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Abstract: In this paper, we generate new degenerate quantum Euler polynomials (DQE polynomials),
which are related to both degenerate Euler polynomials and q-Euler polynomials. We obtain several
(q, h)-differential equations for DQE polynomials and find some relations of q-differential and h-
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1. Basic Concepts and Introduction

Before clarifying the objectives of this paper, we first introduce the necessary basic
concepts. We identify several definitions and properties and present the goals of this paper
based on them.

Let η, q ∈ R with q 6= 1. The quantum number, q-number, discovered by Jackson is

[η]q =
1− qη

1− q
,

and we note that limq→1[η]q = η. In particular, for k ∈ Z, [k]q is called q-integer; see [1–4].
Many mathematicians in various fields have worked on the introduction of q-numbers,

such as q-discrete distribution, q-differential equations, q-series, q-calculus, and so on;
see [5–8].

The following equation, [
m
r

]
q
=

[m]q!
[m− r]q![r]q!

,

is the q-Gaussian binomial coefficient where m and r are non-negative integers; see [4,5].
For r = 0, the value of q-Gaussian binomial coefficients is 1 since the numerator and the
denominator are both empty products. One notes that [η]q! = [η]q[η − 1]q · · · [2]q[1]q and
[0]q! = 1.

In [9], a two-parameter time scale Tq,h was introduced as follows:

Tq,h := {qηψ + [η]qh | ψ ∈ R, η ∈ Z, h, q ∈ R+, q 6= 1} ∪ { h
1− q

}.

Definition 1 ([9,10]). Let f : Tq,h → R be any function. Then, the delta (q, h)-derivative of f
Dq,h( f ) is defined by

Dq,h f (ψ) :=
f (qψ + h)− f (ψ)
(q− 1)ψ + h

.
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From the above definition, we can see several properties as follows:

(i) For ψ ∈ Tq,h, Dq,h f (ψ) = 0 if and only if f (ψ) is a constant;
(ii) Dq,h f (ψ) = Dq,hg(ψ) for all ψ ∈ Tq,h if and only if f (ψ) = g(ψ)+ c with some constant

c;
(iii) For ψ ∈ Tq,h, Dq,h f (ψ) = c1 if and only if f (ψ) = c1ψ + c2, where c1 and c2 are

constant.

In Definition 1, we can see that Dq,h( f ), the delta (q, h)-derivative of f reduces to
Dq( f ), the q-derivative of f for h→ 0 and reduces to Dh( f ), the h-derivative of f for q→ 1.

In addition, we can find the product rule and quotient rule for the delta (q, h)-
derivative.

Theorem 1 ([9,10]). Let f , g be arbitrary functions.

(i) Product rule

Dq,h( f (ψ)g(ψ)) = g(qψ + h)Dq,h f (ψ) + f (ψ)Dq,hg(ψ)

= f (qψ + h)Dq,hg(ψ) + g(ψ)Dq,h f (ψ).

(ii) Quotient rule

Dq,h

(
f (ψ)
g(ψ)

)
=

g(ψ)Dq,h f (ψ)− f (ψ)Dq,hg(ψ)
g(ψ)g(qψ + h)

=
g(qψ + h)Dq,h f (ψ)− f (qψ + h)Dq,hg(ψ)

g(ψ)g(qψ + h)
.

Definition 2 ([10,11]). The generalized quantum binomial (ψ− ψ0)
η
q,h is defined by

(ψ− ψ0)
η
q,h :=

{
1, if η = 0,

∏
η
i=1

(
ψ− (qi−1ψ0 + [i− 1]qh)

)
, if η > 0,

where ψ0 ∈ R.

The generalized quantum binomial reduces to q-binomial (ψ− ψ0)
η
q as h→ 0 and to

h-binomial (ψ− ψ0)
η
h when q→ 1. Also, we note lim(q,h)→(1,0)(ψ− ψ0)

η
q,h = (ψ− ψ0)

η .

Definition 3 ([10]). The generalized quantum exponential function expq,h(αψ) is defined as

expq,h(αψ) :=
∞

∑
i=0

αi(ψ− 0)i
q,h

[i]q!
,

where α is an arbitrary nonzero constant.

Clearly, we note expq,h(0) = 1. As h→ 0 and α = 1, the generalized quantum expo-
nential function expq,h(αψ) becomes the so-called q-exponential function eq(ψ); see [4,5].
Also, as q → 1 and α = 1, the generalized quantum exponential function expq,h(αψ)

reduces to the so-called h-exponential function eh(ψ) = (1 + h)
ψ
h ; see [4].

Based on the above concepts, many mathematicians have studied q-special functions, q-
differential equations, q-calculus, and so on; see [12–16]. For example, Duran, Acikgoz and
Araci [16] considered different trigonometric functions and hyperbolic functions related
to quantum numbers and looked for properties related to them. Mathematicians also
discovered various theorems about basic concepts related to h-numbers. Benaoum [11]
obtained Newton’s binomial formula in terms of (q, h), and Cermak and Nechvatal [9]
created a (q, h) version of fractional calculus. In 2011, Rahmat [17] studied the (q, h)-Laplace
transform. Silindir and Yantir [10] studied the quantum generalization of Taylor’s formula
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and the q-binomial coefficient in 2019; their work motivated the research reported in this
paper. Mathematicians who study polynomials have already defined and characterized
degenerate Euler polynomials. They also studied the definition and properties of Euler
polynomials when combined with quantum numbers.

The main purpose of this paper is to construct degenerate quantum Euler polynomials
(DQE polynomials) using properties of q-numbers and the (q, h)-derivative. The topic of this
paper is a field of mathematics that can be expanded into subareas such as series methods
or generalizations of existing series. Its results can also be applied in interdisciplinary
areas such as nonlinear physics, as well as for solutions to nonlinear differential equations
providing instrumental defects such as kinks, vortices, etc. The diagram below shows the
relationship of Euler, q-Euler, and degenerate Euler polynomials to the degenerate quantum
Euler polynomials (DQE polynomials) that we define here.

2
eτ + 1

eψτ = ∑∞
η=0 Eη(ψ)

τη

η!

Euler polynomials

2
eh(1 : τ) + 1

eh(ψ : τ) = ∑∞
η=0 Eη(ψ : h) τη

η!

degenerate Euler polynomials

2
eq(τ) + 1

eq(ψτ) = ∑∞
η=0 Eη,q(ψ)

τη

η!

q-Euler polynomials

2
eq,h(1 : τ) + 1

eq,h(ψ : τ) = ∑∞
η=0 Eη,q(ψ : h) τη

[η]q !

DQE polynomials

Definition 4 ([14,18]). q-Euler numbers and polynomials are defined as:

∞

∑
η=0
Eη,q

τη

[η]q!
=

2
eq(τ) + 1

,
∞

∑
η=0
Eη,q(ψ)

τη

[η]q!
=

2
eq(τ) + 1

eq(τψ).

Definition 5 ([19,20]). Degenerate Euler numbers and polynomials are defined as:

∞

∑
η=0
Eη(h)

τη

η!
=

2
eh(1 : τ) + 1

,
∞

∑
η=0
Eη(ψ : h)

τη

η!
=

2
eh(1 : τ) + 1

eh(ψ : τ).

The structure of this paper is as follows. In Section 2, we define DQE numbers and
polynomials. We find several properties of these polynomials by using q-numbers and
(q, h)-derivatives. In addition, we construct several higher-order differential equations
whose solutions are DQE polynomials. Section 3 shows the structure of approximate roots
of DQE polynomials, which are solutions of the higher-order differential equations obtained
in Section 2. By observing various structures of these approximate roots, we can make
several conjectures.

2. (q, h)-Differential Equations That are Related to DQE Polynomials

In this section, we define a degenerate q-exponential function and DQE numbers
and polynomials. We find several (q, h)-differential equations that are related to DQE
polynomials by the (q, h)-derivative. We also discuss how these DQE polynomials relate to
both q-Euler polynomials and degenerate Euler polynomials. We introduce the following
degenerate quantum exponential function:

eq,h(ψ : τ) :=
∞

∑
η=0

(ψ)
η
q,h

τη

η!
=

∞

∑
η=0

η

∏
k=0

(
ψ− [k− 1]qh

)τη

η!
.
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For example, substituting ψ = 1 in the above equation, we have

eq,h(1 : τ) =
∞

∑
η=0

(1)η
q,h

τη

η!
,

where (1)n
q,h = 1(1− h) · · · (1− [n− 1]qh).

Definition 6. Let |q| < 1 and let h be a non-negative integer. Then, we define the DQE polynomials
Eη,q(ψ : h) as:

∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q!
=

2
eq,h(1 : τ) + 1

eq,h(ψ : τ).

When ψ = 0, we can note that

∞

∑
η=0

Eη,q(h)
τη

[η]q!
=

2
eq,h(1 : τ) + 1

.

We denote Eη,q(h) as the DQE numbers. From Definition 6, we can see several relation-
ships between Euler polynomials. Setting h → 0 in Definition 6, we can find the q-Euler
numbers Eη,q and polynomials Eη,q(ψ) as

∞

∑
η=0
Eη,q

τη

[η]q!
=

2
eq(τ) + 1

,
∞

∑
η=0
Eη,q(ψ)

τη

[η]q!
=

2
eq(τ) + 1

eq(τψ).

Let h → 0 and q → 1 in Definition 6. Then, we have the Euler numbers Eη and
polynomials Eη(ψ) as

∞

∑
η=0
Eη

τη

η!
=

2
eτ + 1

,
∞

∑
η=0
Eη(ψ)

τη

η!
=

2
eτ + 1

eτψ.

In addition, for q→ 1 in Definition 6, we can see the degenerate Euler numbers Eη(h)
and polynomials Eη(ψ : h) as follows:

∞

∑
η=0

Eη(h)
τη

η!
=

2
eh(1 : τ) + 1

,
∞

∑
η=0

Eη(ψ : h)
τη

η!
=

2
eh(1 : τ) + 1

eh(ψ : τ),

where Eη(h) = Eη(0 : h).

Theorem 2. Let |q| < 1 and h ∈ N. Then, we have

Dq,hEη,q(ψ : h) = [η]qEη−1,q(ψ : h).

Proof. From the generating function of the DQE polynomials, we can find

∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q!
=

∞

∑
η=0

Eη,q(h)
τη

[η]q!

∞

∑
η=0

(ψ)
η
q,h

τη

[η]q!

=
∞

∑
η=0

(
η

∑
k=0

[
η
k

]
q
(ψ)

η−k
q,h Ek,q(h)

)
τη

[η]q!
.
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Applying the coefficient comparison method to the above equation, we find a relation
of DQE numbers and polynomials such as

Eη,q(ψ : h) =
η

∑
k=0

[
η
k

]
q
(ψ)

η−k
q,h Ek,q(h). (1)

Using the (q, h)-derivative in Equation (1), we can obtain the following equation:

Dq,hEη,q(ψ : h) =
η

∑
k=0

[
η
k

]
q
[η − k]q(ψ)

η−k−1
q,h Ek,q(h).

Considering Equation (1) and the above equation together, we have the required
result.

Corollary 1. Let k be a non-negative integer. From Theorem 2, one holds

Eη−k,q(ψ : h) =
[η − k]q!
[η]q!

D(k)
q,h Eη,q(ψ : h).

Corollary 2. From Theorem 2, the following holds:
(i) Setting q→ 1 in Theorem 2, we have

DhEη(ψ : h) = ηEη−1(ψ : h), Eη−k(ψ : h) =
(η − k)!

η!
D(k)

h Eη(ψ : h),

where Dh is the h-derivative and Eη(ψ : h) is the degenerate Euler polynomial.
(ii) Putting h→ 0 in Theorem 2, we have

DqEη,q(ψ) = [η]qEη−1,q(ψ), Eη−k,q(ψ) =
[η − k]q!
[η]q!

D(k)
q Eη,q(ψ),

where Dq is the q-derivative and Eη,q(ψ) is the q-Euler polynomial.

Theorem 3. The DQE polynomials represent a solution of the (q, h)-differential equation of higher
order shown below:

(1)η
q,h

[η]q!
D(η)

q,h Eη,q(ψ : h) +
(1)η−1

q,h

[η − 1]q!
D(η−1)

q,h Eη,q(ψ : h) +
(1)η−2

q,h

[η − 2]q!
D(η−2)

q,h Eη,q(ψ : h)

+ · · ·+
(1)2

q,h

[2]q!
D(2)

q,h Eη,q(ψ : h) + (1)1
q,hD(1)

q,h Eη,q(ψ : h) + 2Eη,q(ψ : h)− 2(ψ)
η
q,h = 0.

Proof. Consider eq,h(1 : τ) 6= −1 in the generating function of the DQE polynomials. Then,
we have

∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q,h!

(
eq,h(1 : τ) + 1

)
= 2eq,h(ψ : τ). (2)

The left-hand side of Equation (2) is transformed as

∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q!

(
eq,h(1 : τ) + 1

)
=

∞

∑
η=0

(
η

∑
k=0

[
n
k

]
q
(1)k

q,hEη−k,q,h(ψ) + Eη,q(ψ : h)

)
τη

[η]q!
.
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The right-hand side of Equation (2) is changed as

2eq,h(ψ : τ) = 2
∞

∑
η=0

(
ψ
)η

q,h
tη

[η]q!
.

From the above equations, we can obtain

η

∑
k=0

[
η
k

]
q
(1)k

q,hEη−k,q(ψ : h) + Eη,q(ψ : h) = 2(ψ)
η
q,h. (3)

Considering both Corollary 2 and Equation (3), we have

η

∑
k=0

(1)k
q,h

[k]q!
D(k)

q,h Eη,q(ψ : h) + Eη,q(ψ : h)− 2(ψ)
η
q,h = 0,

which is the desired result.

Corollary 3. Setting q→ 1 in Theorem 3, it holds that:

(1)η
h

η!
D(η)

h Eη(ψ : h) +
(1)η−1

h
(η − 1)!

D(η−1)
h Eη(ψ : h) +

(1)η−2
h

(η − 1)!
D(η−2)

h Eη(ψ : h)

+ · · ·+ (1)2
h

2!
D(2)

h Eη(ψ : h) + (1)hD(1)
h Eη(ψ : h) + 2Eη(ψ : h)− 2(ψ)

η
h = 0,

where Dh is the h-derivative and Eη(ψ : h) is the degenerate Euler polynomial.

Corollary 4. Let h→ 0 in Theorem 3. Then, it holds that:

1
[η]q!

D(η)
q Eη,q(ψ) +

1
[η − 1]q!

D(η−1)
q Eη,q(ψ) +

1
[η − 2]q!

D(η−2)
q Eη,q(ψ) + · · ·

+
1

[2]q!
D(2)

q Eη,q(ψ) + D(1)
q Eη,q(ψ) + 2Eη,q(ψ)− 2ψη = 0,

where Dq is the q-derivative and Eη,q(ψ) is the q-Euler polynomial.

Theorem 4. DQE polynomials are the solutions to the (q, h)-differential equation of higher order as

Eη,q(1 : h) + Eη,q(h)
[η]q!

D(η)
q,h Eη,q(ψ : h) +

Eη−1,q(1 : h) + Eη−1,q(h)
[η − 1]q!

D(η−1)
q,h Eη,q(ψ : h) + · · ·

+
E2,q(1 : h) + E2,q(h)

[2]q!
D(2)

q,h Eη,q(ψ : h) + (E1,q(1 : h) + E1,q(h))D(1)
q,h Eη,q(ψ : h)

+
(
E0,q(1 : h) + E0,q(h)− 2

)
Eη,q(ψ : h) = 0.

Proof. From Definition 6, we have

∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q!

=
2

eq,h(1 : τ) + 1
eq,h(ψ : τ)

=
1
2

(
2

eq,h(1 : τ) + 1
eq,h(1 : τ) +

2
eq,h(1 : τ) + 1

)
2

eq,h(1 : τ) + 1
eq,h(ψ : τ).
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Using the generating function of DQE polynomials, we find the following relation:

2
∞

∑
η=0

Eη,q(ψ : h)
τη

[η]q!
=

∞

∑
η=0

(
η

∑
k=0

[
η
k

]
q

(
Ek,q,h(1) + Ek,q,h

)
Eη−k,q,h(ψ)

)
τη

[η]q!
.

Comparing the coefficients of both sides, we obtain

η

∑
k=0

[
η
k

]
q

(
Ek,q(1 : h) + Ek,q(h)

)
Eη−k,q(ψ : h)− 2Eη,q(ψ : h) = 0. (4)

Replacing D(k)
q,h Eη,q(ψ : h) for Eη−k,q(ψ : h) in Equation (4), we derive

η

∑
k=0

(
Ek,q(1 : h) + Ek,q(h)

)
[k]q!

D(k)
q,h Eη,q(ψ : h)− 2Eη,q(ψ : h) = 0.

The equation above completes the proof of Theorem 4.

Corollary 5. Setting h→ 0 in Theorem 4, it holds that:

Eη,q(1) + Eη,q

[η]q!
D(η)

q Eη,q(ψ) +
Eη−1,q(1) + Eη−1,q

[η − 1]q!
D(η−1)

q,ψ Eη,q(ψ) + · · ·

+
E2,q(1) + E2,q

[2]q!
D(2)

q Eη,q(ψ) + (E1,q(1) + E1,q)D(1)
q Eη,q(ψ)

+
(
E0,q,(1) + E0,q − 2

)
Eη,q(ψ) = 0,

where Dq is the q-derivative and Eη,q(ψ) is the q-Euler polynomial.

Corollary 6. Putting q→ 1 in Theorem 4, the following holds:

Eη(1 : h) + Eη(h)
η!

D(η)
h Eη(ψ : h) +

Eη−1(1 : h) + Eη−1(h)
(η − 1)!

D(η−1)
h Eη(ψ : h) + · · ·

+
E2(1 : h) + E2(h)

2!
D(2)

h Eη(ψ : h) + (E1(1 : h) + E1(h))D(1)
h Eη(ψ : h)

+ (E0(1 : h) + E0(h)− 2)Eη(ψ : h) = 0,

where Dh is the h-derivative and Eη(ψ : h) is the degenerate Euler polynomial.

From a property of eq,h(ψ : τ), we note a relation

eq,h(qψ : τ)

=
∞

∑
η=0

qψ(qψ− h)(qψ− [2]qh)(qψ− [3]qh) · · · (qψ− [η − 1]qh)
τη

[η]q!

= eq,q−1h(ψ : qτ).

(5)
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Theorem 5. The following higher-order differential equation has DQE polynomials as the solution:

qη
(
Eη,q(1 : q−1h) + Eη,q(q−1h)

)
[η]q!

D(η)
q,h Eη,q(ψ : h)

+
qη−1(Eη−1,q(1 : q−1h) + Eη−1,q(q−1h)

)
[η − 1]q!

D(η−1)
q,h Eη,q(ψ : h)

+ · · ·+
q2(E2,q(1 : q−1h) + E2,q(q−1h)

)
[2]q!

D(2)
q,h Eη,q(ψ : h)

+ q(E1,q(1 : q−1h) + E1,q(q−1h))D(1)
q,h Eη,q(ψ : h)

+
(
E0,q(1 : q−1h) + E0,q(q−1h)− 2

)
Eη,q(ψ : h) = 0.

Proof. Consider Equation (5) in the generating function of the DQE polynomials. Then,
we find

∞

∑
η=0

Eη,q(qψ : h)
τη

[η]q!
=

2
eq,h(1 : τ) + 1

eq,h(qψ : τ)

=
1
2

(
2

eq,q−1h(1 : qτ) + 1
eq,q−1h(1 : qτ) +

2
eq,q−1h(1 : qτ) + 1

)

× 2
eq,h(1 : τ) + 1

eq,h(qψ : τ).

From En,q(ψ : h), we have the relation

2
∞

∑
η=0

Eη,q(qψ : h)
τη

[η]q!

=
∞

∑
η=0

(
η

∑
k=0

[
η
k

]
q
qk
(
Ek,q(1 : q−1h) + Ek,q(q−1h)

)
Eη−k,q(qψ : h)

)
τη

[η]q!
.

From the above equation, we find

η

∑
k=0

[
η
k

]
q
qk
(
Ek,q(1 : q−1h) + Ek,q(q−1h)

)
Eη−k,q(qψ : h)− 2Eη,q(qψ : h) = 0. (6)

Substituting qψ for ψ in Corollary 2, we note that

Eη−k,q(qψ : h) =
[η − k]q!
[η]q!

D(k)
q,h Eη,q(qψ : h).

Applying the above equation in Equation (6), we have

η

∑
k=0

qk
(
Ek,q(1 : q−1h) + Ek,q(q−1h)

)
[k]q!

D(k)
q,h Eη,q(qψ : h)− 2Eη,q(qψ : h) = 0,

which gives the required result.



Mathematics 2023, 11, 2803 9 of 14

Corollary 7. Setting h→ 0 in Theorem 5, it holds that:

qη
(
Eη,q(1) + Eη,q

)
[η]q!

D(η)
q Eη,q(ψ) +

qη−1(Eη−1,q(1) + Eη−1,q
)

[η − 1]q!
D(η−1)

q Eη,q(ψ) + · · ·

+
q2(E2,q(1) + E2,q

)
[2]q!

D(2)
q Eη,q(ψ) + q(E1,q(1) + E1,q)D(1)

q Eη,q(ψ)

+
(
E0,q(1) + E0,q − 2

)
Eη,q(ψ) = 0,

where Dq is the q-derivative and Eη,q(ψ) is the q-Euler polynomial.

3. Properties for Approximate Roots of DQE Polynomials

In this section, we use Mathematica to show the structures and shapes of approximate
roots of DQE polynomials. These DQE polynomials share several properties with both
degenerate Euler polynomials and q-Euler polynomials. Here, the purpose of changing the
q-number is to explore the properties of q-Euler polynomials, while the reason for changing
the value of h is to explore the properties of degenerate Euler polynomials.

Let eq,h(1 : τ) 6= −1. From the generating function of DQE numbers, we have

∞

∑
η=0

Eη,q(h)
τη

[η]q!

(
∞

∑
η=0

(1)η
q,h

τη

[η]q!
+ 1

)
= 2.

Using the Cauchy product in the above equation, we obtain

∞

∑
η=0

(
η

∑
k=0

[
η
k

]
q
(1)k

q,hEη−k,q(h) + Eη,q(h)

)
τη

[η]q!
= 2.

Therefore, we derive

η

∑
k=0

[
η
k

]
q
(1)k

q,hEη−k,q(h) + Eη,q(h) =
{

2, if η = 0,
0, otherwise.

From the above equation, we show several DQE numbers Eη,q,h as follows:

E0,q(h) = 1,

E1,q(h) =
1
2

,

E2,q(h) =
1
4
(1 + 2h− q),

E3,q(h) =
1
8
(−4h2(1 + q) + 4h(2 + q) + (1 + q)(1 + (−3 + q)q)),

E4,q(h) =
1

16
(8h3(1 + q)(1 + q + q2)− (−1 + q)(1 + q)(1 + (−4 + q)q)(1 + q + q2)

+ 4h2(1 + q)(−5 + q(−2 + (−2 + q)q)) + 2h(11 + q(6 + q− q2(3 + q(2 + q))))),

· · · .

Figure 1 shows the values of Eη,q,h obtained by varying the values of q, η, and h.
Non-negative integers on the x-axis in Figure 1 represent the value of η, with the 0 mark
on the x-axis corresponding to E0,q,h, the 1 mark indicating E1,q,h, and so on. The lines
represent variations of the approximate values for DQE numbers. The approximate values
of (0.1, h)-Euler numbers in Figure 1a are the blue dots, yellow squares, green rhombuses,
and red triangles, respectively, for η = 0, 2, 4, 6. Here, we can think of the blue dots as
approximate values of q-Euler numbers. In Figure 1b, the blue dots, yellow squares, green
rhombuses, and red triangles are the approximate values of (q, 2)-Euler numbers in the
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respective cases q = 0.3, 0.5, 0.7, 0.9. The red triangles can be thought of as approximate
values of h-Euler numbers.

(a) (b)

Figure 1. Positions of Eη,q(h) for 0 ≤ η ≤ 4 with (a) q = 0.1; h = 0, 2, 4, 6 and (b)
q = 0.3, 0.5, 0.7, 0.9; h = 2.

We next consider the approximate roots of DQE polynomials. In order to identify
some of these approximate roots and their properties, we need the exact shapes of the
polynomials. Several DQE polynomials Eη,q(ψ : h) are shown in the following:

E0,q(ψ : h) = 1,

E1,q(ψ : h) = −1
2
+ ψ,

E2,q(ψ : h) = −1
4
(−1 + 2h + q− 2(1 + 2h + q)ψ + 4ψ2),

E3,q(ψ : h) =
1
8
(−(1 + q)(1 + 4h2 + 4h(−1 + q) + (−3 + q)q))

+
1
4
(−1 + q3 + 4h2(1 + q) + 4h(1 + q + q2))ψ

− 1
2
(1 + q + q2 + 2h(2 + q))ψ2 + ψ3,

· · · .

Based on the DQE polynomials obtained above, we hope to find out about the various
behaviors of their approximate roots according to the changes in the values of q and h. We
will restrict the value of q to less than 1, since DQE polynomials become degenerate Euler
polynomials when q approaches 1 Also, DQE polynomials become q-Euler polynomials
when h goes to 0, so the value of h has to exclude 0. According to the above condition, we
can check the structures of approximate roots of DQE polynomials. Consider the case when
the value of h is changed and but the value of q is fixed.

Let us fix 0 ≤ η ≤ 50 and q = 0.9. Then, Figure 2 illustrates the structures of the
approximate roots of DQE polynomials obtained by varying h. The condition of the top-left
panel Figure 2a shows the case where h = 10; the condition of the top-right Figure 2b
is shown when h = 5; the condition of the bottom-left Figure 2c is shown when h = 1;
and the condition of the bottom-right Figure 2d is shown when h = 0. From Figure 2d,
it can be seen that, when the value of h becomes 0, the shape of the approximate roots
reduces to the approximate roots of q-Euler polynomials. The blue dots are the positions of
the approximate roots that appear when the value of n is small, and the red dots are the
positions of the approximate roots that appear when n = 50 in Figures 2–5.

Looking at Figure 2 from above gives the features shown in Figure 3. There, we can
see an interesting phenomenon: Figure 3 shows the change in h with q = 0.9 fixed for
0 ≤ n ≤ 50. For h = 10, it seems that all values of real numbers are approximate roots in
Figure 3a. In Figure 3b with h = 1, it can be seen that the approximate roots all have values
of real numbers. In Figure 3c, where h = 0, we see that the shapes of the approximate roots
have symmetric properties.
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(a) (b)

(c) (d)

Figure 2. Approximate roots viewed from the front under the following conditions: (a) q = 0.9; h = 10,
(b) q = 0.9; h = 5, (c) q = 0.9; h = 1, (d) q = 0.9; h = 0.

(a) (b) (c)

Figure 3. Approximate roots viewed from the top under the following conditions: (a) q = 0.9; h = 10,
(b) q = 0.9; h = 1, (c) q = 0.9; h = 0.

Based on Figure 3, we can see real values shown in Table 1, which shows approximate
values of real numbers that appear when h is changed.

Table 1 shows that the numbers of approximate real roots match the value of η when
h is 1. When h is 1, the numbers of approximated real roots are also equal to the value
of n. However, when h is 0, we can see that the approximated roots come out with both
real and imaginary values. Considering Figures 2 and 3, and Table 1, we can make the
following conjecture:
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Table 1. Numbers of approximate real zeros of Eη,0.9(ψ : h).
hhhhhhhhhhhhhhhhη

h
10 1 0

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 1
· · · · · · · · · · · ·
10 10 10 2
· · · · · · · · · · · ·
20 16 20 4
· · · · · · · · · · · ·
30 26 30 4
· · · · · · · · · · · ·
40 34 40 6
· · · · · · · · · · · ·
50 44 50 4
· · · · · · · · · · · ·

Conjecture 1. Let us fix q = 0.9. If 0 ≤ η ≤ 50, h = 1, then all values of approximate roots for
DQE polynomials will be found on the real axis.

Figure 4 shows the shapes that appear when q is fixed at q = 0.1. The conditions of
panels (a), (b), and (c) in Figure 4 are as follows:

(a) Eη,0.1(ψ : 10) for 0 ≤ η ≤ 50,
(b) Eη,0.1(ψ : 5) for 0 ≤ η ≤ 50,
(c) Eη,0.1(ψ : 1) for 0 ≤ η ≤ 50.

(a) (b) (c)

Figure 4. The shape of the 3-dimensional approximate roots under the following conditions:
(a) q = 0.1; h = 10, (b) q = 0.1; h = 5, (c) q = 0.1; h = 1.

In Figure 4, the blue dots correspond to η = 0, and the red dots indicate η = 50. In (a),
(b), and (c) of Figure 4, it can be seen that the approximate roots continue to accumulate
even if η increases and the value of h changes at one position.

Table 2 shows the approximate roots of one pillar location in Figure 4; we can see that
the positions of approximate roots stacked are close to 0. Based on Figure 4 and Table 2, we
can make the following conjecture:

Conjecture 2. One of the approximate roots of the DQE polynomial has a value close to zero under
the conditions q = 0.1, 0 ≤ η ≤ 50, and 1 ≤ h ≤ 10.
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Table 2. Approximate real roots of Eη,0.1(ψ : h).
````````````η

h 10 5 1

· · · · · · · · · · · ·
10 0.303694 0.167572 0.000545164
· · · · · · · · · · · ·
20 0.165068 0.0512303 5.29824× 10−7

· · · · · · · · · · · ·
30 0.0912093 0.0174946 5.17401× 10−10

· · · · · · · · · · · ·
40 0.0520318 0.00635171 5.05275× 10−13

· · · · · · · · · · · ·
50 0.030506 0.00237742 4.93432× 10−16

Next, we explore further properties of DQE polynomials by varying the q-number,
given the conditions h = 1 and 0 ≤ η ≤ 50. Figure 5 shows a view from above of the 3D
shape that appears when the q-number is changed under these constraints. The blue dots
represent the low values of n; the red dots indicate where n = 50. In Figure 5, the q value
of the shape on the left is 0.0001, the q value in the middle is 0.001, and the q value on the
right is 0.5. Figure 5 shows that the position of the red dots changes according to the value
of q and, based on this, we can make the following conjecture:

Conjecture 3. Let us fix h = 1. Then, all values of approximate roots for higher-order DQE
polynomials will appear on the real axis as the q-number approaches 0.

(a) (b) (c)

Figure 5. Approximate roots viewed from above under the following conditions: (a) q = 0.0001; h = 1,
(b) q = 0.01; h = 1, (c) q = 0.5; h = 1.

4. Conclusions

In this paper, we have introduced DQE polynomials and found higher-order differen-
tial equations related to these polynomials. By separately varying the q-number and the
h-number of these DQE polynomials, we have shown some properties of their approxi-
mate roots and the structure of those roots. We have proposed several further conjectures
on questions of interest which we hope will lead to new theorems and properties. This
result can be applied to nonlinear physics or problems of finding solutions to nonlinear
differential equations. Furthermore, we think the study of quantum polynomials with two
variables is an interesting topic.
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