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Abstract: We studied travelling waves in N nonlinear differential equations with a delay and large
parameter. This system is important because it can be regarded as a phenomenological model of
N-coupled neuron-like oscillators with delay. The problem of the existence of travelling-wave-type
solutions was reduced to the study of the dynamics of an auxiliary equation with two delays. Using
a special asymptotic method for the large parameter we proved that this equation has a relaxation
cycle, studied its properties (amplitude, period and asymptotics) and found the sufficient stability
conditions. Based on this periodic solution the travelling waves of the initial model were constructed.

Keywords: multiple delays; relaxation oscillations; travelling wave; rotating wave; asymptotics; large
parameter

MSC: 34K13, 34K25

1. Introduction

Differential equations with delay arise in many applied problems in biology, physics,
medicine and ecology [1–7].

A single equation of the form

ẋ + νx = λF(x(t− T1)), (1)

where ν, λ, and T1 are positive parameters and F is a nonlinear function plays an impor-
tant role in radiophysical and biological applications. For example, in radiophysics this
model simulates a generator with a first-order low-pass filter and delayed feedback [8,9].
Such generators are used in the manufacture of D-amplifiers, sonars and noise radars [8].
Moreover, model (1) simulates a biological process where the single state variable x decays
at a present rate ν proportional to x, and is produced at a rate dependent on its the value
at some time in the past [10]. Such processes arise in many areas in biology, such as in
population biology, neurophysiology and metabolic regulation [10]. If the function F is
compactly supported and λ is large enough equation (1) has a relaxation cycle [11]. Note,
that despite the fact that only the first derivative is present in the equation (there is no
second derivative), model (1) has oscillatory regimes for many nonlinear functions F. (See,
for example, [2,8–11]).

In this paper we considered a unidirectionally coupled ring

ẋk + xk = λF(xk(t− T1)) + γ(xk−1 − xk), k = 1, . . . , N, x0 ≡ xN , (2)
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of N oscillators of the form (1) with parameter ν = 1. Here, parameter λ is positive and
sufficiently large (λ � 1), delay time T1 and coupling parameter γ are positive, and
feedback function F is a compactly supported positive function:

F(y) =

{
f (y), if y ∈ [−p, p],
0, if y < −p or y > p,

where p is some positive constant, and f (y) is a piece-wise continuous and bounded
function on the segment y ∈ [−p, p] and f (y) > 0 for all y ∈ (0, p]. In the segment
y ∈ [−p, 0] it may change its sign, but it can’t be zero on any interval of the nonzero length.

The study of the dynamics of coupled oscillators is of great interest because they
simulate a lot of processes in different areas of science; for example, they simulate the work
of the heart or neurons in physiology and the rotation of generators in electrical grids in
physics [12–14].

In the papers of [15,16] the nonlocal dynamics of model (2) when N = 2, λ� 1 and an
asymptotically small γ were studied. It was shown that studying the existence and stability
of the periodic solutions of this infinite-dimensional problem may be reduced to studying
the dynamics of constructed finite-dimensional mappings, which were constructed for
different orders of smallness of parameter γ on λ. The asymptotics of the periodic solutions
of the initial model were found, and multistability was proven.

The nonlocal dynamics of the ring of diffusion-coupled oscillators

ẋk + xk = λF(xk(t− T1)) + γ(xk−1 − 2xk + xk+1), k = 1, . . . , N, x0 ≡ xN , xN+1 ≡ x1, (3)

under condition λ� 1 was studied [17,18]. It was proved that when γ > 0 all oscillators
were synchronized, and when − 1

4 < γ < 0 and N was even two-cluster synchronization
was observed. When − 1

4 < γ < 0 and N = 3, different periodic inhomogeneous regimes
were found, and there were non-regular oscillations.

In this paper we studied the existence and properties of the travelling waves

xk(t) = x(t− (k− 1)T2), k = 1, . . . , N, (4)

where T2 is some phase lag of model (2).
The existence of the travelling waves in the rings of coupled oscillators was studied in

the papers of [19,20]. Note that for the case of unidirectionally coupled oscillators, solution
(4) is often called “a rotating wave” (see [21,22]).

The function x(t) from (4) must satisfy the equation with two delays

ẋ + x = λF(x(t− T1)) + γ(x(t− T2)− x). (5)

We showed that Equation (5) has a periodic solution with period P. Moreover, we proved
that it is exponentially orbitally stable in the phase space C[−T,0], where T = max(T1, T2)
under some additional requirements on the function f .

Condition x0 ≡ xN lead us to
T2N = nP (6)

for some integer n. Therefore, if equality (6) is true, then our initial model (2) has a travelling
wave solution (4).

Furthermore, if we consider the ring of N oscillators with delayed coupling

ẋk + xk = λF(xk(t− T1)) + γ(xk−1(t− T2)− xk), k = 1, . . . , N, x0 ≡ xN (7)

instead of model (2), then its homogeneous regime is the solution to Equation (5).
In the paper, we proved the existence of several coexisting travelling waves of model

(2) in the case of large numbers N (N of the order O(ln λ)). These solutions are relaxation
spike-like regimes. In addition, we proved that all solutions of system (2) with positive
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initial conditions were positive for all t ∈ [0,+∞). That is why we can say that this system
may be regarded as a phenomenological model of N-coupled neurons [23].

It is important to mention, that models (2), (5) and (7) are rather complicated. At
present, there are no analytical methods to study their dynamics on the semiaxis t ∈ [0,+∞)
for any arbitrary values of parameters λ, γ, T1, and T2. If we study the dynamics of these
models numerically, we take several concrete functions F, but we cannot enumerate all
infinite sets of compactly supported functions F and draw justified conclusions about the
qualitative behavior of a model with an arbitrarily compact supported nonlinearity. That is
why we analyzed the nonlocal dynamics of this model under the assumption that λ was a
large parameter.

This assumption allowed us to use a special analytical method to study the dynamic
properties of the solutions to models (2), (5) and (7) on the entire semiaxis t ∈ [0,+∞). Let’s
describe the essence of this method in the simplest case of a model with one delay. First,
we selected a special set of initial conditions S from phase space C[−T,0], where T is the
delay time of the model. Then we integrated the model using the method of steps [24]. On
the first step t ∈ [0, T] function u(t− T) is a known function, the initial condition ϕ(t) ∈ S.
That is why, on this segment, we considered our initial equation with delay as an ordinary
differential equation with inhomogeneity depending on ϕ(t). We found asymptotics of
the solution to this equation at λ → +∞. After that, we considered our model on the
segment t ∈ [T, 2T] as an ordinary differential equation with inhomogeneity depending on
u(t− T)., which is known from the previous step, and constructed the asymptotics to this
model at λ → +∞. We did the same several times and then proved that for every initial
function ϕ ∈ S there existed a moment t0 such that the solution to our model with this
initial condition returned to the set S. This meant that there existed a Poincaré operator
Π of translation along the trajectories such that ΠS ⊂ S. That is why using the Schauder
fixed-point theorem [25] we concluded that there was a fixed point ϕ∗ ∈ S of the operator
Π: Πϕ∗ = ϕ∗. Therefore, if we took the function ϕ∗ as the initial condition to the equation
with delay, then we derived a periodic solution to this equation.

Note, that this analytical method is rather general and may be applied to various
systems of differential equations with delay, including mathematical models of radiophysi-
cal devices.

The paper is organized is as follows. In Section 2 we prove the positiveness of
solutions to system (2) and Equation (5) with positive initial conditions. In Section 3
we state and prove some properties of the linear part of Equation (5). In Section 4 we
construct asymptotics of the relaxation solutions to Equation (5) and prove that there
exists a relaxation cycle of this equation. In Section 5 we give the sufficient conditions of
the stability of this cycle. In Section 6 we discuss the conditions for the existence of the
travelling wave solutions to model (2). In Section 7 we give some generalizations about the
results and draw conclusions.

2. Positiveness of Solutions

In this section we prove the positiveness of all solutions to models (2) and (5) with
positive initial conditions.

First, let’s prove the positiveness of all solutions to an equation with two delays (5)
with positive initial conditions.

Lemma 1. Let ϕ(t) ∈ C[−T,0] and ϕ(t) > 0 for all t ∈ [−T, 0], where T = max(T1, T2). Then
solution x(t) to the Equation (5) with initial conditions x(t) = ϕ(t) for t ∈ [−T, 0] satisfies
inequality x(t) > 0 for all t > 0.

Proof. Initial condition ϕ(t) is positive on the segment t ∈ [−T, 0]; therefore, x(0) > 0 and
x(t− T2) > 0 for all t ∈ [0, T2]. Function F is non-negative for all values of its argument.
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Suppose there exists a moment t = t0 > 0 such that x(t0) = 0 and x(t) > 0 for all
t ∈ [0, t0). Then from Formula (5) we obtain

ẋ(t0) = λF(x(t0 − T1)) + γx(t0 − T2) > 0.

However, if for all t < t0 the inequality x(t) > 0 = x(t0) holds, then ẋ(t0) should be
negative. This contradiction completes the proof.

The next Lemma states that all solutions of system (2) with positive initial conditions
are positive. This result is important because the research model may be regarded as
a phenomenological model of coupled neurons only if its solutions with positive initial
conditions stay positive on the whole semiaxis t ∈ [0,+∞).

Lemma 2. Let ϕk(t) ∈ C[−T1,0] and ϕk(t) > 0 for all t ∈ [−T1, 0] and k = 1, . . . , N. Then
solution x(t) = (x1(t), . . . , xN(t)) to the system (2) with initial conditions xk(t) = ϕk(t) for
t ∈ [−T1, 0], k = 1, . . . , N satisfies inequalities xk(t) > 0 for all t > 0.

Proof. The proof of this Lemma is very similar to the proof of Lemma 1. Let t0 > 0 be
the first moment when xm(t0) = 0 for some m. Thus, xk(t) > 0 for all t ∈ [−T1, t0) and
k = 1, . . . , N. From (2), we obtain

xm(t0) = xm(0)e−(1+γ)t0 +

t0∫
0

e−(1+γ)(t−s)
(

λF(xm(s− T1)) + γxm−1(s)
)

ds.

The value xm(t0) is positive because xm(0) > 0 and inequalities F(x) ≥ 0 and
xm−1(s) > 0 hold for all t ∈ [0, t0). This contradiction completes the proof.

3. Some Properties of the Linear Equation

In this section, we establish several important properties of the linear part of Equation (5).
Consider the linear part of Equation (5)—a differential equation with one delay

ẋ = −(1 + γ)x + γx(t− T2), (8)

where γ and T2 are positive parameters. The solutions and stability of Equation (8) are
described by the roots of the characteristic equation

µ = −(1 + γ) + γe−µT2 . (9)

Let’s denote as µ∗ a root of Equation (9) with a real part that is maximal from all roots
of this equation.

Lemma 3. Root µ∗ of Equation (9) is real and negative. Its multiplicity is equal to one.

Proof. Let’s represent µ in the form µ = Re µ + iIm µ. Then if we separate the real and
imaginary parts of the Equation (9), we obtain the following system of equations

Re µ + γ + 1 = γ exp(−Re µT2) cos
(
− ImµT2

)
, (10)

Im µ = γ exp(−Re µT2) sin
(
− ImµT2

)
. (11)

Consider the right and left sides of Equation (10) as two functions of the argu-
ment Reµ taking the value of Imµ as a parameter. Let h1(Re µ) = Re µ + γ + 1 and
h2(Re µ) = γ exp(−Re µT2) cos

(
− ImµT2

)
. Then h1(0) = γ + 1 > γ ≥ h2(0). If Reµ > 0,

then h1(Reµ) > h1(0) and h2(Reµ) < γ < h1(0). Therefore, all roots Reµ of Equation (10)
are less than zero; thus, Reµ∗ < 0.

Let cos(−ImµT2) = 1. Then Equation (10) has a root Re µ = µ0 < 0, where µ0 satisfies
the equation µ0 + γ + 1 = γ exp(−µ0T2). This equation has only one root because the left
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side an is increasing function and the right is a decreasing function. The multiplicity of this
root is equal to one because the derivative on the left is positive whereas the derivative on
the right is negative). If cos(−ImµT2) < 1, then h2(Re µ) < γ exp(−Re µT2); therefore, all
roots of Equation (10) with cos(−ImµT2) < 1 are less then µ0.

Let’s prove that µ0 is the root of the system (10) and (11). If cos(−ImµT2) = 1, then
sin(−ImµT2) = 0; hence, Equation (11) in this case is equivalent to equation Imµ = 0.
Consequently, the real value µ0 is the root of the system (10) and (11). Moreover, this root
has the maximal real part from all roots of this system, there are no another complex roots
with the same real part, and this root has a multiplicity equal to 1.

Lemma 4. Let ϕ(t) ∈ C[t0−T2,t0]
and ϕ(t) > 0 for t ∈ [t0 − T2, t0]. Then the solution to

Equation (8) with initial condition ϕ(t) is positive for all t > t0.

Proof. This follows from Lemma 1 with F ≡ 0.

Next, we recall some important results from the monograph [24] on the form of the
solutions to differential equations with delay.

Lemma 5 ([24]). The solution to Equation (8) with initial condition x(t) = ϕ(t) for t ∈ [t0 −
T2, t0] is

x(t) = L(t− t0)ϕ,

where L(t− t0) is a linear compact operator such that for any µ∗ < µ0 < 0 there exists c such that
|L(t− t0)ϕ| ≤ c̃eµ0(t−t0)||ϕ||T2 = ceµ0t||ϕ||T2 , where ||ϕ||T2 = max

s∈[−T2,0]
|ϕ(t0 + s)|.

Lemma 6 (Variation-of-constants formula [24]). Let X(t) be the fundamental solution to
Equation (8); i.e., solution with initial condition

X(t) =
{

0, t < 0;
1, t = 0.

Then the solution to the linear inhomogeneous equation

ẋ = −(1 + γ)x + γx(t− T2) + h(t)

with initial conditions x(t) = ϕ(t) for t ∈ [t0 − T2, t0] is

x(t) = L(t− t0)ϕ +

t∫
t0

X(t− s)h(s) ds.

Lemma 7. Let ϕ(t) > 0 for all t ∈ [t0 − T2, t0]. Then there exists positive x0, c, c′, and M such
that for all t ≥ t0 solution to Equation (8) with initial conditions x(t) = ϕ(t) (t ∈ [t0 − T2, t0]) is

x(t) = x0eµ∗(t−t0)(1 + w(t)), w(t) = Q(t− t0)ϕ,

where Q(t− t0) is a compact linear operator such that

|w(t)| = |Q(t− t0)ϕ| ≤ c̃e−M(t−t0)||ϕ||T2 = ce−Mt||ϕ||T2 and |ẇ(t)| ≤ c′e−Mt||ϕ||T2 ,

where ||ϕ||T2 = max
s∈[−T2,0]

|ϕ(t0 + s)|.
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Proof. The representation of x(t) and inequality |w(t)| ≤ ce−Mt||ϕ||T2 follows from [24]
(see Chapter 7). The value of x0 is determined by the formula

x0 = x(t0) +

0∫
−T2

x(s + t0)e−µ∗(s+T2) ds > 0. (12)

To prove the inequality |ẇ(t)| ≤ c′e−Mt||ϕ||T2 substitute the formula for x(t) into
Equation (8), and after simplification we have

ẇ(t) = −(1 + γ + µ∗)w + γe−µ∗T2 w(t− T2),

so
|ẇ(t)| ≤ |1 + γ + µ∗|ce−Mt||ϕ||T2 + γe(M−µ∗)T2 ce−Mt||ϕ||T2 = c′e−Mt||ϕ||T2 .

Lemma 8. Let 0 < ϕ(t0) ≤ p and 0 < ϕ(t) ≤ 1+γ
γ p for all t ∈ [t0 − T2, t0]. Then the solution

x(t) to Equation (8) with initial condition x(t) = ϕ(t) (t ∈ [t0 − T2, t0]) is less than or equal to p
for all t ≥ t0.

Proof. If Equation (8) is a linear inhomogeneous ODE, its solution has the form

x(t) = x(t0)e−(1+γ)(t−t0) + γ

t∫
t0

e−(1+γ)(t−τ)x(τ − T2) dτ. (13)

The Second term in this formula can be estimated on the segment t ∈ [t0, t0 + T2]

γ

t∫
t0

e−(1+γ)(t−τ)x(τ − T2) dτ ≤ γ
1 + γ

γ
p

t∫
t0

e−(1+γ)(t−τ) dτ = p(1− e−(1+γ)(t−t0)). (14)

Thus, on the segment t ∈ [t0, t0 + T2]

x(t) ≤ x(t0)e−(1+γ)(t−t0) + p(1− e−(1+γ)(t−t0)) ≤ p,

and 0 < x(t0 + T2) ≤ p. Then, if we replace t0 by t0 + T2 in Formulas (13) and (14) we
obtain the estimation of 0 < x(t) ≤ p on the segment t ∈ [t0 + T2, t0 + 2T2].

Acting like this, by induction we obtain estimation 0 < x(t) ≤ p for all t ≥ t0.

Lemma 9. Let λ be sufficiently large and x(t) = λϕ(t) for all t ∈ [t0 − T2, t0], where ϕ(t) is a
positive continuous function. Then there exists t1 such that x(t1) = p, x(t) > p for all t ∈ [t0, t1)
and for all t ∈ [t1 − T2, t1]

p
1 + γ

γ
≥ x(t) ≥ p.

Proof. Using Lemma 7 we get x(t) = λeµ∗(t−t0)x0(1 + w(t)), where x0 is determined
by (12); w(t) = Q(t− t0)ϕ; and |w(t)| ≤ ce−Mt||ϕ||T2 for some positive c and M. Solving
equation x(t) = p we find t1 = t0 + |µ−1

∗ | ln λ(1 + o(1)).
Thus, the values t ∈ [t1 − T2, t1] are large enough, so for such t

x(t) = peµ∗(t−t1)(1 + o(1)).

Since µ∗ is a negative root of Equation (9), then e−µ∗T2 = µ∗γ−1 + 1+γ
γ < 1+γ

γ .
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Let t ∈ [t1 − T2, t1], then

x(t) = peµ∗(t−t1)(1 + o(1)) < p(1 + o(1))e−µ∗T2 < p
1 + γ

γ
.

Thus, Lemma is proved.

4. Relaxation Oscillations

In this section we prove that Equation (5) has a relaxation cycle, construct its asymp-
totics and study its main properties.

Let T be the maximum of delays (T = max(T1, T2)) and Tm be the minimum of delays
(Tm = min(T1, T2)).

Consider the following set of initial conditions:

S = {ϕ(t) ∈ C[−T,0] : ϕ(0) = p, ϕ(t) ≥ p ∀t ∈ [−T, 0],
1 + γ

γ
p ≥ ϕ(t)∀t ∈ [−T2, 0]}.

Examples of S are shown in Figure 1.

0−T1−T2
t

0
p

1+ γ
γ p

φ

0−T1 −T2
t

0
p

1+ γ
γ p

φ

(a) (b)

Figure 1. Examples of set S for (a) T1 < T2; (b) T2 < T1.

Denote as xϕ(t) a solution to Equation (5) with initial condition ϕ ∈ S. Let’s construct
an asymptotic approximation of solution xϕ(t).

1. Let t ∈ [0, T1]. For such t inequality x(t− T1) > p holds, so F(x(t− T1)) ≡ 0 and
Equation (5) has the form of a linear differential equation with one delay (8). Therefore,
solution xϕ(t) satisfies the formula

xϕ(t) = pe−(1+γ)t + γ

t∫
0

e−(1+γ)(t−τ)ϕ(τ − T2)dτ. (15)

From Lemma 8 we find that xϕ(t) ≤ p for all t ∈ [0, T1].
2. Let t ∈ [T1, 2T1]. For these values of t, the inequality xϕ(t− T1) < p holds; therefore,

F(xϕ(t− T1)) = f (xϕ(t− T1)) > 0.
By Lemma 6 solution xϕ(t) on this segment becomes asymptotically large. It is of

the order O(λ) at λ → +∞. Let’s write out the exact solution formulas. First, consider
Equation (5) on the segment t ∈ [T1, T1 + Tm].

In Equation (5) is considered to be an ordinary differential equation, then its solution
has the form

xϕ(t) = x(T1)e−(1+γ)(t−T1) + γ

t∫
T1

e−(1+γ)(t−τ)xϕ(τ − T2)dτ + λ

t∫
T1

e−(1+γ)(t−τ)F(xϕ(τ − T1))dτ. (16)
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It follows from Formula (16), Lemma 8, and conditions f > 0 and λ � 1 that
there exists a positive value δ such that x(T1 + δ) = p and δ = o(1). On the interval
t ∈ (T1, T1 + Tm], the solution xϕ(t) satisfies the formula

xϕ(t) = λ

t∫
T1

e−(1+γ)(t−τ) f (xϕ(τ − T1))dτ(1 + o(1)). (17)

If Tm < T1, then on segment t ∈ [T1 + Tm, 2T1] the following asymptotic formula for
solution xϕ(t) holds:

xϕ(t) = γ

t∫
T1+Tm

e−(1+γ)(t−τ)xϕ(τ − T2)dτ + λ

t∫
T1

e−(1+γ)(t−τ) f (xϕ(τ − T1))dτ(1 + o(1)). (18)

Note, that the first term on the right side of (18) is of the order O(λ). Since xϕ(t− T2) > 0
(see Lemma 1), f (xϕ(t− T1)) > 0 on the segment t ∈ [T1 + Tm, 2T1], and 2T1 = O(1), then
on the segment t ∈ [T1 + Tm, 2T1 + δ] solution xϕ(t) has the order O(λ).

Figure 2a shows the solution of Equation (5) on a segment [0, 2T1], and Figure 2b
shows an enlarged part in the neighbourhood of T1.

0 T1 2T1
t

p

x φ

T1        T1 + δ
t

0

p
x φ

(a) (b)

Figure 2. Solution of the Equation (5) for (a) t ∈ [0, 2T1]; (b) t in neighbourhood of T1.

3. Let t ≥ 2T1 + δ. Then Equation (5) is the linear differential equation of the form (8)
while solution xϕ(t− T1) > p. From Lemma 7, its solution is

xϕ(t) = λeµ∗(t−2T1−δ)x0(1 + w(t)), |w(t)| ≤ ce−Mt max
s∈[−T2,0]

|λ−1xϕ(2T1 + δ + s)|. (19)

Here x0, c, M > 0. This function tends to zero; therefore, for some P > 2T1 + δ equality
xϕ(P) = p holds. Moreover,

P = |µ−1
∗ | ln λ + 2T1 + |µ−1

∗ |(ln p− ln x0)− |µ−1
∗ | ln(1 + w(P)) + δ = |µ−1

∗ | ln λ(1 + o(1)). (20)

By Lemma 9 on the segment t ∈ [P − T2, P], the solution satisfies the inequality
p 1+γ

γ ≥ xϕ(t) ≥ p and on the segment t ∈ [P− T, P] condition x(t) ≥ p holds; therefore,
xϕ(t + P) ∈ S. Moreover, the solution xϕ(t + P) for t ∈ [−T, 0] satisfies the following
inequality:

xϕ(t + P) = λeµ∗(t+P−2T1−δ)x0(1 + w(t + P)) = eµ∗t p
(1 + w(t + P))
(1 + w(P))

≤ 2 + 2γ

2 + 2γ + µ∗
peµ∗t. (21)

Consider a set S0:

S0 = {ϕ(t) ∈ C[−T,0] : ϕ(0) = p, p ≤ ϕ(t) ≤ 2 + 2γ

2 + 2γ + µ∗
peµ∗t for t ∈ [−T, 0]}.

Note that S0 is a non-empty bounded closed convex subset of S. In Figure 3 the examples
of S0 are shown.
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0−T1−T2
t

0
p

1+ γ
γ p

φ

0−T1 −T2
t

0
p

1+ γ
γ p

φ

(a) (b)

Figure 3. Example of set S0 for (a) T1 < T2; (b) T2 < T1.

Thus, we have proved that the Poincaré operator Π maps the set S to S0. Since S0 is a
subset of S, then Π maps S0 to S0.

Since S0 is a non-empty bounded closed convex set and Π is a compact operator
(see [24]), we may use the Schauder fixed-point theorem [25]. As a result, we find that
ϕ∗ ∈ S0 ⊂ S such that Πϕ∗ = ϕ∗ ; therefore, solution xϕ∗(t) is a periodic solution.

Thus, we obtain the following statement.

Theorem 1. For all sufficiently large λ, Equation (5) has a periodic solution x∗(t) with initial
conditions from the set S0 with the period P = 2T1 + |µ−1

∗ | ln λ(1 + o(1)) and amplitude O(λ).
Asymptotics of this solution are

x∗(t) = peµ∗t(1 + o(1)) (22)

on the segment t ∈ [0, T1],

x∗(t) = λ

t∫
T1

e−(1+γ)(t−τ) f (peµ∗(τ−T1))dτ(1 + o(1)) (23)

on the segment t ∈ (T1, T1 + Tm],

x∗(t) = λ

t∫
T1

e−(1+γ)(t−τ) f (peµ∗(τ−T1))dτ(1 + o(1)) + γ

t∫
T1+Tm

e−(1+γ)(t−τ)x∗(τ − T2)dτ (24)

on the segment t ∈ (T1 + Tm, 2T1],

x∗(t) =
(

x∗(2T1) +

0∫
−T2

x∗(2T1 + s)e−µ∗(s+T2)ds
)

eµ∗(t−2T1)(1 + w(t) + o(1)) (25)

on the segment t ∈ (2T1, P], where |w(t)| ≤ ce−Mt and c > 0, M > 0.

Proof. We have proven that the compact Poincaré operator Π maps the non-empty bounded
closed convex set S0 to its pre-compact subset. That is why by the Schauder theorem there
exists a fixed point of this operator ϕ∗(t) ∈ S0 [25]. From Formula (21) we obtained
asymptotics of this fixed point: ϕ∗(t) = peµ∗t(1 + o(1)) at λ→ +∞.

If we get ϕ∗(t) as an initial condition to Equation (5), then we obtain a periodic
solution of Equation (5). Denote it as x∗(t). For all of the solutions of Equation (5) with
initial conditions from the set S Formulas (15) and (17)–(19) hold. Hence, if we substitute
ϕ∗(t) into them and take into account Formula (12), then we obtain Formulas (22)–(25).

Examples of periodic solutions to Equation (5) are shown in the Figure 4.
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Figure 4. Solution of the equation with two delays (5). Parameters: (a) λ = 500, γ = 0.38, p = 5,
T1 = 1, T2 = 1.77, f (x) = 5; (b) λ = 500, γ = 0.15, p = 5, T1 = 1, T2 = 1.33, f (x) = 5.

Note, that asymptotic Formula (25) contains a function w(t) that satisfies an exponen-
tial estimation |w(t)| ≤ ce−Mt, where c > 0, M > 0. On the interval t ∈ (2T1, 2T1 + O(1))
this function can make a significant contribution to the asymptotics of the solution. For
example, the second (smaller) spikes on the period of the function x∗(t) on the Figure 4a
are described by this function.

Theorem 1 does not say anything about the stability of the constructed periodic
relaxation solution. In the next section we show the sufficient conditions under which this
cycle is exponentially orbitally stable.

5. The Stability of Relaxation Cycle

Let’s discuss the stability of relaxation cycle from Theorem 1. To prove sufficient
stability conditions, we need the following auxiliary result:

Theorem 2. Let f (x) > 0 be Lipschitz continuous on the segment [0, p]:

| f (x)− f (y)| ≤ c f |x− y|, ∀x, y ∈ [0, p],

Then the Poincaré operator Π for the Equation (5) is a contraction operator on the set S0.

Proof. Denote as ||x|| = max
t∈[−T,0]

|x(t)|—norm in the space C[−T,0] and ||x||T2 = max
t∈[−T2,0]

|x(t)|

—norm in the space C[−T2,0].
We know that Π(S0) ⊂ S0; therefore, to prove the Theorem it is enough to prove that

there exists 0 < q < 1 such that for any ϕ, ψ ∈ S0 the inequality

||Πϕ−Πψ|| ≤ q||ϕ− ψ||

holds.
Let ϕ and ψ be two functions from set S0, so let’s construct solutions to Equation (5)

xϕ(t) and xψ(t) with initial conditions ϕ and ψ respectively.
We need to repeat all constructions of this section.
1. Let t ∈ [0, T1]. For these t, Equation (5) takes form of linear differential Equation (8).

From Lemma 5 we found that its solutions for each t ∈ [0, T1] satisfied the

|xϕ(t)− xψ(t)| = |L(t)(ϕ− ψ)| ≤ c1eµ0t||ϕ− ψ|| ≤ c1||ϕ− ψ||,

where c1 is some positive constant, and µ∗ < µ0 < 0.
2. Consider xϕ(t) for t ∈ [T1, 2T1 + δϕ] and xψ(t) for t ∈ [T1, 2T1 + δψ]. As before, de-

note as δϕ and δψ the first positive roots of equations xϕ(T1 + δϕ) = p, and xψ(T1 + δψ) = p,
respectively. From Formula (16) and inequality f (p) > 0, the values of δϕ and δψ are
O(λ−1) at λ→ +∞. Without any loss of generality, we assumed that δϕ is less than δψ.
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By Lemma 6 we may represent solutions as follows:

xϕ(t) = L(t− T1)xT1
ϕ + λ

t∫
T1

X(t− s) f (xϕ(s− T1)) ds,

xψ(t) = L(t− T1)xT1
ψ + λ

t∫
T1

X(t− s) f (xψ(s− T1)) ds,

where X(t) is the fundamental solution to (8). Here xτ
ϕ and xτ

ψ are functions xϕ(τ + t)

and xψ(τ + t) for t ∈ [−T2, 0]. Note that L(t− T1)xT1
ϕ = L(t)ϕ and L(t− T1)xT1

ψ = L(t)ψ.
From this formula, the difference between solutions on the segment [T1, 2T1] satisfies
the inequalities

|xϕ(t)− xψ(t)| ≤ |L(t)(ϕ− ψ)|+ λ
∫ t

T1

|X(t− s)( f (xϕ(s− T1))− f (xψ(s− T1)))| ds ≤

c1||ϕ− ψ||+ λc f c2

t∫
T1

|xϕ(t− T1)− xψ(t− T1)| ds ≤ (c1 + c3λ(t− T1))||ϕ− ψ||. (26)

Here c2 = max
t∈[0,2T1]

|X(t)| and c3 = c f c2c1 are positive constants. In particular,

|xϕ(T1 + δψ)− xψ(T1 + δψ)| ≤ (c1 + λc3δψ)||ϕ− ψ|| ≤ c4||ϕ− ψ||.

In the same way inequality (26) can be generalized to the segment t ∈ [2T1, 2T1 +min(δϕ, δψ)].
Let’s estimate δψ − δϕ. Using (16), we get

0 = p− p = xϕ(T1 + δϕ)− xψ(T1 + δψ) =

xϕ(T1 + δϕ)− xψ(T1 + δϕ) + xψ(T1 + δϕ)− xψ(T1 + δψ) =

xϕ(T1 + δϕ)− xψ(T1 + δϕ) + ẋψ(T1 + θ)(δϕ − δψ). (27)

Here θ is a value between δψ and δϕ. It is asymptotically small and positive, so xψ(θ) =
p + o(1) < p. Let’s estimate ẋψ(T1 + θ).

ẋψ(T1 + θ) = −(1 + γ)xψ(T1 + θ) + γxψ(T1 + θ − T2) + λ f (xψ(θ)) ≥ c5λ,

where c5 = 1
2 f (p) > 0. Thus from (27),

|δϕ − δψ| = |ẋψ(T1 + θ)|−1|xϕ(T1 + δϕ)− xψ(T1 + δϕ)| ≤ cδλ−1||ϕ− ψ||, cδ = 2c4c−1
5 > 0.

Here we also note that for all t ∈ [−T, 0]

λcmax ≥ xϕ(2T1 + δϕ + t), λcmax ≥ xψ(2T1 + δψ + t), (28)

where
cmax = 2T1 max

t∈[0,2T1]
|X(t)| max

x∈[0,p]
f (x),

and
xϕ(2T1 + δϕ) ≥ λc6, xψ(2T1 + δψ) ≥ λc6,

where c6 = 1
2 T1 min

t∈[0,2T1]
|X(t)| min

x∈[0,p]
f (x).
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3. Consider each solution on the time interval t from 2T1 + δϕ and 2T1 + δψ till the
moment when it returns to the set S0. By Lemma 7, both solutions can be represented in
the form

xϕ(t) = λx1eµ∗(t−2T1−δϕ)(1 + wϕ(t)), xψ(t) = λx2eµ∗(t−2T1−δψ)(1 + wψ(t)),

where wϕ(t) = λ−1Q(t− 2T1 − δϕ)x
2T1+δϕ
ϕ and wψ(t) = λ−1Q(t− 2T1 − δψ)x

2T1+δψ

ψ . For
short, we denote Q(t− 2T1 − δϕ) as Qϕ(t) and denote Q(t− 2T1 − δψ) as Qψ(t).

Values λx1 and λx2 are determined by formula (12); therefore

λ|x1 − x2| ≤ |xϕ(2T1 + δϕ)− xψ(2T1 + δϕ)|+ |xψ(2T1 + δϕ)− xψ(2T1 + δψ)|+∣∣∣ 0∫
−T2

e−µ∗(s+T2)(xϕ(s + 2T1 + δϕ)− xψ(s + 2T1 + δϕ)) ds
∣∣∣+

∣∣∣ 0∫
−T2

e−µ∗(s+T2)(xψ(s + 2T1 + δϕ)− xψ(s + 2T1 + δψ)) ds
∣∣∣ ≤ λc7||ϕ− ψ||+ c8λ|δϕ − δψ|.

Here were used that for t ∈ [T1, 2T1 + δψ] from (28) and equality (5) it follows that

|ẋψ(t)| ≤ (1 + γ)|xψ(t)|+ γ|xψ(t− T2)|+ λ f (xψ(t− T1)) ≤ λc9, (29)

where c9 = (1 + 2γ)cmax + maxx∈[0,p] f (x).
Therefore, there exists cx > 0 such that

|x1 − x2| ≤ cx||ϕ− ψ||.

In addition, from Formula (12) it follows that x1,2 ≥ c6 > 0.
Let Pϕ and Pψ be the first moments of time such that Pϕ > 2T1, Pψ > 2T1, xϕ(Pϕ) = p,

and xψ(Pψ) = p. They are represented by the Formula (20). Let’s estimate the difference
Pϕ − Pψ:

|Pϕ− Pψ| ≤ |µ−1
∗ || ln x1− ln x2|+ |µ−1

∗ || ln(1+wϕ(Pϕ))− ln(1+wψ(Pψ))|+ |δψ− δϕ| ≤
(|µ−1
∗ |c−1

6 cx + cδλ−1)||ϕ− ψ||+ c10|wϕ(Pϕ)− wψ(Pψ)|.

To estimate |wϕ(Pϕ)− wψ(Pψ)| consider a more general inequality for t ∈ [−T, 0]

|wϕ(Pϕ + t)− wψ(Pψ + t)| ≤ |wϕ(Pϕ + t)− wψ(Pϕ + t)|+ |wψ(Pϕ + t)− wψ(Pψ + t)| ≤

λ−1|Qϕ(Pϕ + t)(x2T1+δϕ
ϕ − x2T1+δψ

ψ )|+ λ−1|Qψ(Pϕ + t− δϕ + δψ)x2T1+δψ

ψ −Qψ(Pϕ + t)x2T1+δψ

ψ |+ |ẇψ(θ)||Pϕ − Pψ| ≤

λ−1|Qϕ(Pϕ + t)(x2T1+δϕ
ϕ − x2T1+δϕ

ψ )|+ λ−1|Qϕ(Pϕ + t)(x2T1+δϕ

ψ − x2T1+δψ

ψ )|+ |wψ(Pϕ + t− δϕ + δψ)− wψ(Pϕ + t)|+

|ẇψ(θ)||Pϕ − Pψ| ≤ ce−M(Pϕ+t)c11||ϕ− ψ||+ cλ−1e−M(Pϕ+t)|ẋψ(θ1)||δϕ − δψ|+ |ẇψ(θ2)||δϕ − δψ|+ |ẇψ(θ)||Pϕ − Pψ|. (30)

Here c11 = 2c3T1, θ1 is a time moment between 2T1 + δϕ and 2T1 + δψ, θ2—between
Pϕ + t and Pϕ + t− δϕ + δψ, and θ is a time moment between Pϕ + t and Pψ + t.

From Formula (29) |ẋψ(θ1)| ≤ λc9. By Lemma 7 and inequality (28) |ẇψ(t)| ≤
λ−1c′e−Mt||x2T1+δψ

ψ || ≤ c′cmaxe−Mt and, since θ2 and θ are large enough, |ẇψ(θ2)| and
|ẇψ(θ)| are small, so 1− c10|ẇψ(θ)| > 1/2. Then we have

(1− c10|ẇψ(θ)|)|Pϕ − Pψ| ≤
(
|µ−1
∗ |c−1

6 cx + cδλ−1 + cc10(c11 + c9cδλ−1)e−MPϕ + c10c′cδcmaxλ−1e−Mθ2

)
||ϕ− ψ||,
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so there exists cP > 0 such that

|Pϕ − Pψ| ≤ cP||ϕ− ψ||.

Moreover, from (30) it follows that there exists cw > 0 such that the next inequality is true:

||wϕ(Pϕ)− wψ(Pψ)|| ≤ e−MPϕ cw||ϕ− ψ||.

Represent solutions xϕ and xψ in the form

xϕ(t + Pϕ) = λeµ∗(t+Pϕ−2T1−δϕ)x1(1 + wϕ(t + Pϕ)) =

xϕ(Pϕ)eµ∗t 1 + wϕ(t + Pϕ)

1 + wϕ(Pϕ)
= peµ∗t 1 + wϕ(t + Pϕ)

1 + wϕ(Pϕ)

and

xψ(t + Pψ) = peµ∗t 1 + wψ(t + Pψ)

1 + wψ(Pψ)
.

Let t ∈ [−T, 0]. For these t let’s estimate the difference

|xϕ(t + Pϕ)− xψ(t + Pψ)| ≤ peµ∗t

∣∣∣∣∣1 + wϕ(t + Pϕ)

1 + wϕ(Pϕ)
−

1 + wψ(t + Pψ)

1 + wψ(Pψ)

∣∣∣∣∣.
Here∣∣∣∣∣1 + wϕ(t + Pϕ)

1 + wϕ(Pϕ)
−

1 + wψ(t + Pψ)

1 + wψ(Pψ)

∣∣∣∣∣ =∣∣∣∣∣ (wϕ(t + Pϕ)− wψ(t + Pψ))(1 + wψ(Pψ)) + (1 + wψ(t + Pψ))(wψ(Pψ)− wϕ(Pϕ))

(1 + wϕ(Pϕ))(1 + wψ(Pψ))

∣∣∣∣∣ ≤
2|wϕ(t + Pϕ)− wψ(t + Pψ)|+ 2|wψ(Pψ)− wϕ(Pϕ)| ≤

4||wPϕ
ϕ − w

Pψ

ψ || ≤ 4cwe−MPϕ ||ϕ− ψ|| = 4cwλM/µ∗(1 + o(1))||ϕ− ψ||.

Here, as before, we denote as wτ
ϕ and wτ

ψ functions wϕ(τ + t) and wψ(τ + t), respectively,
for t ∈ [−T2, 0].

So for all t ∈ [−T, 0]

|xϕ(t + Pϕ)− xψ(t + Pψ)| ≤ 5cw pe−µ∗TλM/µ∗ ||ϕ− ψ||.

Let q = 5cw pe−µ∗TλM/µ∗ . Since M > 0, µ∗ < 0 then for sufficiently large λ the value q is
less than 1 and is small enough. Therefore, for all ϕ, ψ ∈ S0

||Πϕ−Πψ|| ≤ q||ϕ− ψ||.

Thus, Π : S0 → S0 is a contraction operator. The theorem is proved.

Theorem 3. Let F satisfy conditions from Theorem 2. Then for all sufficiently large values of
λ, Equation (5) has a unique periodic solution with initial conditions from S0. This solution is
exponentially orbitally stable. Asymptotics of this solution are given in the Theorem 1.

Proof. Due to the contraction mapping principle, operator Π has a unique fixed point ϕ∗ ∈
S0 that corresponds to the periodic solution x∗(t) of (5). For any ϕ ∈ S0, the sequence Πn ϕ
tends to the ϕ∗ exponentially fast, so solution x∗(t) is exponentially orbitally stable.
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6. Travelling Waves

Let’s discuss the existence of travelling wave solutions in the system of N-coupled
oscillators (2).

Theorem 4. Let λ be large enough and N be a large integer of the order O(ln λ), i.e., N = c(λ) ln λ,
where c(λ) is a positive bounded function such that N is an integer. Let n > 0 be an integer and
nc−1(λ) < ln(1 + 1

γ ). Then there exist positive T2,1, T2,2, . . . , T2,n such that system (2) has at
least n travelling wave solutions in the form

xk,m = xm
∗ (t− (k− 1)T2,m), m = 1, . . . , n, k = 1, . . . , N,

where xm
∗ (t) is a periodic relaxation solution to Equation (5) from Theorem 1 for corresponding T2,m.

Proof. From Theorem 1 for any T2 we may construct a periodic solution x∗(t) to Equa-
tion (5) with period P(T2). We need T2 such that condition (6) holds. Thus, we need to
prove the existence of at least n roots of equation

T2N = mP(T2)

for integers m = 1, . . . , n. We know that P(T2) = − 1
µ∗

ln λ(1 + o(1)). To determine T2,
therefore, we have the equation

−µ∗T2 =
m

c(λ)
(1 + o(1)). (31)

The product |µ∗T2| takes values in the interval (0, ln(1 + 1
γ )); therefore, Equation (31) has

n solutions T2 = T2,m (m = 1, . . . , n) if and only if nc−1(λ) < ln(1 + 1
γ ).

Figures 5 and 6 show examples of stable travelling waves for some parameter values.
In the Figure 5 there is solution to the system (2) for λ = 500, γ = 0.38, p = 5, T1 = 1,
f (x) ≡ 5, N = 7. Here, ln λ ≈ 6.21, so, c(λ) ≈ 1.13 and c−1(λ) ≈ 0.88 < 1.29 ≈
ln(1 + γ−1). Thus, conditions of the Theorem 4 are fulfilled. In this case T2 ≈ 1.77. The
corresponding periodic solution x∗(t) to Equation (5) is in Figure 4a. In Figure 6 there
is solution of the system (2) for λ = 500, γ = 0.15, p = 5, T1 = 1, f (x) ≡ 5, N = 7. As
in Figure 5 c−1(λ) ≈ 0.88. It is less than 2.03 ≈ ln(1 + γ−1). In this case T2 ≈ 1.33. The
corresponding periodic solution x∗(t) to the Equation (5) is in Figure 4b.
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Figure 5. Example of travelling wave solution to (2). Parameters: N = 7; λ = 500; γ = 0.38; p = 5;
T1 = 1; f (x) = 5.
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Figure 6. Example of travelling wave solution to (2). Parameters: N = 7; λ = 500; γ = 0.15; p = 5;
T1 = 1; f (x) = 5.

Note, that system (2) has a homogeneous relaxation cycle. We may treat it as a
travelling wave corresponding to T2 = 0. Asymptotics of this cycle coincided with the
asymptotics of the homogeneous relaxation cycle of the system (3). For asymptotics of this
cycle, see [18]. Note that this cycle does not depend on γ. An example of such a solution is
in Figure 7.
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Figure 7. Example of travelling wave solution (homogeneous cycle) of (2). Parameters: N = 7;
λ = 500; p = 5; T1 = 1; f (x) = 5.

7. Discussion and Conclusions

We studied the periodic solutions to equation with two delays and compactly sup-
ported nonlinearity (5) under condition λ � 1. We chose a set of initial conditions and
proved that translation along the trajectories operator Π mapped this set to itself. We
proved that Π had a fixed point, and the solution to Equation (5) corresponding to this
fixed point was periodic. This cycle had a large period of the order O(ln λ), and an ampli-
tude of the order O(λ). With additional requirements for the function f (x) we proved that
Π is a contraction operator and a found cycle is exponentially orbitally stable.

This cycle was used to construct travelling waves of the system of N-coupled neuron-
like oscillators (2) when N was asymptotically large (on the order of O(ln λ)).

The results allowed for some generalizations.
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1. The function f (x) may take negative values on the segment x ∈ [0, p]. The only
reason we required positiveness of function f (x) on the segment x ∈ [0, p] while construct-
ing asymptotics was to guarantee the positiveness of the solution on the interval [T1, 2T1].
Although for the positiveness of solution, it was sufficient to demand the positiveness
of integral.

t∫
T1

e−(1+γ)(t−τ) f (peµ∗(τ−T1))dτ > 0. (32)

Therefore, under condition (32) (instead of condition f (x) > 0 on the x ∈ [0, p]) there also
existed a relaxation cycle of Equation (5).

2. If we required that f (x) < 0 for x ∈ [−p, 0) and that f (x) was Lipschitz con-
tinuous on the segment [−p, 0] and took negative initial conditions and repeated all the
constructions and proofs in the paper then we obtained an exponentially orbitally stable
negative relaxation cycle. Therefore, under these conditions we obtained multistability in
Equation (5): positive and negative exponentially orbitally stable relaxation cycles coex-
isted. In Figure 8, the exponentially orbitally stable negative relaxation cycle of the model
(5) is shown.
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−1000

−1500

x φ

Figure 8. Solution of the equation with two delays (5). λ = 550; γ = 0.38; p = 5; T1 = 1; T2 = 1.77;
f (x) = −5.

3. All previous results were given for sufficiently large values of λ. However, if λ were
not large enough, the method still worked: the fixed points and cycles of the operator Π
corresponded to the periodic solutions of (5).

In Figure 9 there is an example of a complex periodic solution of (5) for λ = 500.
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Figure 9. Solution of the equation with two delays (5). λ = 500; γ = 0.3; p = 5; T1 = 1; T2 = 3;
f (x) = 5.

Note that this solution was not predicted by Theorem 1. This is not a contradiction
because increasing λ leads to the disappearance of this cycle, which exists when λ is not
large enough.
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