposed network has two main parts: a multi-scale input layer and a multi-scale feature extraction layer. The former uses a two-dimensional Haar wavelet to create an image pyramid, which contains the corrupted image’s high- and low-frequency components at different scales. The latter uses a U-shaped convolutional network to extract features at different scales from this image pyramid. The method sets the mean-squared error as the loss function and uses the residual learning strategy to learn the image noise directly. Compared with some existing image denoising methods, the proposed method shows good performance in gray and color image denoising, especially in textures and contours.
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1. Introduction


Image denoising is one of the basic tasks of computer vision and is of wide interest to academia and industry, as it can effectively improve image quality. The purpose of image denoising is to remove noise from a corrupted image and restore its original content as much as possible. In many computer vision tasks, image denoising is often used as a preprocessing method to improve the practical performance of advanced computer vision tasks [1]. Over the past few decades, many outstanding image denoising methods, as shown in Figure 1, have been proposed, including filtering-based [2,3], sparse-representation-based [4,5,6,7,8], external-prior-based [9,10,11,12], low-rank-representation-based [13,14], and deep-learning-based methods [15,16,17,18].



Filtering-based methods were the first techniques to be applied to image denoising and rely on the self-similarity of images. Well-known approaches include Gaussian filtering, mean filtering, and median filtering. These three methods assume that the pixels in an image do not exist in isolation and have connections to other pixels. However, Buades et al. [2] found that similar pixels are not limited to local areas, and making full use of the redundant information in an image can improve the image denoising performance. Hence, they proposed a nonlocal mean filtering method (NLM) based on existing smoothing filtering methods. Although NLM can achieve good denoising performance, it needs to find a sufficient number of similar blocks when computing each pixel, which gives it high computational complexity. To solve this problem, Kostadin et al. [3] proposed a block-matching and 3D filtering (BM3D) method, which has a good denoising performance and fast computational speed.



Sparse-representation-based methods are based on image sparsity and achieve image denoising by training an over-complete dictionary. A more representative case is the K-singular value decomposition (KSVD) method using sparse representation [4]. Inspired by KSVD, Mairal et al. [5] combined image self-similarity with sparse coding to decompose similar patches using similar sparse patterns, thus forming a Learned Simultaneous Sparse Coding (LSSC) method. Although sparse representation models have shown good results in image denoising, the sparse representation of traditional models may not be accurate enough due to the degradation of the observed images. To further improve the performance of image denoising based on sparse representation, Dong et al. [6] proposed a nonlocally centralized sparse representation (NCSR), which transformed the denoising problem into a problem of suppressing sparse coding noise. In addition, because the sparse coding of images using a single transform can limit performance, Wen et al. [7] proposed a structured over-complete sparsifying transform model with block cosparsity (OCTOBOS). These methods [4,5,6,7] have exhibited good results in denoising additive Gaussian white noise (AWGN); however, it is difficult to obtain good performance in real image denoising. To achieve better denoising of real images, Xu et al. [8] proposed a trilateral weighted sparse coding scheme (TWSC).



External-prior-based methods realize image denoising by using the statistical properties of natural images. A representative method is the denoising method based on expected patch log likelihood (EPLL) proposed by Zoran and Weiss [9]. This method applies the Gaussian mixture model to learn prior knowledge from a large number of natural image blocks and applies it to the denoising of other natural images. Similar to EPLL, Xu et al. [10] proposed a patch group prior-based denoising method (PGPD) to learn the self-similar features of natural images from groups of similar patches using the Gaussian mixture distribution. Inspired by EPLL, Chen et al. [11] proposed an external patch prior-guided internal clustering approach by combining an image external prior and an internal self-similarity prior, which is named PCLR. To improve the texture restoration capability of the image denoising method, Zou et al. [12] proposed a gradient histogram preservation method (GHP) based on texture enhancement. GHP improves texture recovery by preserving the gradient distribution of the corrupted image.



Low-rank representation-based methods exploit the low-rank properties of natural images and achieve denoising by extracting their low-rank components. A typical case is the Weighted Nuclear Norm Minimization (WNNM) proposed by Gu et al. [13]. Low-rank matrix factorization is also a method used to extract low-rank components from a dataset and is often applied in cases where the image size is large and its rank is much smaller than the length and width of the dataset. The most well-known method is the low-rank matrix factorization based on variational Bayesian (VBMFL), which was proposed by Zhao et al. [14]. This method improves the robustness of the model to outliers by using a Laplace distribution to establish a noise model.



Deep-learning-based denoising methods are currently the most popular. They usually learn the direct mapping from the corrupted image to the clean image or the noise. Since deep-learning-based denoising methods do not rely on image priori (e.g., self-similarity, sparsity, gradient, statistical properties, and low-rank properties), they do not have to spend much time finding and processing similar blocks in the images. Thus, they not only achieve a good denoising performance but also have a fast inference speed. Schmidt et al. [15] proposed a method based on a cascade of shrinkage fields (CSF) to improve the denoising performance while considering computational efficiency. Chen et al. [16] extended conventional nonlinear reaction–diffusion models with several parametrized linear filters as well as several parametrized influence functions and proposed a trainable nonlinear reaction–diffusion method (TNRD). Although CSF and TNRD show good denoising performance, they can only provide the best denoising results at known noise levels. To solve the problem of blind image denoising, Zhang et al. [17] proposed a deep learning method using a denoising convolutional neural network (DnCNN), which was the first application of residual learning to general image denoising. The application of residual learning to image denoising has greatly improved the denoising performance of networks and inspired many outstanding denoising methods based on deep learning [17,18,19,20,21,22]. In addition, Zhang et al. [18] further improved the DnCNN and proposed a fast and flexible denoising convolutional neural network (FFDNet), which achieves a good trade-off between the inference speed and denoising performance by downsampling and manually inputting a noise estimation map. Binh et al. [23] combined DnCNN with ResNet and proposed a convolutional denoising neural network called FlashLight CNN. A complex-valued deep convolutional neural network called CDNet was proposed by Quan et al. [24], and it effectively improved the denoising performance of the network. Guan et al. [25] proposed an image denoising method for remote sensing images called MRFENet. It demonstrated good denoising performance and preserved the edge details of the images. Zhang et al. [26] utilized dilated convolutions to capture more contextual information and then proposed a hybrid denoising neural network called HDCNN to enhance the denoising performance of CNN networks in complex application scenarios. Tian et al. [27] combined dynamic convolution, wavelet transform, and discriminative learning to propose a convolutional neural network based on the wavelet transform called Multi-stage Image Denoising CNN with the Wavelet Transform (MWDCNN). To reduce the parameter size and training burden of deep denoising networks, Tang et al. [28] employed a cascaded residual network and proposed a lightweight, multi-scale, efficient convolutional neural network.



The results of most denoising methods are obtained directly from the fusion of high-level features, while low-level features containing texture and contour information are ignored, resulting in the loss of some important information. Furthermore, since the convolutional operation prefers to extract local features, it is difficult to extract global information such as textures and contours when the objects in the image are relatively large. To solve these problems, an N-shaped convolutional neural network, named NSNet, using multi-scale features is proposed in this paper. In this model, a 2D Haar wavelet is used to construct an image pyramid that contains high- and low-frequency components of the corrupted image at different scales. The multi-scale features are extracted from the image pyramid by a U-shaped convolutional network [29], and the low- and high-level features are fused by skip connections in the U-shaped network. The 2D Haar wavelet is widely used in image denoising, and many scholars have achieved excellent denoising performance with it [30,31,32,33]. To verify the denoising performance of NSNet, the denoising of gray and color images was carried out at different noise levels and compared with existing denoising methods. The contributions of this work are summarized as follows:




	(1)

	
An N-shaped convolutional neural network for extracting multi-scale information is proposed. The network exploits multi-scale information to compensate for the drawbacks of convolutional operations in extracting global features, which effectively improves the network’s ability to recover textures and contours.




	(2)

	
A scheme for constructing image pyramids using a 2D Haar wavelet is proposed. The image pyramid is obtained by using a multi-scale 2D Haar wavelet, and each layer of the pyramid contains one low-frequency component and three high-frequency components. In image denoising, the high-frequency components can be used as an estimate of the noise level to facilitate denoising.




	(3)

	
NSNet shows good denoising performance for AWGN at a noise level range of (0, 55) and good recovery of textures and contours. It provides a solution for applications that need not only denoising but also texture and contour recovery.









The rest of this paper is organized as follows. Section 2 presents the techniques involved in the proposed model. Section 3 describes the proposed NSNet and the construction of the image pyramid in detail. Section 4 presents the results of experiments, and Section 5 concludes the paper.




2. Theoretical Aspects


2.1. The 2D Haar Wavelet


The process of decomposing an image using the 2D Haar wavelet is shown in Figure 2. The blocks with five-pointed stars in the figure are the finite impulse response filter.     h   φ   = { 1 ⁄  2  , 1 ⁄  2  }   denotes a low-pass filter, and     h   ψ   = { − 1 ⁄  2  , 1 ⁄  2  }   denotes a high-pass filter. The down arrow (  ↓  ) indicates downsampling, which means adding two adjacent pixels in the column or row direction.



The image is first processed with the two filters separately and is compressed in the column direction to obtain a low-frequency component   L   and a high-frequency component   H  . The two components are then processed with low- and high-pass filters in turn and compressed in the row direction to obtain the low-frequency component   L L  , the high-frequency component   L H   in the vertical direction, the high-frequency component   H L   in the horizontal direction, and the high-frequency component   H H   in the diagonal direction. According to the principle of 2D Haar wavelets, assuming that the corrupted image is   X ∈   R   m × n    , the formulas for the components of the image can be simplified as


    A   i j   = X   2 i , 2 j   ,       B   i j   = X   2 i + 1,2 j    



(1)






    C   i j   = X   2 i , 2 j + 1   ,       D   i j   = X   2 i + 1,2 j + 1    



(2)






  L   L   i j   =   1   2       A   i j   +   B   i j   +   C   i j   +   D   i j     ,     H   L   i j   =   1   2       B   i j   +   D   i j   −   A   i j   −   C   i j      



(3)






  L   H   i j   =   1   2       C   i j   +   D   i j   −   A   i j   −   B   i j     ,     H   H   i j   =   1   2       A   i j   +   D   i j   −   B   i j   −   C   i j      



(4)




where   { i | 0 ≤ i ≤   m  /  2   }   and   { j | 0 ≤ j ≤ n }  . The two-scale 2D Haar wavelet applied to the image “Monarch” is shown in Figure 3. Through the 2D Haar wavelet, the image is decomposed into three high-frequency components (  L H  ,   H L  ,   H H  ) and a low-frequency component (  L L  ).




2.2. U-Shaped Convolutional Network


The U-shaped convolutional network was first proposed by Ronneberger et al. [29]. The network has been widely used in various fields for its powerful encoding and decoding capabilities [34,35]. The U-shaped convolutional network includes four downsampling operators and four upsampling operators and uses skip connections at the same stage, which not only gives the network the ability to extract multi-scale features but also ensures that the output integrates more low-level features [21]. The structure of the U-shaped convolutional network with batch normalization (BN) is shown in Figure 4.



When the neural network becomes very deep, an internal covariate offset may occur, which can lead to two problems: (1) it affects the learning efficiency and makes the learning process unstable, and (2) it makes the input data of the later layers too large or small, thus falling into the saturation area of the activation function and causing the learning process to stop prematurely. To solve the problem of the internal covariate offset, a general approach is to add BN, as proposed by Ioffe and Szegedy [36], to the U-shaped convolutional network.



The BN layer is usually placed between the convolutional operation and the Rectified Linear Unit (ReLU), and the parameters of the BN layer are adjusted by training. Supposing that there is a mini-batch   B = {   X   1 ⋯ m   }   of size   m  , and the parameters to be learned are   γ   and   β  , the BN process can be expressed as


  γ =  V a r [ x ]  ,     β = E   x   ,  



(5)






    μ   B   =   1   m     ∑  i = 1   m      x   i     ,       δ   B   2   =   1   m     ∑  i = 1   m      (   x   i   −   μ   B   )   2     ,  



(6)






      x  ^    i   =     x   i   −   μ   B        δ   B   2   + ε    ,       y   i   = γ     x  ^    i   + β ,  



(7)




where   ε   is a constant added to the mini-batch variance for numerical stability.




2.3. Residual Learning


When the network becomes very deep, some convolutional layers may appear to have identity mapping, resulting in degradation problems and vanishing and exploding gradients. To solve this problem, He et al. [37] proposed a residual network with the residual block shown in Figure 5. It connects the input and output directly through a shortcut connection, allowing   F ( x )   to learn small changes. This not only allows the convolutional layer to maintain identity mapping but also avoids vanishing and exploding gradients. The relationship between the input   x   and output     x   *     of the residual block is


    x   *   = F ( x ) + x .  



(8)







In image denoising, when the noise level is low, the mapping from the noisy image to the clean image is close to an identity mapping, which is not conducive to the training of the network. To solve this problem, Zhang et al. [17] first applied residual learning to image denoising. Assuming that the input image is   I n p u t   and the output image is   O u t p u t  , their relationship is


  F ( x ) = O u t p u t − I n p u t .  



(9)







It can be seen from (9) that residual learning for image denoising uses noise as the training target, which is a valuable technique for improving the denoising performance of the model.





3. The Proposed NSNet Model


In this section, the proposed NSNet model is introduced in detail; its architecture is shown in Figure 6. It mainly consists of a multi-scale input layer and a multi-scale feature extraction layer. The multi-scale input layer uses a 2D Haar wavelet to create an image pyramid, which decomposes the corrupted image into high- and low-frequency components at different scales. The multi-scale feature extraction layer uses a U-shaped convolutional network to extract features at different scales from the image pyramid. Additionally, NSNet sets the mean-squared error as the loss function and uses the residual learning strategy to learn the noise directly.



The 2D Haar wavelet can decompose the image into four sub-images, each with a size half that of the original image. By using a 2D Haar wavelet to decompose the image, we can obtain


    L L   1   ,   L   H   1   , H   L   1   , H   H   1     = d w t   y   ,  



(10)




where   d w t ( · )   represents the 2D Haar wavelet,   y   is the corrupted image,   L   L   1     is the low-frequency component, and   L   H   1    ,   H   L   1    , and   H   H   1     are the high-frequency components. Then, the 2D Haar wavelet is applied once again to the low-frequency component     L L   1     to obtain


    L L   2   ,   L   H   2   , H   L   2   , H   H   2     = d w t   L   L   1     ,  



(11)







Finally, to obtain the image pyramid shown in Figure 7, the same operation is repeated twice, resulting in


    L L   3   ,   L   H   3   , H   L   3   , H   H   3     = d w t   L   L   2     ,  



(12)






    L L   4   ,   L   H   4   , H   L   4   , H   H   4     = d w t   L   L   3     .  



(13)







The image pyramid contains images at five different scales, each of which corresponds to a different stage of the U-shaped convolutional network. In addition to the original scale, each scale contains a low-frequency component   L L   and three high-frequency components   L H  ,   H L  , and   H H  . As shown in Figure 7, the low-frequency component is close to the corrupted input image, while the high-frequency components contain a lot of noise and some textures, which can be considered an estimate of the noise level.



The image degradation model is established as   y = x + v  , where   y   denotes the corrupted image,   x   denotes the clean image, and   v   denotes the noise. The proposed model inputs the corrupted image   y   into the network to predict the noise   v ≈ F ( y )   and finally obtains the clean image   x = y − v   through simple subtraction. The mean-squared error is used as the loss function:


  L ( θ ) =   1   2 N     ∑  i = 1   N      |   F     y   i   ; θ   −     y   i   −   x   i       |   F   2     ,  



(14)




where   θ   represents the parameter set of the model,   N   is the total number of images, and     x   i     and     y   i     represent the ith clean image and noisy image, respectively.



For convenience, the proposed model trained at a known noise level is named NSNet-S, and the model trained at an unknown noise level is named NSNet-B. The pseudo-code of the proposed method is shown in Algorithm 1.



	
Algorithm 1 The algorithm of NSNet




	
Input: All training images D from the observed dataset, denoising mode (B or S), noise level   n o i s e L  , range of noise level   n o i s e R  , maximum epoch   M e p o c h  .

Output: The trained network   f  .




	
1:

	
Initialing model parameters   θ   and learning rate   η  ;




	
2:

	
Sampling   m   patches   (   x   1   , ⋯ ,   x   m   )   from D;




	
3:

	
for epoch = 1 to   M e p o c h   do




	
4:

	
 if epoch > 30 then




	
5:

	
     η ←   η  /  10    ;




	
6:

	
 end if




	
7:

	
 Set     g  ^  = 0  ;




	
8:

	
 for   i = 1   to   m   do




	
9:

	
   if mode == “B” then




	
10:

	
      Setting   n o i s e L   as an integer at the range   n o i s e R   randomly;




	
11:

	
    end if




	
12:

	
   Adding Gaussian noise with the noise level of   n o i s e L   to     x   i    :




	

	
    y   i   =   x   i   +   n o i s e   i    ;




	
13:

	
   Performing multi-scale wavelet transform on     y   i     to obtain     y   i   1    ,     y   i   2    ,     y   i   3    ,     y   i   4    :




	

	
    y   i   1   = {   L L   1   , L   H   1   , H   L   1   , H   H   1   } = d w t     y   i      ,     y   i   2   =     L L   2   , L   H   2   , H   L   2   , H   H   2     = d w t   L   L   1      ,     y   i   3   =     L L   3   , L   H   3   , H   L   3   , H   H   3     = d w t   L   L   2      ,     y   i   4   = {   L L   4   , L   H   4   , H   L   4   , H   H   4   } = d w t     L L   3      ;




	
14:

	
   Predicting noise using the network   f   with parameter   θ  :




	

	
  o u   t   i   ← f     y   i   ,   y   i   1   ,   y   i   2   ,   y   i   3   ,   y   i   4   ; θ    ;




	
15:

	
   Calculating the loss according to Equation (14);




	
16:

	
   Computing the gradient:     g  ^  ←   g  ^  +   1   m     ∇   θ   L   θ    ;




	
17:

	
  end for




	
18:

	
 Updating   θ  :   θ ← θ − η ×   g  ^   ;




	
19:

	
end for










4. Experimental Results


Gray image denoising and color image denoising were carried out to compare the denoising performance of the proposed NSNet with those of existing models, including NLM [2], BM3D [3], KSVD [4], NCSR [6], OCTOBOS [7], TWSC [8], GHP [9], EPLL [10], PGPD [11], PCLR [12], WNNM [13], CSF [15], TNRD [16], and FFDNet [18]. Moreover, two different types of DnCNNs [17] were also selected as the compared models. They are DnCNN-S and DnCNN-B, which are trained at known and unknown noise levels, respectively.



4.1. Evaluation Metrics


The results of all denoising methods were analyzed quantitatively in terms of the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).



(1) Supposing that the recovered image is   I ∈   R   m × n     and the corrupted image is   K ∈   R   m × n    , the PSNR is calculated as


  M S E =   1   m n     ∑  i = 0   m − 1      ∑  j = 0   n − 1      [ I   i , j   − K ( i , j ) ]   2     ,    



(15)






  P S N R = 10 ·     log   10    ⁡      M A   X   I   2     M S E       ,  



(16)




where   M S E   is the mean-squared error, and   M A   X   I     denotes the maximum value of the pixels in the image. In general,   M A   X   I   = 255   if each pixel is represented in 8-bit binary form or 1 if it is represented in 1-bit binary.



(2) The SSIM is calculated as


  S S I M ( I , K ) =   ( 2   μ   I     μ   K   +   c   1   ) (   σ   I K   +   c   2   )   (   μ   I   2   +   μ   K   2   +   c   1   ) (   σ   I   2   +   σ   K   2   +   c   2   )    



(17)




where     μ   I     and     μ   K     denote the means of   I   and   K  , respectively, and     σ   I     and     σ   K     denote their standard deviations, while     σ   I K     denotes the covariance of   I   and   K  , and     c   1     and     c   2     are constants.




4.2. Experimental Setting


For the ablation experiment, NSNet, NSNet without BN, Unet, and Unet without BN were compared. All compared methods were trained using 400 images of size 180 × 180 pixels, as mentioned in [17]. The test sets were Set12, which is widely used in the evaluation of denoising methods, and BSD68 [38]. In training the model, the size of the patch was set to 48 × 48, and 128 × 618 patches were cropped from the 400 images. Four denoising methods were trained at noise levels of 15, 25, 35, 45, and 50. For a noise level of   α  , the noise was generated by a Gaussian distribution with a mean of zero and a variance of   α  .



For the denoising of gray images, the 400 images were still used as the training set, and 128 × 2934 patches of size 48 × 48 were cropped from them. Since most image denoising methods can only obtain the best denoising performance at a known noise level, to achieve a fair comparison, the proposed method was trained at an unknown noise level and at noise levels of 15, 25, and 50. The test sets were Set12 and BSD68, neither of which participated in model training.



For color image denoising, 432 images were selected from the color image dataset CBSD500 [39] as training samples, and the remaining 68 images (CBSD68) were used as the test set. The test set also included Kodak24 [40] and McMaster [41]. In this experiment, 96 × 3900 patches were cropped from the 432 images to train the color image denoising model. The other settings were largely consistent with the settings used for gray image denoising. The specific settings of NSNet are shown in Table 1.



When training NSNet-S, each clean image input to the model was corrupted by the same level of noise. When training NSNet-B, each clean image input to the model was corrupted by noise at a level drawn randomly from the range (0, 55). The Adam optimizer was used to tune the model with an initial learning rate of 0.001. The maximum training epoch was 50. After 30 epochs, the learning rate was adjusted to 0.0001. The size of each mini-batch was set to 128. The denoising network was trained in PyTorch, and all experiments were carried out in the pycharm environment running on a PC with an AMD Ryzen 9 5900HX with Radeon Graphics 3.30 GHz CPU and an NVIDIA GeForce RTX 3070 Laptop GPU.




4.3. Ablation Experiment


This section describes the ablation experiment that was carried out to demonstrate the effectiveness of the main components of the proposed model. The experiment tested the denoising performance of NSNet, Unet, NSNet without BN, and Unet without BN at noise levels of 15, 25, 35, 45, and 50. The denoising results on the Set12 dataset and the gray version of BSD68 are shown in Table 2, in which values with # and * represent the best and second-best denoising performance, respectively.



The denoising performance of NSNet is better than that of Unet at all noise levels, which shows that multi-scale input can improve the denoising performance. The results for NSNet and NSNet without BN show that the denoising performance of NSNet is greatly improved after adding the BN layer. As mentioned in [29], the BN layer can improve the denoising performance of the neural network. At all noise levels, NSNet without BN achieves better denoising than Unet without BN, and its denoising performance is close to that of Unet at low noise levels, which indicates that the multi-scale input greatly improved the denoising performance of the model at low noise levels. With increases in the noise level, the structure of the compressed image is increasingly corrupted; thus, it cannot provide accurate information for the network. In this case, the performance of NSNet is similar to that of Unet. For example, the denoising performance of NSNet is similar to that of Unet at a noise level of 50.




4.4. Gray Image Denoising


In this experiment, AWGN was added to Set12 and the gray version of BSD68, and the noise levels were set to 15, 25, and 50. The denoising results of all methods on Set12 are shown in Table 3, Table 4 and Table 5. Due to insufficient parameters, CSF cannot be tested at a noise level of 50.



Table 3 shows the denoising results of all methods at a noise level of 15. NSNet-S has a better denoising performance than other methods and obtained the first-ranked denoising performance on ten images. NSNet-S ranked a very close second in terms of denoising the image “House”. In this case, the denoising performance of NSNet-S is 1.86 dB higher than that of the worst method, NLM, on average, and 0.1 dB higher than that of DnCNN-S, on average, in terms of PSNR. The average results of all methods show that there is little difference in the denoising performance of most methods at a noise level of 15. At a low noise level, the self-similarity, sparsity, and low-rank properties of the image are still relatively complete, and the traditional denoising methods (e.g., BM3D, NCSR, TWSC, PCLR, WNNM) also achieve a good denoising performance.



Table 4 shows the denoising results obtained by all methods at a noise level of 25. With increases in the noise level, the best and second-best denoising performance was obtained with the deep-learning-based methods, which shows the superiority of deep learning in image denoising. As the noise level increases, the self-similarity and other features of the image are increasingly corrupted, which leads to the fact that the traditional image-prior-based denoising methods are no longer advantageous. The deep-learning-based denoising methods learn the potential noise directly from the corrupted image and rely less on the prior knowledge of the image. This allows them to achieve a good denoising performance, even at high noise levels. In this case, NSNet-S is ranked first in terms of denoising performance on ten images and second on one image. NSNet-B is ranked second in terms of denoising performance on three images. The denoising performance of NSNet-S is 1.99 dB higher than that of the worst method, NLM, and 0.17 dB higher than that of the second-best method, DnCNN-S, in terms of PSNR. Compared with the traditional denoising methods BM3D, NCSR, TWSC, and WNNM, NSNet-B is close to WNNM and outperforms BM3D, NCSR, and TWSC at a noise level of 25.



Table 5 shows the denoising results obtained by all methods at a noise level of 50. In this case, NSNet-S is ranked first in terms of denoising performance on eight images and second on two images. NSNet-B is ranked first in terms of denoising performance on two images and second on six images. Compared with other methods, NSNet-B provides a better denoising performance at a high noise level. The reason for this may be that an image with high noise will cause a greater deviation than one with low noise, and the network will pay more attention to the restoration of images with high noise when training NSNet-B. In this case, NSNet-S is 2.86 dB higher than the worst method, NLM, and 0.17 dB higher than the second-best method, FFDNet. NSNet-B also has an outstanding performance; its denoising performance surpasses that of DnCNN-B and WNNM and differs from that of FFDNet by only 0.03 dB.



In the above three experiments, NSNet shows a good denoising performance in most cases, although that of NSNet on the image “Barbara” is not as good as that of traditional methods (e.g., TWSC, WNNM). “Barbara” has similar rich textures, and the method based on image self-similarity can effectively use them to achieve better denoising. Both texture and noise are high-frequency information; therefore, image denoising methods that use residual learning tend to treat texture as noise, which makes the denoising performance of the proposed model poor. In addition, the same experiments were conducted on the dataset BSD68 to better demonstrate the denoising performance of NSNet. The average PSNRs and SSIMs of all methods on Set12 and BSD68 are shown in Table 6. Compared with other methods, the average denoising performance of NSNet-S on the two datasets is the best, and NSNet-B has a better denoising performance at a high noise level.



Figure 8 and Figure 9 show the denoising performance of all compared methods on gray images at noise levels of 25 and 50, respectively. In order to facilitate the comparison of the denoising performance, the results were transformed into pseudo-color images. The red box in Figure 8 shows the restoration effect of all compared methods on the “grass”. It can be seen that NSNet’s recovery of the “grass” is closer to the clean image than the other compared methods and results in sharper and clearer edges and textures. The red box in Figure 9 further demonstrates the advantages of NSNet in edge and texture restoration. As shown in Figure 9, compared to other methods, NSNet can not only make the edges and textures sharper but also restore more image details.




4.5. Color Image Denoising


The previous section compared the denoising performance of the methods on gray images, where BM3D, DnCNN, and FFDNet had the better denoising performance and computational speed. In the experiment described in this subsection, these methods were selected for a further comparative test of the denoising ability of the proposed model with color images. The datasets used here are the color versions of CBSD68, Kodak24, and McMaster.



The denoising performance of four methods (BM3D, DnCNN, FFDNet, and NSNet) at noise levels of 35, 45, and 55 is shown in Table 7. The proposed NSNet is the best model in the denoising experiments with CBSD68 and Kodak24, with McMaster ranked second.



In the denoising experiment with the dataset CBSD68, NSNet performed 0.81 dB better than BM3D, 0.09 dB better than DnCNN, and 0.1 dB better than FFDNet at a noise level of 35. It was 0.74 dB better than BM3D, 0.15 dB better than DnCNN, and 0.14 dB better than FFDNet at a noise level of 45, and 0.73 dB better than BM3D, 0.2 dB better than DnCNN, and 0.14 dB better than FFDNet at a noise level of 55. In the denoising experiment with the dataset Kodak24, NSNet was 0.78 dB better than BM3D, 0.22 dB better than DnCNN, and 0.11 dB better than FFDNet at a noise level of 35. It was 0.68 dB better than BM3D, 0.28 dB better than DnCNN, and 0.15dB better than FFDNet at a noise level of 45, and 0.66 dB better than BM3D, 0.34 dB better than DnCNN, and 0.15 dB better than FFDNet at a noise level of 55. In the denoising experiment using the McMaster dataset, although the denoising performance of NSNet was not as good as that of FFDNet, the comparison of all methods in terms of SSIM shows that NSNet is able to recover the structure of the color image better.



Figure 10 shows the denoising results of four methods (BM3D, DnCNN, FFDNet, and NSNet) on one image of the public dataset CBSD68 at a noise level of 45. To better demonstrate the denoising performance of the proposed method, two representative parts are highlighted. These show that NSNet repairs the texture better than other methods. Figure 11 shows the denoising results of four methods at a noise level of 40. NSNet has a more significant repair effect on “stone” in the image, and its recovery of textures is better than those of other methods.





5. Conclusions


In this study, an N-shaped convolutional network that can extract multi-scale information is proposed. NSNet is able to extract multi-scale information from corrupted images and uses it to compensate for the drawbacks of convolutional operations in extracting global features, thus enhancing NSNet’s ability to capture global information and reconstruct textures and contours. Ablation experiments demonstrate that extracting multi-scale information is beneficial to improving the denoising performance of the model at noise levels in the range of (0, 50). Gray and color image denoising experiments demonstrate that NSNet outperforms many existing image denoising methods at noise levels of 15, 25, and 50, especially at high noise levels. In addition, NSNet has a good blind denoising performance, where its performance at high noise levels is close to that at known noise levels.
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Figure 1. Classification of image denoising methods. 
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Figure 2. The 2D Haar wavelet transform. 
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Figure 3. Two-scale 2D Haar wavelet processing results on the image “Monarch”. 
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Figure 4. Network structure of the U-shaped network with BN. 
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Figure 5. Basic structure of a residual block. 






Figure 5. Basic structure of a residual block.



[image: Mathematics 11 02772 g005]







[image: Mathematics 11 02772 g006 550] 





Figure 6. Architecture of NSNet. 
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Figure 7. Image pyramid constructed by a 2D Haar wavelet. 
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Figure 8. Results of some denoising methods at a noise level of 25. 
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Figure 9. Results of some denoising methods at a noise level of 50. 
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Figure 10. Comparison of denoising results on one color image of the public dataset CBSD68 [39] at a noise level of 45. 
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Figure 11. Comparison of denoising results on one color image of the public dataset CBSD68 [39] at a noise level of 40. 
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Table 1. Specific settings of NSNet used in all experiments.
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	Experiment
	Model
	Noise Level
	Patch Size
	Number of Patches





	Ablation experiment
	NSNet-S
	15, 25, 35, 45, 50
	48 × 48
	128 × 618



	Gray image denoising
	NSNet-S
	15, 25, 50
	48 × 48
	128 × 2934



	Gray image denoising
	NSNet-B
	(0, 55)
	48 × 48
	128 × 2934



	Color image denoising
	NSNet-B
	(0, 55)
	48 × 48
	96 × 3900
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Table 2. Average PSNR/SSIM of four denoising methods in the ablation experiment.
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Model

	
Nosie Level

	
Method




	
NSNet

	
Unet

	
NSNet(-BN)

	
Unet(-BN)






	
Set12

	
   σ = 15   

	
32.90 #/0.9040 #

	
32.75/0.9017

	
32.76 */0.9025 *

	
31.81/0.8835




	
   σ = 25   

	
30.50 #/0.8643 #

	
30.48 */0.8640 *

	
30.33/0.8610

	
30.28/0.8602




	
   σ = 35   

	
28.95 #/0.8319 #

	
28.89 */0.8300 *

	
28.65/0.8243

	
28.77/0.8270




	
   σ = 45   

	
27.81 #/0.8041 #

	
27.80 */0.8029 *

	
27.66/0.7993

	
26.52/0.7945




	
   σ = 50   

	
27.32 #/0.7910 #

	
27.32 */0.7901 *

	
26.93/0.7737

	
26.90/0.7724




	
BSD68

	
   σ = 15   

	
31.79 #/0.8927 #

	
31.71 */0.8912 *

	
31.70/0.8916 *

	
31.04/0.8748




	
   σ = 25   

	
29.31 #/0.8322 #

	
29.29 */0.8321 *

	
29.20/0.8294

	
29.18/0.8288




	
   σ = 35   

	
27.82 #/0.7849 #

	
27.76 */0.7810 *

	
27.65/0.7779

	
27.71/0.7788




	
   σ = 45   

	
26.78 #/0.7446 #

	
26.77 */0.7442 *

	
26.70/0.7413

	
26.63/0.7364




	
   σ = 50   

	
26.35 #/0.7267 #

	
26.34 */0.7260 *

	
26.10/0.7101

	
26.11/0.7106








Note: NSNet(-BN) means NSNet without BN, and Unet(-BN) means Unet without BN. # The best denoising performance. * The second-best denoising performance.
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Table 3. PSNRs of all methods on Set12 at a noise level of 15.
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	Model
	C.man
	House
	Pappers
	Starfish
	Monar.
	Airpl.
	Parrot
	Lena
	Barbara
	Boat
	Man
	Couple
	Average





	NLM
	30.05
	33.23
	31.59
	30.30
	30.47
	29.42
	30.07
	33.16
	31.33
	31.25
	31.27
	30.97
	31.09



	BM3D
	31.92
	34.95
	32.70
	31.15
	31.86
	31.08
	31.38
	34.27
	33.11
	32.14
	31.93
	32.11
	32.38



	KSVD
	31.46
	34.24
	32.20
	30.70
	31.41
	30.75
	30.95
	33.71
	32.42
	31.76
	31.53
	31.47
	31.89



	NCSR
	32.01
	35.04
	32.66
	31.50
	32.25
	31.19
	31.37
	34.12
	33.06
	32.08
	31.98
	32.00
	32.44



	OCTOBOS
	31.91
	34.32
	32.49
	31.04
	31.72
	30.98
	31.29
	33.91
	32.59
	31.87
	31.74
	31.77
	32.14



	TWSC
	32.01
	35.11 #
	32.83
	31.64
	32.47
	31.14
	31.52
	34.39
	33.64 #
	32.24
	32.09
	32.15
	32.60



	EPLL
	31.82
	34.14
	32.58
	31.08
	32.03
	31.16
	31.40
	33.87
	31.34
	31.91
	31.97
	31.91
	32.10



	GHP
	31.48
	34.07
	32.40
	31.09
	31.63
	30.77
	31.16
	33.54
	32.01
	31.72
	31.62
	31.54
	31.92



	PCLR
	32.23
	35.07
	33.00
	31.75
	32.63
	31.45
	31.62
	34.27
	33.12
	32.25
	32.16
	32.14
	32.64



	PGPD
	31.83
	34.79
	32.61
	31.25
	32.15
	31.19
	31.32
	34.04
	32.74
	32.03
	31.99
	32.07
	32.33



	WNNM
	32.18
	35.15
	32.97
	31.83
	32.72
	31.40
	31.61
	34.38
	33.61 *
	32.28
	32.12
	32.18
	32.70



	CSF
	31.95
	34.40
	32.83
	31.56
	32.34
	31.34
	31.36
	34.07
	31.93
	32.01
	32.09
	31.99
	32.32



	TNRD
	32.19
	34.55
	33.03
	31.76
	32.57
	31.47
	31.63
	34.25
	32.14
	32.15
	32.24
	32.11
	32.51



	DnCNN-S
	32.59 *
	34.99
	33.24 *
	32.13 *
	33.25 *
	31.67 *
	31.88 *
	34.58
	32.61
	32.42 *
	32.43 *
	32.43 *
	32.85 *



	DnCNN-B
	32.14
	34.96
	33.09
	31.92
	33.08
	31.54
	31.64
	34.52
	32.03
	32.36
	32.37
	32.38
	32.67



	FFDnet
	32.37
	35.05
	33.01
	31.95
	32.92
	31.55
	31.79
	34.60 *
	32.48
	32.36
	32.37
	32.43 *
	32.74



	NSNet-S
	32.67 #
	35.09 *
	33.33 #
	32.29 #
	33.32 #
	31.79 #
	31.97 #
	34.69 #
	32.80
	32.50 #
	32.48 #
	32.52 #
	32.95 #



	NSNet-B
	32.02
	34.63
	32.74
	32.08
	32.87
	31.31
	31.60
	34.42
	30.59
	32.29
	32.18
	32.20
	32.41







Note: # The best denoising performance. * The second-best denoising performance.
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Table 4. PSNRs of all methods on Set12 at a noise level of 25.
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	Model
	C.man
	House
	Pappers
	Starfish
	Monar.
	Airpl.
	Parrot
	Lena
	Barbara
	Boat
	Man
	Couple
	Average





	NLM
	29.97
	30.38
	29.02
	27.82
	28.07
	27.33
	27.98
	30.38
	28.59
	28.74
	28.80
	28.32
	28.61



	BM3D
	29.45
	32.86
	30.16
	28.56
	29.25
	28.43
	28.93
	32.08
	30.72
	29.91
	29.62
	29.72
	29.98



	KSVD
	28.90
	32.10
	29.65
	28.19
	28.81
	28.16
	28.46
	31.36
	29.58
	29.32
	29.11
	28.88
	29.38



	NCSR
	29.43
	32.89
	30.05
	28.77
	29.43
	28.45
	28.86
	31.92
	30.62
	29.77
	29.58
	29.49
	29.94



	OCTOBOS
	29.25
	32.08
	29.78
	28.24
	28.78
	28.28
	28.67
	31.56
	29.88
	29.51
	29.26
	29.23
	29.54



	TWSC
	29.54
	33.05
	30.32
	28.98
	29.71
	28.55
	29.08
	32.22
	31.26 #
	29.99
	29.71
	29.79
	30.18



	EPLL
	29.24
	32.04
	30.07
	28.43
	29.30
	28.56
	28.91
	31.62
	28.55
	29.69
	29.63
	29.48
	29.63



	GHP
	29.28
	32.50
	30.04
	28.66
	29.02
	28.28
	28.87
	31.69
	30.29
	29.71
	29.49
	29.37
	29.77



	PCLR
	29.67
	32.98
	30.46
	28.87
	29.75
	28.77
	29.13
	32.17
	30.65
	30.00
	29.77
	29.73
	30.16



	PGPD
	29.26
	32.79
	30.07
	28.49
	29.29
	28.54
	28.80
	31.93
	30.28
	29.82
	29.66
	29.68
	29.88



	WNNM
	29.64
	33.23
	30.40
	29.03
	29.85
	28.70
	29.13
	32.25
	31.24 *
	30.03
	29.77
	29.82
	30.26



	CSF
	29.47
	32.40
	30.28
	28.80
	29.62
	28.72
	28.89
	31.80
	29.03
	29.77
	29.72
	29.53
	29.84



	TNRD
	29.71
	32.54
	30.55
	29.02
	29.86
	28.89
	29.18
	32.01
	29.41
	29.92
	29.88
	29.71
	30.06



	DnCNN-S
	30.21 #
	33.10
	30.82 *
	29.36
	30.41 *
	29.08 *
	29.44 *
	32.41
	30.01
	30.20
	30.08
	30.08
	30.43 *



	DnCNN-B
	30.03
	33.04
	30.73
	29.24
	30.37
	29.06
	29.35
	32.40
	29.67
	30.19
	30.06
	30.05
	30.35



	FFDnet
	30.05
	33.26 *
	30.72
	29.28
	30.29
	29.01
	29.42
	32.57 *
	29.98
	30.23 *
	30.07 *
	30.15 *
	30.42



	NSNet-S
	30.12 *
	33.30 #
	31.05 #
	29.90 #
	30.48 #
	29.24 #
	29.45 #
	32.64 #
	30.39
	30.27 #
	30.14 #
	30.22 #
	30.60 #



	NSNet-B
	30.05
	33.05
	30.62
	29.62 *
	30.33
	28.97
	29.39
	32.57 *
	27.54
	30.23 *
	29.99
	30.05
	30.20







Note: # The best denoising performance. * The second-best denoising performance.
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Table 5. PSNRs of all methods on Set12 at a noise level of 50.






Table 5. PSNRs of all methods on Set12 at a noise level of 50.





	Model
	C.man
	House
	Pappers
	Starfish
	Monar.
	Airpl.
	Parrot
	Lena
	Barbara
	Boat
	Man
	Couple
	Average





	NLM
	24.26
	25.69
	24.79
	23.88
	24.16
	23.60
	24.35
	25.97
	24.31
	24.80
	25.06
	24.41
	24.61



	BM3D
	26.13
	29.69
	26.68
	25.04
	25.82
	25.10
	25.90
	29.05
	27.23
	26.78
	26.81
	26.46
	26.73



	KSVD
	25.68
	27.97
	26.09
	24.53
	25.30
	24.61
	25.38
	27.86
	25.47
	25.95
	26.10
	25.30
	25.85



	NCSR
	26.15
	29.62
	26.53
	25.09
	25.77
	24.93
	25.71
	28.90
	26.99
	26.67
	26.67
	26.19
	26.60



	OCTOBOS
	25.62
	28.59
	26.15
	24.57
	25.04
	24.86
	25.39
	28.37
	26.17
	26.30
	26.27
	25.82
	26.10



	TWSC
	26.46
	30.17
	26.88
	25.41
	26.27
	25.38
	26.11
	29.08
	27.54 *
	26.88
	26.82
	26.48
	26.96



	EPLL
	26.03
	28.77
	26.63
	25.04
	25.78
	25.24
	25.84
	28.42
	24.82
	26.65
	26.72
	26.24
	26.35



	GHP
	25.91
	28.51
	26.38
	24.39
	25.53
	24.76
	25.71
	27.43
	25.44
	25.99
	25.92
	25.46
	25.95



	PCLR
	26.56
	29.77
	27.03
	25.32
	26.24
	25.50
	26.15
	29.11
	27.11
	26.99
	26.94
	26.55
	26.94



	PGPD
	26.40
	29.73
	26.69
	25.10
	25.89
	25.34
	25.84
	29.00
	26.84
	26.82
	26.84
	26.47
	26.75



	WNNM
	26.42
	30.33
	26.91
	25.43
	26.32
	25.42
	26.09
	29.25
	27.79 #
	26.97
	26.94
	26.64
	27.04



	CSF
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-



	TNRD
	26.61
	29.49
	27.08
	25.42
	26.32
	25.59
	26.16
	28.94
	25.70
	26.94
	26.99
	26.50
	26.81



	DnCNN-S
	27.26
	29.96
	27.35
	25.64
	26.83
	25.83
	26.42
	29.34
	26.15
	27.19
	27.19
	26.86
	27.17



	DnCNN-B
	27.26
	29.91
	27.35
	25.60
	26.84
	25.82
	26.48
	29.34
	26.32
	27.18
	27.17
	26.87
	27.18



	FFDnet
	27.24
	30.36 *
	27.41
	25.68
	26.92
	25.79
	26.57 #
	29.63
	26.41
	27.30 *
	27.26 *
	27.04 *
	27.30 *



	NSNet-S
	27.38 #
	30.43 #
	27.54 #
	26.24 *
	26.93 *
	25.96 #
	26.50
	29.74 #
	27.04
	27.38 #
	27.31 #
	27.14 #
	27.47 #



	NSNet-B
	27.35 *
	30.24
	27.47 *
	26.17 #
	26.94 #
	25.89 *
	26.54 *
	29.70 *
	25.46
	27.30 *
	27.19
	27.01
	27.27







Note: # The best denoising performance. * The second-best denoising performance.
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Table 6. Average PSNRs/SSIMs of all methods on datasets Set12 and BSD68.
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Model

	
Set 12

	
BSD68




	
    σ = 15    

	
    σ = 25    

	
    σ = 50    

	
    σ = 15    

	
    σ = 25    

	
    σ = 50    






	
NLM

	
31.09/0.8594

	
28.62/0.7711

	
24.61/0.5695

	
29.82/0.8322

	
27.56/0.7296

	
24.01/0.5212




	
BM3D

	
32.38/0.8957

	
29.98/0.8510

	
26.73/0.7681

	
31.08/0.8722

	
28.57/0.8017

	
25.62/0.6869




	
KSVD

	
31.89/0.8847

	
29.38/0.8308

	
25.85/0.7260

	
30.86/0.8677

	
28.29/0.7889

	
25.18/0.6548




	
NCSR

	
32.44/0.8958

	
29.94/0.8501

	
26.60/0.7673

	
31.19/0.8770

	
28.61/0.8045

	
25.59/0.6864




	
OCTOBOS

	
32.14/0.8889

	
29.54/0.8378

	
26.10/0.7433

	
31.08/0.8744

	
28.46/0.7989

	
25.33/0.6705




	
TWSC

	
32.60/0.8989

	
30.18/0.8549

	
26.96/0.7731

	
31.28/0.8782

	
28.76/0.8077

	
25.77/0.6903




	
EPLL

	
32.10/0.8936

	
29.63/0.8444

	
26.35/0.7475

	
31.19/0.8825

	
28.68/0.8123

	
25.68/0.6877




	
GHP

	
31.92/0.8693

	
29.77/0.8415

	
25.95/0.7562

	
30.83/0.8513

	
28.49/0.8039

	
24.94/0.6809




	
PCLR

	
32.64/0.8979

	
30.16/0.8542

	
26.94/0.7763

	
31.38/0.8799

	
28.84/0.8106

	
25.88/0.6970




	
PGPD

	
32.33/0.8900

	
29.88/0.8447

	
26.75/0.7602

	
31.14/0.8705

	
28.64/0.8019

	
25.76/0.6877




	
WNNM

	
32.70/0.8982

	
30.26/0.8557

	
27.04/0.7775

	
31.32/0.8766

	
28.80/0.8029

	
24.43/0.6838




	
CSF

	
32.32/0.8923

	
29.84/0.8450

	
-/-

	
31.24/0.8746

	
28.73/0.8055

	
-/-




	
TNRD

	
32.51/0.8967

	
30.06/0.8520

	
26.81/0.7666

	
31.42/0.8825

	
28.91/0.8155

	
25.96/0.7024




	
DnCNN-S

	
32.85 */0.9025 *

	
30.43 */0.8616

	
27.17/0.7828

	
31.74 */0.8907 *

	
29.23 */0.8279

	
26.24/0.7189




	
DnCNN-B

	
32.67/0.9000

	
30.35/0.8599

	
27.18/0.7816

	
31.62/0.8868

	
29.16/0.8244

	
26.23/0.7164




	
FFDnet

	
32.74/0.9024

	
30.42/0.8631 *

	
27.30 */0.7900 *

	
31.64/0.8902

	
29.19/0.8828

	
26.29/0.7239




	
NSNet-S

	
32.95 #/0.9054 #

	
30.59 #/0.8662 #

	
27.47 #/0.7956 #

	
31.81 #/0.8936 #

	
29.33 #/0.8339 #

	
26.42 #/0.7316 #




	
NSNet-B

	
32.41/0.8943

	
30.20/0.8595

	
27.27/0.7895

	
31.46/0.8870

	
29.18/0.8304 *

	
26.32 */0.7242 *








Note: # The best denoising performance. * The second-best denoising performance.
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Table 7. Average PSNRs/SSIMs of all methods on color images.
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Dataset

	
Noise Level

	
Method




	
BM3D

	
DnCNN

	
FFDNet

	
NSNet






	
CBSD68

	
   σ = 35   

	
28.88/0.8160

	
29.60 */0.8422 *

	
29.59/0.8408

	
29.69 #/0.8481 #




	
   σ = 45   

	
27.84/0.7793

	
28.43/0.8060 *

	
28.44 */0.8048

	
28.58 #/0.8150 #




	
   σ = 55   

	
26.97/0.7468

	
27.50/0.7736

	
27.56 */0.7738 *

	
27.70 #/0.7854 #




	
Kodak24

	
   σ = 35   

	
29.89/0.8208

	
30.45/0.8387

	
30.56 */0.8405 *

	
30.67 #/0.8478 #




	
   σ = 45   

	
28.91/0.7906

	
29.31/0.8057

	
29.44 */0.8083 *

	
29.59 #/0.8187 #




	
   σ = 55   

	
28.06/0.7629

	
28.38/0.7753

	
28.57 */0.7811 *

	
28.72 #/0.7929 #




	
McMaster

	
   σ = 35   

	
29.93/0.8237

	
30.15/0.8392

	
30.83 #/0.8550 #

	
30.60 */0.8527 *




	
   σ = 45   

	
29.00/0.7988

	
29.08/0.8116

	
29.68 #/0.8275 *

	
29.55 */0.8281 #




	
   σ = 55   

	
28.13/0.7712

	
28.17/0.7832

	
28.76 #/0.8032 *

	
28.73 */0.8049 #








Note: # The best denoising performance. * The second-best denoising performance.
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