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Abstract: We present a systematic study on the effects of dynamical transfer and steady-state syn-
chronization of quantum states in a hybrid optomechanical network consisting of two cavities, which
carry atoms inside and interact via a common moving mirror such as the mechanical oscillator. It
is found that a high fidelity transfer of Schrödinger’s cat and squeezed states between two cavities
modes is possible. On the other hand, we demonstrate the synchronization effect of the cavity
modes in a steady squeezed state with its high fidelity realized by the mechanical oscillator that
intermediates the generation, transfer and stabilization of the squeezing. In this framework, we also
study the generation and evolution of bipartite and tripartite entanglement and find its connection to
the effects of quantum state transfer and synchronization. Particularly, when the transfer occurs at
the maximal fidelity, any entanglement is almost zero, so the different cavity modes are disentangled.
However, these modes become entangled when the two bosonic modes are synchronized in a sta-
tionary squeezed state. The results provided by the current study may find applications in quantum
information technologies, in addition to the setups for metrology, where squeezed states are essential.

Keywords: optomechanical network; mechanical oscillator; squeezing; entanglement; transfer and
synchronization of quantum state

MSC: 81V80

1. Introduction

The protocols of generation, protection and transfer of coherent and non-classical
states in quantum systems are considered of great importance in the era of the third
quantum revolution [1]. For example, the concept of quantum internet [2] may become
a focus of development in the future. To distribute quantum states over a network, the
mapping or transfer of a quantum state to another system or a different degree of freedom
is demanded as an essential element. The realization of such a function was proposed and
experimentally tested by means of atomic ensembles [3], single atoms [4], solid qubits [5,6]
and even pure optics [7,8]. More efficient and flexible methods of performing high-fidelity
quantum state transfer always attract high interest from almost all directions of research on
quantum technology.

In many applications such as metrology [9–12], sensing [13,14] (e.g., gravitational-
wave detection [15]), and continuous-variable information processing [16,17], squeezed
states of light, spins or mechanical oscillator (MO) motion are indispensable ingredients.
Nowadays, squeezing is often produced and controlled in spin/opto-mechanical systems,
generally known as hybrid systems, and generating and transferring the squeezing of
different degrees of freedom such as photons, phonons and spins [18–22] become more
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and more meaningful to the potential applications. The transfer of the non-classical states
(such as squeezed states) between separate systems can be very useful to the formation
of a quantum network. Recently, there have been several studies proposing the protocols
of quantum state transfer in optomechanical configurations [23–25]. As an alternative to
quantum state transfer, one can perform a quantum dynamical synchronization of the
degrees of freedom in the hybrid system, and even for the entire network in some particular
cases. Synchronization here refers to those between the dynamical stabilization of a target
steady-state of several degrees of freedom; see, e.g., [21,26]. Generally, such a protocol is
not trivial to realize in the quantum systems [27]. Moreover, for a real system, it is crucial
to protect the target quantum states from the intrinsic decoherence effects.

In the present work, we propose a kind of quantum stable synchronization protocol,
i.e., synchronization between the photonic mode and phononic mode in high-fidelity
squeezed states for a hybrid optomechanical system that carries the driven three-level
atoms. We show that such synchronization can be realized by a coherent pump of squeezed
phonons or photons in order to initialize squeezing in one of the modes, i.e., MO or the
mode of one of the cavities. The mechanism of the squeezing initialization applied by
us is inspired by a milestone work of Walls [28]. Additionally, to the synchronization of
the stationary squeezed states of a pair of modes, it is of particular interest to study the
quantum correlations between these modes. About two decades ago some studies showed
how the multipartite entanglement within the continuous variables is related to a joint
quadrature squeezing [29–32]. For example, in a recent work [33], the authors propose
an experimental verification of the quadripartite entanglement by measuring squeezing
in joint amplitude and phase quadratures. In this context, it is appealing to study and
understand the correlation effect between the multipartite entanglement and squeezing in
the hybrid optomechanical systems.

We highlight the increasing interest in the systems of optomechanical networks due to
their wide spectrum of applications [34–38]. For example, the double-cavity, also known
as a mirror-in-the-middle optomechanical system, can be considered the simplest type of
network and was studied in various proposals [22,39–44]. In the present work, we will
consider a kind of double-cavity optomechanical system with its movable middle mirror
(the mechanical oscillator), but there is no transmission of the light field through the mirror.
The concerned system contains a three-level atom placed on each side of the movable
mirror. This hybrid optomechanical system carrying three-level atoms can be of particular
interest because of its important role in different protocols such as entanglement formation,
mechanical cooling, sensing, and others. For example, in Ref. [45], a quantum repeater
protocol based on an arrangement of QED-optomechanical hybrid is proposed to distribute
the entanglement between two distant three-level atoms. Another work [46] considers
a hybrid optomechanical cooling with a three-level atomic ensemble fixed in a strongly
excited optical cavity. One more scheme [47] proposes to apply three-level cascade atoms
to entangle two optomechanical oscillators as well as two-mode fields. In our present
work, the role of driven three-level atoms and MO is to stimulate and control the quantum
protocols as the state transfer and stable synchronization of the squeezing in photonic and
phononic modes. In view of the results of high-efficiency state transfer and squeezing
synchronization in our simplest model of two-mode double-cavity optomechanics, it is
possible to generalize the model to a network with several mechanical oscillators and many
cavity modes. This kind of optomechanical network is expected to be highly relevant to
quantum technologies such as sensing, metrology, the transmission of quantum states and
correlations and many others.

This work is organized as follows. In Section 2, we present the conceptual model of
the hybrid optomechanical network and a brief analysis of the role of the driving fields
that stimulate the three-level atoms. In Section 3, we evaluate the dynamical transfer
of the quantum states between the cavities. Here, using two different quantum states
as initial conditions in the first cavity, we show how these states are transferred to the
second cavity. Next, in Section 4, we show how the bipartite and tripartite correlations
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are generated and evolved for the lossless dynamics. We analyze the dynamical effect
of the correlations as compared to the transfer of quantum states between the cavities.
Section 5 is devoted to the study of the stationary synchronization of squeezing between
two bosonic modes as a function of the optomechanical and Jaynes–Cummings couplings.
Moreover, a comprehensive analysis of the entanglement generation as a consequence of
the squeezing synchronization effect is presented. Finally, we discuss and conclude our
findings in Sections 6 and 7.

2. Hybrid Optomechanical System

Our concerned hybrid atom-cavity-mechanics system is illustrated in Figure 1. The
hybrid system is composed of two optical cavities coupled to the same mechanical oscillator
(MO) through non-linear optomechanical interaction, similar to setups such as [22,41], with
an addition that each cavity is coupled to the upper two levels of a three-level atom. The
total system Hamiltonian is (h̄ = 1)

H = ωmb†b +
2

∑
j=1

[
ωcj a

†
j aj +

2

∑
i=0

ωi,jσii,j + gj
(
ajσ

+
21,j + a†

j σ−21,j
)
+ (−1)jλa†

j aj

(
b + b†

)]
, (1)

where ωi,j are the energy levels of the three-level j-atom, aj(a†
j ) and b(b†) the annihilation

(creation) operators of the j-th cavity and MO, respectively. The Jaynes–Cummings type
interaction between the two upper levels of the three-level j-atom and the j-mode of the
cavity field of frequency ωcj is quantified by the coupling constant gj, and the interaction
between the cavities and the MO of frequency ωm corresponds to the standard optome-
chanical coupling quantified by the constant λ. The atomic operators of lowering (raising)
denoted as σ−kl,j(σ

+
kl,j) = |k〉j〈l|(|l〉j〈k|) obey the standard anti-commutation relations.

Figure 1. (a) Schematic diagram of a cavity-atom-mechanics system. (b) Two lasers with intensities ∝

to Ω(j)
1 and Ω(j)

2 driving the three-level j-atom, which are resonant with the transitions of the levels
|2〉j ←→ |0〉j and |1〉j ←→ |0〉j, respectively.

2.1. Effective Atom–Photon–Phonon Interaction

An essential step to see the mutual couplings between the different elements in the
hybrid system is to derive the following effective Hamiltonian in an interaction picture (see
the details in Appendix A):

H1 =
2

∑
j=1

gjajσ
+
21,j exp

{
ı
(

∆jt + (−1)j+1F(t)
)}

+ H.c., (2)

here we have defined the Hermitian operator F(t) ≡ ı λ
ωm

(
bη∗ − b†η

)
, with η ≡ eıωmt − 1,

and the detuning ∆j ≡ ω2,j −ω1,j −ωcj .
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In what follows, we detail the conditions and parameter regimes where the concerned
effects exist. We choose the regime with ∆j = −ωm, where a further simplified effective
Hamiltonian

H2 =
2

∑
j=1

(−1)j+1Λjajσ
+
21,jb

† + H.c., (3)

where Λj ≡ gj · λ/ωm is a tripartite atom–photon–phonon interaction strength, which
exists after neglecting the fast oscillations of the mechanical frequency in the weak coupling
regime λ� ωm [36,48,49] (for more details see Equations (A11)–(A13) in Appendix A). It
is possible to realize such an effective Hamiltonian according to the current experimental
results that the optomechanical coupling covers a wide spectrum of values [34], but the
choice ∆j = −ωm is crucial to its realization (other choices, e.g., ∆j = ωm, will give rise to
another effective Hamiltonian consisting of the terms proportional to ajσ

+
21,jb + H.c.).

We highlight that the Hamiltonian in Equation (3) quantifies the effective tripartite
interaction in our hybrid system and plays a key role in realizing the protocols of quantum
state transfer and squeezing synchronization, which will be studied in the following
sections. It enables the quantum states in the first cavity to be transferred to the MO,
later from MO to the second cavity, and vice-versa (a reversible process for the unitary
dynamics). The role of the tripartite coupling in the squeezing transfer process is described
in detail in Section 6.1. This approach of realizing an effective Hamiltonian for the transfer
of quantum states between optical cavities distinguishes from many other approaches such
as adiabatic passages [50,51], shortcuts to adiabaticity [52–55], composite pulses [56–58]
and others.

2.2. Atomic Driving

In order to realize the transfer and synchronization of the quantum states between two
cavities, we apply the laser pumps of the strengths Ω(j)

1 and Ω(j)
2 to the atoms j = {1, 2},

respectively. As shown in Figure 1b, these lasers are resonant with the transitions |2〉j ←→
|0〉j and |1〉j ←→ |0〉j. In the interaction picture, the coherent drives are described by the
Hamiltonian

HL =
2

∑
j=1

{
Ω(j)

1

(
σ−20,j + σ+

20,j

)
+ Ω(j)

2

(
σ−10,j + σ+

10,j

)}
. (4)

Assuming that the |1〉j ←→ |0〉j transition (coupled to the classical field Ω(j)
2 ) and

the |2〉j ←→ |1〉j transition (coupled to the quantum cavity field) are dipole allowed, i.e.,

the involved states are of opposite parity, then the driving field Ω(j)
1 for the |2〉j ←→ |0〉j

transition will couple the states with the same parity so that it is dipole forbidden. To
achieve such coupling, we can use a non-linear process as an effective coherent pump from
a Raman-like configuration resonant to the carrier transition where a fourth level is present
and adiabatically eliminated. Moreover, for a better understanding of the role of driving
fields, we have a discussion in Section 6.

3. Dynamical Transfer of Quantum States between Cavities
3.1. Initialization of the Cavities, Mechanical Oscillator and Atoms

In this section, we start with the initial states of the two cavities, MO and the two
atoms. Particularly, we consider two different non-classical initial states for the first cavity:

(I) Squeezed state given by

|ψ(0)〉c1 = exp
[

1
2

(
ξ∗a2

1 − ξa†2
1

)]
|0〉, (5)

where ξ = r exp (ıθ) is the squeezing parameter.
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(II) Schrödinger’s cat state of the form

|ψ(0)〉c1 = N (|α〉+ | − α〉), (6)

where N is a normalization constant and |α〉 is a common coherent state.
Our purpose is to transfer the quantum states in Equations (5) and (6) to the second

cavity, which is initially in a thermal state, similar to the mechanical oscillator. On a
coherent basis, the state of the second cavity can be written as

ρc2(0) =
1

πn̄c2

∫
|α〉〈α| exp (−|α|2/n̄c2)d

2α, (7)

and the mechanical oscillator as

ρm(0) =
1

πn̄m

∫
|β〉〈β| exp (−|β|2/n̄m)d2β, (8)

where α and β are in general complex numbers. Here, n̄m(c) =
(

exp
[

h̄ωm(c)/(κBT)
]
− 1
)−1

is the average value of phonon (photons) occupation number initially in the thermal equi-
librium with their reservoirs at a temperature T, and κB is the Boltzmann’s constant. In
addition, the two three-level atoms are initialized in the ground state

ρa1(0) = ρa2(0) = |0〉〈0|. (9)

3.2. Dissipative Dynamics under the Markovian Master Equation

If we include the dissipation caused by the system–environment coupling, the dissi-
pative dynamics of the hybrid quantum system are described by the Markovian master
equation (ME) for the density matrix:

dρ

dt
= −ı[H2 +HL, ρ] +

2

∑
j=1

γ
(j)
21
2

(
1 + n̄aj

)
L[σ−21,j] +

γ
(j)
21
2

n̄ajL[σ
+
21,j]

+
γ
(j)
10
2

(
1 + n̄aj

)
L[σ−10,j] +

γ
(j)
10
2

n̄ajL[σ
+
10,j] +

κ
(j)
a
2

(
1 + n̄cj

)
L[aj]

+
κ
(j)
a
2

n̄cjL[a
†
j ] +

κb
2
(1 + n̄m)L[b] +

κb
2

n̄mL[b†], (10)

where the common Lindblad dissipative terms are defined by: L[O] = 2OρO† −O†Oρ−
ρO†O. Here, n̄aj , n̄cj and n̄m are the average occupation number for the reservoirs of

atoms, photons and phonons, respectively, and γ
(j)
21 (γ

(j)
10 ) are the spontaneous emission

rate from level |2〉j to |1〉j (level |1〉j to |0〉j), and κ
(j)
a (κb) is the decay rate of the j-th cavity

(mechanical) mode.
In the following sections, we will numerically calculate some figures-of-merit and

other quantities such as the fidelity, entanglement and quadrature fluctuations (QF), under
the approximation of n̄a = n̄c = n̄m � 1. This choice is realistic considering some recent
experiments; for example, a hybrid system with the MO in the regime of microwave
frequencies as in Refs. [59,60] where the mechanical mode has ωm/2π ≈ 2 GHz, and one
will also have n̄th ≈ 10−4 by cooling the system to the temperatures T ∼ 10 mK.

3.3. Fidelity of the Transfer Protocol

Now, let us use the fidelity defined as

F(ρc1(0), ρ(t)) ≡ Tr

√√
ρc1(0)ρ(t)

√
ρc1(0) (11)
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as a figure of merit to quantify the state transfer during their evolution. In the above
equation, ρ(t) ≡ {ρc1(t), ρc2(t), ρm(t)} define the states of first cavity, second cavity and
MO, respectively. The above definition shows that the comparison is made between
the initial state of the first cavity and the state of any involved bosonic mode during its
evolution.

In what follows, we evaluate the fidelity according to the definition in Equation (11)
in the lossless case; see Figure 2. First, the numerical calculations indicate that, when
there is no atomic pump, i.e., Ω(j)

1 = Ω(j)
2 = 0, the fidelity for each bosonic mode remains

constant during the time evolution, implying that the concerned quantum states are almost
unchanged (see Figure 2a,d). On the other hand, in Figure 2b,e, we see how the presence of
atomic pumps, e.g., Ω(j)

1 = Ω(j)
2 = 10, begin to facilitate the transfer of a quantum state from

the first to the second cavity. In this case, one finds that all involved boson modes increase
their transfer probability under the action of the atomic pumps, but this pump intensity is
not enough to achieve high fidelity for the state transfer to the second cavity. Finally, when
a sufficiently high optimal atomic pump intensity is used, e.g., Ω(j)

1 = Ω(j)
2 = 80, it allows

at certain times a high fidelity closed to one; see Figure 2c,f. We point out that high fidelity
is possible only in the first cycles of the time evolution, while one observes that the fidelity
will decrease with time because the three modes become more and more entangled and
such an effect destroys the periodic transfer (see Figure 5 and the corresponding analysis in
the next section). One way to offset the negative effect is to increase the pump intensities
(Ω1 and Ω2), and then a high fidelity can be preserved for more cycles during the time
evolution.

0 10 20 30 40
mt

0.94

0.96

0.98

1.00
(a)

Cavity 1
Cavity 2

0 10 20 30 40
mt

0.92

0.94

0.96

0.98

1.00
(b)

0 10 20 30 40
mt

0.94

0.96

0.98

1.00
t0 t1 t2 (c)

0 10 20 30 40
mt

0.2

0.4

0.6

0.8

1.0
(d)

Cavity 1
Cavity 2

0 10 20 30 40
mt

0.2

0.4

0.6

0.8

1.0
(e)

0 10 20 30 40
mt

0.2

0.4

0.6

0.8

1.0
t0 t1 t2 (f)

Figure 2. Lossless dynamics of fidelity between the initial squeezed (top line) and cat (bottom line)

state of the first cavity and other thermal bosonic modes, as second cavity and MO: (a,d) Ω(j)
1 =

Ω(j)
2 = 0; (b,e) Ω(j)

1 = Ω(j)
2 = 10; (c,f) Ω(j)

1 = Ω(j)
2 = 80. As seen at time t2 one observes a high-fidelity

transfer (F ≈ 1) of the squeezed state between the cavities. The parameters (in units of ωm) are

gj = 100, λ = 0.01, γ
(j)
10 = γ

(j)
21 = κ

(j)
a = κb = 0, ξ = 0.5, n̄m = n̄c2 = 0.001.

Driving the atomic system by an external pump can realize the transfer of a quantum
state between cavities with a fidelity close to one. The results in Figure 2 correspond to an
ideal situation, i.e., for unitary dynamics, but the realistic systems are exposed to dissipation
and decoherence, so we also performed a study considering how the dissipation rates of
atoms, cavities and MO influence the fidelity of the state transfer between the cavities. The
effect of dissipation will impair good fidelity. In Figure 3, we evaluate the fidelity between
the first and second cavity field at the dimensionless time t2 (see Figure 2c) as a function of
the atomic driving strength (Ω(j)

1 = Ω(j)
2 ) and the cavity damping rates κ

(j)
a , while fixing
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the dissipation rate for the atoms and the MO. We observe that the optimal fidelity only
exists when the driving field is well enhanced and the cavity losses are decreased, which
are possibly achievable by the available means.

0 10 20
(j)
1

0.0

0.2

0.4
(j) a

(a)

0.94

0.96

0.98

0 10 20
(j)
1

0.0

0.2

0.4

(j) a

(b)

0.4

0.6

0.8

Figure 3. Fidelity of state transfer: (a) squeezed state (ξ = 0.5) and (b) cat state (α = 2), from the first
cavity to the second cavity, calculated at the instant t2 (see Figure 2) as a function of cavity losses

κ
(j)
a and the atomic pump Ω(j)

1 . Here, we have considered Ω(j)
2 = Ω(j)

1 and κ
(j)
b = 0.01κ

(j)
a . Other

parameters (in units of ωm) are: gj = 100, λ = 0.01, γ
(j)
21 = 0, γ

(j)
10 = 20, and n̄m = n̄aj = n̄cj = 10−3.

4. Quantum Entanglement

In this section, we will study the bipartite and tripartite quantum entanglement for
our hybrid system. We will also analyze the relation between the entanglement and the
transfer effect we have studied in the previous section.

In general, for subsystems A and B and their associated density matrix ρ̂AB, the
negativity [61] is defined as

N (ρ̂AB) = ∑
i

|ζi| − ζi
2

, (12)

where ζi are the eigenvalues of the partial transpose of the density matrix ρ̂AB with re-
spect to one of the subsystems. Here, we also employ the measure of genuine tripartite
entanglement, as the minimum residual contangle [62], defined as

EA|B|C
l = min

A,B,C

[
EA|(BC)

l − EA|B
l − EA|C

l

]
, (13)

where the contangles
{

EA|(BC)
l , EA|B

l , EA|C
l

}
are defined as the quadratic logarithm of{

‖ρ̂TA‖, ‖ρ̂TA
AB‖, ‖ρ̂

TA
AC‖

}
with the trace norm (‖ · ‖), partial transpose (superscript), and

partial trace (subscript), respectively.
In stage I of Figure 4, we see that the initially bipartite entanglement is generated

between cavity 1 and MO (see the green curve), and later in time, MO will be entangled with
the second cavity (see the blue curve). On the other hand, a minor bipartite entanglement
is generated between the cavities (see the magenta curve). Its maximum value occurs when
the other bipartite entanglements are equal. Meanwhile, the tripartite entanglement is also
generated, which becomes the maximum at the same time (see the black curve). In this
first stage, we conclude that when the bipartite entanglements {N (ρC1,MO),N (ρC2,MO)}
vanish, the transfer of states between the cavities occurs with the maximal fidelity (see the
red curve). As the entanglement between the MO and cavity 2 is generated, the initial state
of cavity 1 can be transferred to the second cavity.
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mt
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0.96

0.98

1.00

(
C 1

(0
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C 2
(t)

)

Figure 4. Lossless time evolution of quantum entanglement (left-hand black axis) between the bosonic
modes when the squeezing is induced in the first cavity and Fidelity (right-hand red axis) between
the initial state of cavity 1 and evolved state of the cavity 2. Other parameters (in units of ωm) are

λ = 0.01, gj = 100, n̄a,j = n̄c,j = n̄m = 0.001, Ω(j)
1 = Ω(j)

2 = 80, and γ
(j)
10 = γ

(j)
21 = κ

(j)
a = κb = 0.

In stage II, we observe that the entanglement between cavity 2 and the MO increases
again. This fact reduces the transfer fidelity that finally falls when the entanglement
between cavity 1 and the MO reaches a new maximum. Here, the tripartite entanglement
takes a higher maximum value than the one in stage I. This maximal value will increase
with time as the three subsystems become more and more entangled. Therefore, one obtains
a different quantum resource in our model, the generation of tripartite entanglement, which
increases while the transfer efficiency and the bipartite correlations decrease. Finally, at the
beginning of stage III, cavity 1 returns to its initial state to repeat the cycle of stage I.

Concerning the case of Schrödinger’s cat transfer, we use an even cat state (Equation (6))
containing only even Fock state terms:

|ψ(0)〉 ∝ 2 exp
{
−|α|2/2

} ∞

∑
n=0

α2n
√

2n!
|2n〉. (14)

Since the form of the above state is proportional to pairs of excitations similar to a
squeezed state, we conclude that the evolution of the quantum correlations as the bipartite
and tripartite entanglement will result in an effect analogous to those shown in Figure 4, so
we omit their detailed numerical results.

5. Stationary Synchronization of Squeezing in Hybrid Network

The effect studied in the previous section occurs periodically, i.e., there are definite mo-
ments when the transfer occurs. Therefore, the transfer of the quantum states is a reversible
effect. On the other hand, in this section, we study the possibility of the steady-state squeez-
ing synchronization in several modes, which we call the ‘quantum state synchronization’
effect for the cavities and MO mode. This effect is irreversible as compared to the transfer,
principally because in this case the tripartite system reaches an equilibrium between the
pump and dissipation mechanisms, which is similar to a laser/maser model.

In order to realize a steady-state squeezing in various bosonic modes (cavities and
MO), one should initiate the squeezing of any of these modes. As it is observed in our
recent study [21], one can make a squeezing by connecting the hybrid system to a squeezed
bath. On the other hand, it is also possible to induce a squeezing by a coherent driving
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of a photonic or phononic mode similar to the proposal in Ref. [28]. For example, a
phonon-squeezing pump is described by the Hamiltonian

Hq = q(b†2 + b2) (15)

in an interaction picture, where q is proportional to the driving field strength. As a result,
the mechanical resonator can be prepared dynamically in a squeezed state. The dissipative
dynamics of the hybrid quantum system are described by the following Markovian master
equation in a Lindblad form

dρ

dt
= −ı[H2 +Hq +HL, ρ] + L̂(ρ), (16)

where L̂(ρ) is a part as appearing in Equation (10).

5.1. Definition of Quantum Fluctuations

In what follows, we will calculate the degree of squeezing for the states of the cavity
and mechanical oscillator. For this purpose, we rely on the numerical methods according
to [63] to solve Equation (16) in the steady states, i.e., ρ̇ = 0, and calculate the quantum
fluctuations (QF) defined by

〈(∆XO)2〉 = 〈X 2〉 − 〈X 〉2, 〈(∆YO)2〉 = 〈Y2〉 − 〈Y〉2, (17)

with the quadratures X =
(
OeıφO +O†eıφO

)
/2 and Y =

(
Oe−ıφO −O†eıφO

)
/2ı. Here, O

can be a photon or phonon operator and the angle φO permits the generalization of the
direction of the QF, i.e., to indicate the squeezing along any pair of axes (x′, y′) in the phase
space. Then, the squeezing condition for the quadrature, e.g., X , corresponds to the relation
〈(∆XO)2〉 < 0.25.

5.2. Influence of the Squeezing Pump Strength and Tripartite Hybrid Interaction

In this part, we study the influence of the squeezing driving of the first cavity and
MO modes on the squeezing synchronization effect and how this result is related to the
bipartite and tripartite quantum entanglement between the bosonic modes. Moreover, the
importance of the tripartite coupling to these resources will be studied.

Case 1: Squeezing Pump of the Mechanical Mode

To understand the mechanism of a squeezing driving of the mechanical oscillator mode
and analyze the stationary states of the bosonic modes in the presence of the dissipation
channels, we numerically evaluate the influence of the tripartite interaction coupling, Λi
and the MO’s squeezing pump strength q on the time evolution of the QF for all bosonic
modes in the hybrid system. For example, in Figure 5a one observes that, in the absence
of the tripartite coupling for the second cavity, i.e., Λ2 = 0, the second cavity initially in a
thermal state with very low excitation number (n̄c2 = 10−3) (close to an almost vacuum
state) will maintain the value of vacuum fluctuations 〈(∆Xa2)

2〉 ≈ 0.25 throughout the
dynamical process (see the magenta line). In this case, squeezing is generated only in MO
and first cavity with Λ1 = 1; see the green and blue lines, respectively. Therefore, a bipartite
entanglement between the first cavity and MO, N (ρ̂c1 , ρ̂m), is realized while other kinds of
entanglement are absent as seen from Figure 5d.
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Figure 5. Dissipative time evolution of Quantum Fluctuations (top panel) and Entanglement (bottom
panel) of the bosonic modes when the squeezing is induced in the MO. Managing the Jaynes–
Cummings couplings so that the tripartite couplings (in units of ωm) are: (a,d) Λ1 = 1, Λ2 = 0,
(b,e) Λ1 = 0, Λ2 = 1, (c,f) Λ1 = Λ2 = 1. Other parameters are: n̄a,j = n̄c,j = n̄m = 0.001, q = 0.01,

Ω(j)
1 = Ω(j)

2 = 20, γ
(j)
10 = 20, γ

(j)
21 = 0, κ

(j)
a = 0.2, κb = 0.01κa, φc1 = φc2 = π/4, φm = −π/4.

In order to generate the squeezing in the second cavity, it is necessary to activate
the tripartite interaction coupling, i.e., Λ2 > 0 as in Figure 5b,c. As a consequence, the
squeezing in the second cavity is generated while the squeezing in the first cavity is lost
when Λ1 = 0. In this case, a bipartite entanglement between the second cavity and MO,
i.e., N (ρ̂c2 , ρ̂m), manifests as shown in Figure 5e. On the other hand, when both tripartite
interaction couplings are equal (Λ1/ωm = Λ2/ωm = 1), one observes in Figure 5c the
perfect synchronization between the modes of both cavity fields in steady states. In this
situation shown in Figure 5f, where the bipartite entanglement between cavity 1/cavity
2 and MO is equally distributed throughout the dynamics, the bipartite entanglement
between the cavities, which is quantified by N (ρ̂c1 , ρ̂c2), reaches a higher value, implying a
stronger stationary correlation between the cavity fields.

Case 2: Squeezing Pump of the First Cavity Mode

As an alternative configuration, we can induce the squeezing in the first cavity by the
pump Hamiltonian

Hq′ = q′(a†2
1 + a2

1). (18)

As in the previous case, we vary both tripartite interaction couplings Λj and find how
all these mechanisms control the squeezing stabilization of the two cavity fields and MO
modes. Similar to case 1, in the absence of the tripartite coupling (Λ2 = 0), one observes that
there is no squeezing for the second cavity mode; see Figure 6a. A squeezing evolves only
in the first cavity and MO. In addition, to generate a squeezing synchronization between the
MO and the cavities, it is necessary to choose the phase of QF, such that φc1 = φc2 = π/4
and φm = −π/4. Then, the squeezed fields of the cavities and MO (on the orthogonal axis)
can be efficiently synchronized in the steady states.
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Figure 6. Dissipative time evolution of QF (top panel) and entanglement (bottom panel) of the bosonic
modes when the squeezing is induced in the first cavity. Managing the Jaynes–Cummings couplings
so that the tripartite couplings are: (a,d) Λ1 = 1, Λ2 = 0; (b,e) Λ1 = 0, Λ2 = 1; (c,f) Λ1 = 1, Λ2 = 1.1.
Other parameters are the same as in Figure 5. Additionally with φc1 = φc2 = π/4, φm = −π/4.

In general, the effect of squeezing evolution behaves similarly to Case 1; in order to
induce a squeezing in the second cavity, it is necessary to activate the tripartite interaction
couplings, i.e., Λj > 0. Therefore, one can reach a squeezing synchronization between the
MO and second cavity by controlling the tripartite interaction couplings and phase φ, which
appears in the definition in Equation (17), without changing the rest parameters. Similar
to Case 1, the entanglement is distributed among all bosonic modes. However, in this
situation, the bipartite entanglement between a cavity field and MO becomes stronger than
the entanglement between the cavity fields, as compared to Case 1 where the squeezing is
pumped initially in the MO; see the green curves in Figures 5f and 6f.

It is important to mention that for both cases of squeezing synchronization studied in
this section, the tripartite entanglement is not generated in the hybrid network as shown
by the black curves in Figures 5 and 6. The mentioned tripartite entanglement, EC1|C2|m

1 , is
rather sensitive to the losses. The losses of the cavities and MO can destroy the tripartite
entanglement and some bipartite ones totally, though these losses synchronize a stationary
squeezing between the bosonic modes of the concerned system. The complete results
presented in this section are summarized in Table 1.

Table 1. Relationship between the necessary parameters for the generation of squeezing synchroniza-
tion and bipartite entanglement between bosonic modes. Here, C1 (C2) means cavity 1 (cavity 2),
respectively, and MO—mechanical oscillator.

Strength Phase QF (π/4) Synchronization Entanglement

Pump Λ1 Λ2 φc1 φc2 φm C1/C2 C1/MO C2/MO C1/C2 C1/MO C2/MO

1 0 + + − X X

MO 0 1 + + − X X

1 1 + + − X X X X

1 0 + + − X X

C1 0 1 + + −

1 1.1 + + − X X X X
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6. Discussion and Outlook
6.1. Effects of Driving the Three-Level Atoms and Tripartite Hybrid Interaction

The roles of externally driving the atoms and of the effective atom–photon–phonon
interaction are important in the dynamical transfer of the quantum states between two cav-
ities. Here, we perform a qualitative description of how the squeezing is transferred from
the first to the second cavity by defining an arbitrary state as |na1 , na2 , nc1 , nb, nc2〉, where
na1(2) , nc1(2) , nb are the excitation numbers in the first (second) atom, first (second) cavity
and mechanical oscillator, respectively. An initial state |00200〉, for example, approximates
that the first cavity is prepared in a squeezed state with its average photon numbers as 2,
while the rest subsystems are in their ground states. The Hamiltonian H2 + HL including
the effective interaction and driving can transfer the state from the first to the second cavity
by the following dynamical procedure:

|00200〉 −−→
Ω(1)

2

|10200〉 −−−−→
σ+

21,1a1b†
|20110〉 −−→

Ω(2)
1

|22110〉 −−−−→
σ−21,2a†

2b
|21101〉 −−→

Ω(1)
1

|01101〉 −→

−−→
Ω(1)

2

|11101〉 −−−−→
σ+

21,1a1b†
|21011〉 −−→

Ω(2)
2

|20011〉 −−→
Ω(2)

1

|22011〉 −−−−→
σ−21,2a†

2b
|21002〉. (19)

In this evolution process, one finds that the driving process Ω(1)
2 of the atom in the first

cavity, together with the effective tripartite coupling σ+
21,1a1b†, allows the transfer of one

excitation from the first cavity field to MO, so the system evolves to the state |20110〉. Next,
by driving the atom in the second cavity by Ω(2)

1 to its level |2〉, it is possible to transfer
the excitation from the MO to the second cavity field by the effective tripartite coupling
σ−21,2a†

2b, thus ending in the state |21101〉. Until this stage we have one excitation transferred
from the first to the second cavity. Now, to transfer the second excitation from the first
cavity field, one should again create the excitation in MO, and then the driving processes
with Ω(1)

1 and Ω(1)
2 allow the possibility of transferring this excitation to the MO by using

the same tripartite coupling σ+
21,1a1b†, ending in the state |21011〉. Finally, the transfer of

the MO’s excitation to the second cavity is possible using the process σ−21,2a†
2b under the

condition that the atom in the second cavity must be prepared in the level |2〉 through the
level |1〉, respectively, by the driving processes with Ω(2)

2 and Ω(2)
1 ; see Figure 1b. As a

result, the system ends up in the state |21002〉, thus transferring the illustrated state from
the first to the second cavity as observed in Figure 2c at t = t2. The protocol of transferring
a state from cavity 1 to cavity 2 is sketched in Figure 7.

Figure 7. Schematic illustration of the protocol discussed in Section 1, which allows the transfer of
squeezed state, i.e., a pair of excitations in cavity 1 (left panel) are finally transferred to cavity 2
(right panel), the evolution found in Figures 2c and 4. Here, the process, σ+

21,1a1b†, allows the transfer
of excitations to MO, and the process, σ−21,2a†

2b, allows the transfer of excitations from MO to cavity
2. The activation of these tripartite interaction processes is clearly due to the result of driving the

three-level atoms to the necessary states, as represented in Equation (19) by the fields Ω(j)
1 and Ω(j)

2 .
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6.2. Experimental Feasibility

In our numerical calculations, we have considered the optomechanical coupling within
a range λ ≤ 0.01ωm and, if taking ωm/(2π) ≈ 2 GHz to have a low number of thermal
excitations (as explained in Section 3), we will obtain the top limit value λ/(2π) ≈ 20 MHz.
This is considered a strong optomechanical coupling but it is experimentally feasible, par-
ticularly considering the very recent experiment [64], where the optomechanical coupling
∝ 40 MHz was reached. Alternatively, the optomechanical coupling can be increased in the
setups such as those discussed in [65–67]. For the squeezing synchronization protocol, we
consider a strong dissipation situation with the cavity damping rate as κa/(2π) = 400 MHz
and MO damping rate as κb/(2π) = 4 MHz (see Figure 4), which are compatible with the
recent experiments in the optomechanics [34,59,60].

7. Conclusions

We have proposed a hybrid optomechanical network consisting of two cavities with a
three-level atom in each one and a movable mirror (mechanical oscillator) in the middle.
This hybrid system naturally realizes an effective tripartite coupling for a number of
quantum dynamical processes. In addition to quantum state transfer, our setup can also
generate a bipartite entanglement between the bosonic modes and prepare the stationary
squeezed states of mechanical and cavity modes. We find that when two external fields
independently drive each atom, the squeezed state and Schrödinger’s cat state can be
transferred with extremely high fidelity between the cavities, and the increase in the pump
intensities can improve the transfer fidelity further. In this framework, we are able to
achieve the dynamical generation and distribution of bipartite and tripartite entanglement.
As the hybrid system evolves with time, the cavity–cavity transfer protocol is weakened by
the fact that the tripartite interaction between the bosonic modes (two photonic and one
phononic) becomes stronger to create a tripartite entanglement. However, at the instants
when the transfer of quantum state is feasible, the bipartite and tripartite entanglement
will almost vanish. Additionally, considering the highly dissipative dynamics of the
hybrid optomechanical system with the driven atoms and coherent pumping of squeezed
phonons/photons at the initial stage, one can synchronize a pair of bosonic modes in
squeezed steady states for the pairs of bipartite systems, i.e., cavity 1-cavity 2, cavity 1-
MO, and cavity 2-MO. The squeezing synchronization of the cavity modes and mechanical
modes can be achieved regardless of the discussed pump mechanisms. This result facilitates
the experimental performance by choosing a proper pumping mechanism as detailed in
Table 1. We hope that the present study will provide more understandings that are helpful
to the development of optomechanical networks, which combine the processes of quantum
state generation and transfer, as well as the distribution of quantum correlations. Especially,
those quantum information protocols involving distributed squeezing may evolve from
the presented model or its variations.
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Appendix A. Derivation of the Effective Hamiltonian

Here, we show how to transform the Hamiltonian in Equation (1) to the one in an
interaction picture. The first transformation is

V = eıH0tHIe−ıH0t, (A1)

where

H0 = ωmb†b +
2

∑
j=1

2

∑
i=0

ωi,jσii,j + ωcj a
†
j aj, (A2)

HI =
2

∑
j=1

gj

(
ajσ

+
21,j + a†

j σ−21,j

)
− λ

(
a†

1a1 − a†
2a2

)(
b + b†

)
. (A3)

From Equation (A1) we obtain

V =
2

∑
j=1

gj

(
ajσ

+
21,je

ı∆jt + a†
j σ−21,je

−ı∆jt
)
− λ

(
a†

1a1 − a†
2a2

)(
be−ıωmt + b†eıωmt

)
, (A4)

where ∆j = ω2,j −ω1,j −ωcj .
Now, we proceed to a second transformation

V ′ = exp
{

ı
∫
V0dt

}
VI exp

{
−ı
∫
V0dt

}
, (A5)

where

V0 =
(

a†
2a2 − a†

1a1

)
f (t), (A6)

VI = ∑
j=1,2

gj

(
ajσ

+
21,je

ı∆jt + a†
j σ−21,je

−ı∆jt
)

, (A7)

f (t) = λ
(

be−ıωmt + b†eıωmt
)

. (A8)

As the result of Equation (A5) one has

V ′ = ∑
j=1,2

gjajσ
+
21,j exp

[
ı
(

∆jt + (−1)j+1F(t)
)]

+ H.c., (A9)

where
F(t) =

∫
f (t)dt = ı

λ

ωm

(
bη∗ − b†η

)
, (A10)

with η = eıωmt − 1.
Approximation: In our model, we assume the optomechanical coupling λ is much

smaller than the mechanical frequency ωm, so that e−ı(−1)j F(t) ≈ 1 + (−1)jλ
ωm

(
bη∗ − b†η

)
.

Therefore, Equation (A9) takes the form

V ′ = ∑
j=1,2

gjajσ
+
21,je

ı∆jt + (−1)jΛj

[
ajσ

+
21,j
(
b† − b

)
eı∆jt

− ajσ
+
21,j

(
b†eı(∆j+ωm)t − beı(∆j−ωm)t

)]
+ H.c. (A11)
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where Λj = gj · λ/ωm. Now, by considering the regime with ∆j = −ωm we obtain

V ′ = ∑
j=1,2

gjajσ
+
21,je

−ıωmt + (−1)jΛj

[
ajσ

+
21,j
(
b† − b

)
e−ıωmt

− ajσ
+
21,j

(
b† − be−2ıωmt

)]
+ H.c. (A12)

Neglecting time-dependent terms, we obtain the effective tripartite interaction consid-
ered in Equation (3) as follows

H2 ≡ V ′ = ∑
j=1,2

(−1)j+1Λjajσ
+
21,jb

† + H.c. (A13)

Appendix B. Wigner Visualization

For a better visualization of the results shown in Figure 2, we present here the Wigner
quasi-probability distribution at three different instants, i.e., {t0, t1, t2}, of the dynamic
evolution in Figure 2. One can easily see the squeezed and Schrödinger’s cat states at the
initial moment (t0) and transitory evolution time (t2), when the target state is transferred.

In Figure A1a, we see how the initial squeezed state (the blue dashed ellipse in the
top panel) in cavity 1 disappears (central panel) and tends to form a thermal state (the red
dashed circle) while cavity 2, initially in a thermal state, begins to squeeze (the blue dashed
ellipse). Finally, in the lower panel of (a), one finds the squeezed state in cavity 2, which
looks similar to the initial state of cavity 1, while cavity 1 and MO end in thermal states.
In Figure A1b, we show an equivalent transfer effect for Schrödinger’s cat state which is
initialized for the mode in cavity 1.

Figure A1. Wigner quasi-probability distribution for the states of cavities and MO at different time
instants. One observes the effect of squeezed (a) and cat (b) state transfer between the cavities. The
parameters are the same as in Figure 2.
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27. Buča, B.; Booker, C.; Jaksch, D. Algebraic theory of quantum synchronization and limit cycles under dissipation. SciPost Phys.

2022, 12, 097. [CrossRef]
28. Walls, D.F. Squeezed states of light. Nature. 1983, 306, 5939. [CrossRef]
29. van Loock, P.; Braunstein, S.L. Multipartite Entanglement for Continuous Variables: A Quantum Teleportation Network. Phys.

Rev. Lett. 2000, 84, 3482–3485. [CrossRef]
30. Jing, J.; Zhang, J.; Yan, Y.; Zhao, F.; Xie, C.; Peng, K. Experimental Demonstration of Tripartite Entanglement and Controlled

Dense Coding for Continuous Variables. Phys. Rev. Lett. 2003, 90, 167903. [CrossRef]
31. van Loock, P.; Furusawa, A. Detecting genuine multipartite continuous-variable entanglement. Phys. Rev. A 2003, 67, 052315.

[CrossRef]
32. Yonezawa, H.; Aoki, T.; Furusawa, A. Demonstration of a quantum teleportation network for continuous variables. Nature 2004,

431, 430–433. [CrossRef]
33. He, H.; Lou, Y.; Xu, X.; Liu, S.; Jing, J. Experimental measurement of quadrature squeezing in quadripartite entanglement. Opt.

Lett. 2023, 48, 1375–1378. [CrossRef] [PubMed]
34. Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [CrossRef]
35. Stannigel, K.; Rabl, P.; Sørensen, A.S.; Zoller, P.; Lukin, M.D. Optomechanical Transducers for Long-Distance Quantum

Communication. Phys. Rev. Lett. 2010, 105, 220501. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevA.99.052330
http://dx.doi.org/10.1126/science.abg1919
http://www.ncbi.nlm.nih.gov/pubmed/33859028
http://dx.doi.org/10.1103/PhysRevA.79.052323
http://dx.doi.org/10.1103/PhysRevA.80.062312
http://dx.doi.org/10.1116/1.5126696
http://dx.doi.org/10.1116/5.0007577
http://dx.doi.org/10.22331/q-2020-07-09-292
http://dx.doi.org/10.1063/5.0084096
http://dx.doi.org/10.1364/OPTICA.4.000752
http://dx.doi.org/10.1038/s41567-019-0533-5
http://dx.doi.org/10.1038/nphoton.2013.177
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/PhysRevApplied.12.064024
http://dx.doi.org/10.1103/PhysRevX.3.031012
http://dx.doi.org/10.1103/PhysRevLett.115.243601
http://dx.doi.org/10.1364/OL.43.000009
http://dx.doi.org/10.1103/PhysRevA.105.033708
http://dx.doi.org/10.1364/OE.27.008361
http://www.ncbi.nlm.nih.gov/pubmed/31052655
http://dx.doi.org/10.1103/PhysRevLett.108.153603
http://www.ncbi.nlm.nih.gov/pubmed/22587252
http://dx.doi.org/10.1103/PhysRevA.81.023816
http://dx.doi.org/10.1364/PRJ.7.001229
http://dx.doi.org/10.1103/PhysRevA.104.012410
http://dx.doi.org/10.21468/SciPostPhys.12.3.097
http://dx.doi.org/10.1038/306141a0
http://dx.doi.org/10.1103/PhysRevLett.84.3482
http://dx.doi.org/10.1103/PhysRevLett.90.167903
http://dx.doi.org/10.1103/PhysRevA.67.052315
http://dx.doi.org/10.1038/nature02858
http://dx.doi.org/10.1364/OL.481780
http://www.ncbi.nlm.nih.gov/pubmed/36946931
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://www.ncbi.nlm.nih.gov/pubmed/21231374


Mathematics 2023, 11, 2790 17 of 18

36. Xuereb, A.; Genes, C.; Dantan, A. Strong Coupling and Long-Range Collective Interactions in Optomechanical Arrays. Phys. Rev.
Lett. 2012, 109, 223601. [CrossRef]

37. Dong, C.; Wang, Y.; Wang, H. Optomechanical interfaces for hybrid quantum networks. Natl. Sci. Rev. 2015, 2, 510–519.
[CrossRef]

38. Asjad, M.; Zippilli, S.; Tombesi, P.; Vitali, D. Large distance continuous variable communication with concatenated swaps. Phys.
Scr. 2015, 90, 074055. [CrossRef]

39. Ludwig, M.; Safavi-Naeini, A.H.; Painter, O.; Marquardt, F. Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical
System. Phys. Rev. Lett. 2012, 109, 063601. [CrossRef]

40. Qu, K.; Agarwal, G.S. Optical memories and transduction of fields in double cavity optomechanical systems. arXiv 2012.
[CrossRef]

41. Chen, Z.X.; Lin, Q.; He, B.; Lin, Z.Y. Entanglement dynamics in double-cavity optomechanical systems. Opt. Express 2017,
25, 17237–17248. [CrossRef]

42. Manninen, J.; Asjad, M.; Ojajärvi, R.; Kuusela, P.; Massel, F. Clauser-Horne-Shimony-Holt Bell inequality test in an optomechanical
device. Phys. Rev. A 2018, 98, 043831. [CrossRef]

43. Wang, C.; Lin, Q.; He, B. Breaking the optomechanical cooling limit by two drive fields on a membrane-in-the-middle system.
Phys. Rev. A 2019, 99, 023829. [CrossRef]

44. Carrasco, S.; Orszag, M. Estimation of an optomechanical parameter via weak-value amplification. Phys. Rev. A 2022, 105, 043508.
[CrossRef]

45. Ghasemi, M.; Tavassoly, M.K. Quantum repeater protocol using an arrangement of QED–optomechanical hybrid systems. J. Opt.
Soc. Am. B 2019, 36, 2669–2677. [CrossRef]

46. Li, T.; Zhang, S.; Huang, H.L.; Li, F.G.; Fu, X.Q.; Wang, X.; Bao, W.S. Ground state cooling in a hybrid optomechanical system
with a three-level atomic ensemble. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 045503. [CrossRef]

47. Zhou, L.; Han, Y.; Jing, J.; Zhang, W. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic
coherence. Phys. Rev. A 2011, 83, 052117. [CrossRef]

48. Murch, K.W.; Moore, K.L.; Gupta, S.; Stamper-Kurn, D.M. Observation of quantum-measurement backaction with an ultracold
atomic gas. Nature 2008, 4, 561–564. [CrossRef]

49. Chan, J.; Alegre, T.P.M.; Safavi-Naeini, A.H.; Hill, J.T.; Krause, A.; Gröblacher, S.; Aspelmeyer, M.; Painter, O. Laser cooling of a
nanomechanical oscillator into its quantum ground state. Nature 2011, 478, 89–92. [CrossRef] [PubMed]

50. Vitanov, N.; Yatsenko, L.; Bergmann, K. Population transfer by an amplitude-modulated pulse. Phys. Rev. A 2003, 68, 043401.
[CrossRef]

51. Rangelov, A.; Vitanov, N.; Yatsenko, L.; Shore, B.; Halfmann, T.; Bergmann, K. Stark-shift-chirped rapid-adiabatic-passage
technique among three states. Phys. Rev. A 2005, 72, 053403. [CrossRef]

52. Lewis Jr, H.R.; Riesenfeld, W. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a
time-dependent electromagnetic field. J. Math. Phys. 1969, 10, 1458–1473. [CrossRef]

53. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts,
methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [CrossRef]

54. Qi, S.f.; Jing, J. Accelerated adiabatic passage in cavity magnomechanics. Phys. Rev. A 2022, 105, 053710. [CrossRef]
55. Kang, Y.H.; Chen, Y.H.; Wang, X.; Song, J.; Xia, Y.; Miranowicz, A.; Zheng, S.B.; Nori, F. Nonadiabatic geometric quantum

computation with cat-state qubits via invariant-based reverse engineering. Phys. Rev. Res. 2022, 4, 013233. [CrossRef]
56. Torosov, B.T.; Guérin, S.; Vitanov, N.V. High-fidelity adiabatic passage by composite sequences of chirped pulses. Phys. Rev. Lett.

2011, 106, 233001. [CrossRef]
57. Genov, G.T.; Schraft, D.; Halfmann, T.; Vitanov, N.V. Correction of arbitrary field errors in population inversion of quantum

systems by universal composite pulses. Phys. Rev. Lett. 2014, 113, 043001. [CrossRef] [PubMed]
58. Xu, H.; Song, X.K.; Wang, D.; Ye, L. Quantum sensing of control errors in three-level systems by coherent control techniques. Sci.

China Phys. Mech. Astron. 2023, 66, 240314. [CrossRef]
59. Mirhosseini, M.; Sipahigil, A.; Kalaee, M.; Painter, O. Superconducting qubit to optical photon transduction. Nature 2020,

588, 599–603. [CrossRef] [PubMed]
60. Riedinger, R.; Hong, S.; Norte, R.A.; Slater, J.A.; Shang, J.; Krause, A.G.; Anant, V.; Aspelmeyer, M.; Gröblacher, S. Non-classical

correlations between single photons and phonons from a mechanical oscillator. Nature 2016, 530, 313–316. [CrossRef] [PubMed]
61. Vidal, G.; Werner, R.F. Computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [CrossRef]
62. Adesso, G.; Illuminati, F. Entanglement sharing: From qubits to Gaussian states. Int. J. Quant. Inf. 2006, 4, 383–393. [CrossRef]
63. Johansson, J.R.; Nation, P.D.; Nori, F. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comp. Phys.

Comm. 2013, 184, 1234. [CrossRef]
64. Enzian, G.; Szczykulska, M.; Silver, J.; Bino, L.D.; Zhang, S.; Walmsley, I.A.; Del’Haye, P.; Vanner, M.R. Observation of Brillouin

optomechanical strong coupling with an 11 GHz mechanical mode. Optica 2019, 6, 7–14. [CrossRef]
65. Pirkkalainen, J.M.; Cho, S.U.; Massel, F.; Tuorila, J.; Heikkilä, T.T.; Hakonen, P.J.; Sillanpää, M.A. Cavity optomechanics mediated

by a quantum two-level system. Nat. Commun. 2015, 6, 6981. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.109.223601
http://dx.doi.org/10.1093/nsr/nwv048
http://dx.doi.org/10.1088/0031-8949/90/7/074055
http://dx.doi.org/10.1103/PhysRevLett.109.063601
http://dx.doi.org/10.48550/arxiv.1210.4067
http://dx.doi.org/10.1364/OE.25.017237
http://dx.doi.org/10.1103/PhysRevA.98.043831
http://dx.doi.org/10.1103/PhysRevA.99.023829
http://dx.doi.org/10.1103/PhysRevA.105.043508
http://dx.doi.org/10.1364/JOSAB.36.002669
http://dx.doi.org/10.1088/1361-6455/aaa2d9
http://dx.doi.org/10.1103/PhysRevA.83.052117
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nature10461
http://www.ncbi.nlm.nih.gov/pubmed/21979049
http://dx.doi.org/10.1103/PhysRevA.68.043401
http://dx.doi.org/10.1103/PhysRevA.72.053403
http://dx.doi.org/10.1063/1.1664991
http://dx.doi.org/10.1103/RevModPhys.91.045001
http://dx.doi.org/10.1103/PhysRevA.105.053710
http://dx.doi.org/10.1103/PhysRevResearch.4.013233
http://dx.doi.org/10.1103/PhysRevLett.106.233001
http://dx.doi.org/10.1103/PhysRevLett.113.043001
http://www.ncbi.nlm.nih.gov/pubmed/25105613
http://dx.doi.org/10.1007/s11433-022-2034-5
http://dx.doi.org/10.1038/s41586-020-3038-6
http://www.ncbi.nlm.nih.gov/pubmed/33361793
http://dx.doi.org/10.1038/nature16536
http://www.ncbi.nlm.nih.gov/pubmed/26779950
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1142/S0219749906001852
http://dx.doi.org/10.1016/j.cpc.2012.11.019
http://dx.doi.org/10.1364/OPTICA.6.000007
http://dx.doi.org/10.1038/ncomms7981


Mathematics 2023, 11, 2790 18 of 18

66. Montenegro, V.; Genoni, M.G.; Bayat, A.; Paris, M.G.A. Probing of nonlinear hybrid optomechanical systems via partial
accessibility. Phys. Rev. Res. 2022, 4, 033036. [CrossRef]

67. Leijssen, R.; Verhagen, E. Strong optomechanical interactions in a sliced photonic crystal nanobeam. Sci. Rep. 2015, 5, 15974.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1103/PhysRevResearch.4.033036
http://dx.doi.org/10.1038/srep15974

	Introduction
	Hybrid Optomechanical System
	Effective Atom–Photon–Phonon Interaction
	Atomic Driving

	Dynamical Transfer of Quantum States between Cavities
	Initialization of the Cavities, Mechanical Oscillator and Atoms
	Dissipative Dynamics under the Markovian Master Equation
	Fidelity of the Transfer Protocol

	Quantum Entanglement
	Stationary Synchronization of Squeezing in Hybrid Network
	Definition of Quantum Fluctuations
	Influence of the Squeezing Pump Strength and Tripartite Hybrid Interaction

	Discussion and Outlook
	Effects of Driving the Three-Level Atoms and Tripartite Hybrid Interaction
	Experimental Feasibility

	Conclusions
	Appendix A. Derivation of the Effective Hamiltonian
	Appendix B. Wigner Visualization
	References

