
Citation: Jagan, S.; Ashish, A.;

Mahdal, M.; Isabels, K.R.; Dhanke, J.;

Jain, P.; Elangovan, M. A

Meta-Classification Model for

Optimized ZBot Malware Prediction

Using Learning Algorithms.

Mathematics 2023, 11, 2840. https://

doi.org/10.3390/math11132840

Academic Editor: Andrea Scozzari

Received: 1 June 2023

Revised: 21 June 2023

Accepted: 21 June 2023

Published: 24 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Meta-Classification Model for Optimized ZBot Malware
Prediction Using Learning Algorithms
Shanmugam Jagan 1, Ashish Ashish 2, Miroslav Mahdal 3,* , Kenneth Ruth Isabels 4, Jyoti Dhanke 5, Parita Jain 6

and Muniyandy Elangovan 7

1 Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,
Chennai 600062, India; drsjagan@veltech.edu.in

2 Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation,
Vaddeswaram 522302, India; dr.aashishsinha@kluniversity.in

3 Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering,
VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic

4 Department of Mathematics, Saveetha Engineering College (Autonomous), Chennai 600062, India;
ruthisabels@saveetha.ac.in

5 Department of Engineering Science (Mathematics), Bharati Vidyapeeth’s College of Engineering,
Pune 412115, India; jyoti.dhanke@bharatividyapeeth.edu

6 Department of CSE, KIET Group of Institutions, Ghaziabad 201206, India; parita.jain@kiet.edu
7 Department of R&D, Bond Marine Consultancy, London EC1V2NX, UK; muniyandy.e@gmail.com
* Correspondence: miroslav.mahdal@vsb.cz

Abstract: Botnets pose a real threat to cybersecurity by facilitating criminal activities like malware
distribution, attacks involving distributed denial of service, fraud, click fraud, phishing, and theft
identification. The methods currently used for botnet detection are only appropriate for specific
botnet commands and control protocols; they do not endorse botnet identification in early phases.
Security guards have used honeypots successfully in several computer security defence systems.
Honeypots are frequently utilised in botnet defence because they can draw botnet compromises,
reveal spies in botnet membership, and deter attacker behaviour. Attackers who build and maintain
botnets must devise ways to avoid honeypot traps. Machine learning methods support identification
and inhibit bot threats to address the problems associated with botnet attacks. To choose the best
features to feed as input to the machine learning classifiers to estimate the performance of botnet
detection, a Kernel-based Ensemble Meta Classifier (KEMC) Strategy is suggested in this work. And
particle swarm optimization (PSO) and genetic algorithm (GA) intelligent optimization algorithms
are used to establish the ideal order. The model covered in this paper is employed to forecast Internet
cyber security circumstances. The Binary Cross-Entropy (loss), the GA-PSO optimizer, the Softsign
activation functions and ensembles were used in the experiment to produce the best results. The
model succeeded because Forfileless malware, gathered from well-known datasets, achieved a total
accuracy of 93.3% with a True Positive (TP) Range of 87.45% at zero False Positive (FP).

Keywords: honeypots; botnet; malware; soft sign; genetic algorithm; kernels and cyber threats

MSC: 68T01; 68T05; 68U01

1. Introduction

Cybercrime is a huge threat to information security [1] predicts that the annual ex-
penses associated with cybercrime could reach USD 10.5 hundred billion by 2025, with
a significant portion of this cost attributable to identifying malicious such as financial
malware. Banking spyware has also been growing annually, and according to research [1],
attacks involving financial services malware have expanded by 80% in 2021 by itself. One
of these financial services variants, ZBot (hereafter referred to as God), Currently ranks
among the most prevalent forms of banking malware [1]. However, since 2011, the source

Mathematics 2023, 11, 2840. https://doi.org/10.3390/math11132840 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132840
https://doi.org/10.3390/math11132840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9720-2201
https://orcid.org/0000-0003-2349-3701
https://doi.org/10.3390/math11132840
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132840?type=check_update&version=2

Mathematics 2023, 11, 2840 2 of 21

code has been released to the public, enabling the generation of a wide variety of novel
variants [2,3]. But since the ZBot password was leaked, numerous ZBot varieties have
emerged, including Ramnit, ZbotPanda and Citadel.

1.1. Motivation and Incitement

The background of the work revolves around developing a meta-classification model
for optimized ZBot malware prediction using learning algorithms. ZBot malware, also
known as Zeus malware [4,5], is a notorious type of malware that primarily targets financial
institutions and individuals for fraud and identity theft. Detecting and predicting the
presence of ZBot malware is crucial for effective cybersecurity. The researchers aim to
address the limitations of traditional ZBot malware detection methods by proposing a
meta-classification model [6]. A meta-classification model combines the outputs of multiple
base classifiers to improve the overall prediction accuracy. By utilizing various learning
algorithms within the meta-classification framework, the researchers intend to enhance the
accuracy and efficiency of ZBot malware prediction.

The motivation for this work stems from the increasing sophistication and evolving
nature of ZBot malware, which makes it challenging for traditional detection methods to
keep up with the rapidly changing threat landscape [7]. By employing machine learning
algorithms and creating an optimized meta-classification model, the researchers aim to
overcome these challenges and provide more effective ZBot malware prediction. The
significance of this work lies in its potential to enhance the detection and prevention of
ZBot malware, thereby mitigating the risks associated with financial fraud and identity
theft [8,9]. A successful meta-classification model can improve the efficiency of security
systems by accurately identifying ZBot malware instances, enabling prompt responses and
proactive measures to safeguard individuals and organizations. Thereby, the background
of the work highlights the need for an advanced and optimized approach to ZBot malware
prediction. By leveraging learning algorithms within a meta-classification framework, the
researchers aim to develop a robust and efficient model that can contribute to the field of
cybersecurity and aid in the fight against ZBot malware.

1.2. Architecture of the ZBot Malware

Using control and command paths (C&C) for communication, ZBot can infect various
systems. The first figure shows the various stages of the Command-and-control communi-
cation discussed by Preethi and Asokan [8]. This communication can occur using either
a centrally controlled architecture or a mentoring architecture, with the latter being extra
Strong and resilient [2]. This is because the ZBot bots won’t be able to receive commands,
update software, or download new configuration files from the Command-and-control
server if that server goes down or isn’t available [10]. Recently developed Zbots use a P2P
C&C architecture. Because the file format does not refer to a fixed Command and control
server, they are more resistant to takedown attempts. If the C&C server goes down, a men-
torship (proxy bot) can be used to learn the necessary information and even be updated [10].
The stolen information is sent across the command-and-control network to the C&C server
of the malware’s designers, where it is decoded and saved in a database [11,12].

According to [2], ZBot behaves like a virus and spreads mostly through spam schemes,
making it one of the most common ways malware is disseminated and infects Windows
computers. Ref. [13] conducted extensive research on this topic and discovered that phish-
ing is responsible for approximately 90% of data breaches. When the ZBot binary is
executed on a Windows computer, it performs several tasks. Creating separate files named
local.ds and user.ds is one option. local.ds contains the dynamic configuration file that can
be downloaded from the (C&C) server, whereas user.ds stores stolen credentials and other
facts that must be data sent to the C&C [14]. To manage network traffic, svchost is modified
to include additional code [15]. Moreover, Svchost is responsible for software injected
maliciously into many Windows processes, enabling ZBot to steal credentials and launch

Mathematics 2023, 11, 2840 3 of 21

financial attacks. These include algorithms like KNN, random forest, and decision trees for
machine learning. Our hopes for this piece are that it will:

• Identifying a method will allow deep learning and machine learning algorithms to
detect ZBot malware.

• Find the best-performing detecting machine learning algorithm.
• Examine the data to see if the features that lead to the highest detection accuracy can

be applied to other data.
• Recognize the bare minimum of indicators that may have been used to spot ZBot.
• Determine if the functionalities yielding the greatest detection results are compatible

with older and newer ZBot types.

Identify whether the features responsible for the best ZBot detection findings apply to
additional ZBot versions.

2. Related Works

The previous research used a network perimeter scanning system [14,16] with three
features and a correlations motor to spot malicious traffic flows linking an infected site to a
hostile force [17]. The application was developed to monitor the ransomware communica-
tion pipeline [18] from initial infection to final recovery [19]. It correlates outbound and
incoming information to detect malicious activity. It is developed on top of the open soft-
ware SNORT 3.1.56.0, San Jose, CA, USA. Both employ two plugins, SLADE and SCADE,
the latter of which analyses communication to identify potentially harmful traffic patterns.
Some examples of such circulation patterns are:

• Internet Protocol address lookup hosts.
• Disruptions in the outbound connection.
• A pattern of communication that is evenly distributed, which is probable that the

communication is malicious.

A programme called [18] uses two modules, the A and C-plane modules, along with
the plane. A module to monitor network traffic flows to detect clusters of infected comput-
ers [20]. The A-plane is in charge of determining what these servers are doing, while the
C-plane collects network activity to identify all interacting hosts. It is possible to identify
patterns of communication between hosts using characteristics that were extracted from
both modules; if these patterns of communication are false, it means that a certain set of
hosts is communicating maliciously. The plane A component, which depends on SCADE,
can analyze the communications to spot harmful communication patterns. By training and
analyzing the ZBot malware with the CFS and C4.5 classification algorithms, CONIFA [21]
utilises machine learning techniques to identify the traffic in malware communication. It
created an expense-customized form of the Classifier classification algorithm that uses strict
and forgiving classifiers and compares the results for the prediction to a traditional frame-
work called machine learning that uses a prize-insensitive copy of C4.5 binary classifier to
increase CONIFA’s accuracy and forecasting results after analyzing the training dataset.
Generally, the conventional framework had a high detection rate. However, the recall rate
dropped significantly when applied to the test dataset (83% to 57%). The CONIFA findings
showed an improvement in accuracy, with a 67% increase in recall.

To find malware communication traffic, the Detector called RCC [14] monitors the
network activity leaving a host. The RCC does this by using a TP and an MLP classifier.
The MLP classifier is accustomed to categorising botnets based on factors like flow number,
session time, uniformity score, and the Kolmogorov-Smirnov Test. It is made up of three
layers they are input, output, and hidden layer. MLFFN [14] is a programme that uses
TCP features to recognize botnet communication traffic by retrieving them from TCP
connections that truly came from a host machine. The MLFFN [22] comprises a four-neuron
output vector and six-neuron input nodes. ZBot-1, ZBot-2, Spyeye-1, and Spyeye-2 data
sets—previous iterations of the Odin malware—were used to test MLFFN.

Mathematics 2023, 11, 2840 4 of 21

3. Methodology for KEMC: ZBot Malware Prediction

The advantage of using this paradigm at this time is that it emphasizes the control
and command channel, which is presumed as a bot in the early stages of communication—
Figure 1. The first stage is preprocessing when duplication is reduced, and data normaliza-
tion is carried out, representing the design of the suggested classification algorithm. The
essential features are chosen during the feature selection process, and these attributes are
used as input by ML techniques to gauge the model’s effectiveness. Then, for the initial step
of C&C identification of botnets, the superior one is selected. The proposed botmaster’s
connection to the internet and its route through the control and command servers, which
communicated with the workstations directly, are shown in Figure 2.

Mathematics 2023, 11, 2840 4 of 21

output vector and six-neuron input nodes. ZBot-1, ZBot-2, Spyeye-1, and Spyeye-2 data sets—
previous iterations of the Odin malware—were used to test MLFFN.

3. Methodology for KEMC: ZBot Malware Prediction
The advantage of using this paradigm at this time is that it emphasizes the control and

command channel, which is presumed as a bot in the early stages of communication—Figure
1. The first stage is preprocessing when duplication is reduced, and data normalization is
carried out, representing the design of the suggested classification algorithm. The essential
features are chosen during the feature selection process, and these attributes are used as input
by ML techniques to gauge the model’s effectiveness. Then, for the initial step of C&C
identification of botnets, the superior one is selected. The proposed botmaster’s connection to
the internet and its route through the control and command servers, which communicated
with the workstations directly, are shown in Figure 2.

Figure 1. C&C Communication Stages.

Figure 2. The architecture of the proposed botnet classification method.

Figure 1. C&C Communication Stages.

Mathematics 2023, 11, 2840 4 of 21

output vector and six-neuron input nodes. ZBot-1, ZBot-2, Spyeye-1, and Spyeye-2 data sets—
previous iterations of the Odin malware—were used to test MLFFN.

3. Methodology for KEMC: ZBot Malware Prediction
The advantage of using this paradigm at this time is that it emphasizes the control and

command channel, which is presumed as a bot in the early stages of communication—Figure
1. The first stage is preprocessing when duplication is reduced, and data normalization is
carried out, representing the design of the suggested classification algorithm. The essential
features are chosen during the feature selection process, and these attributes are used as input
by ML techniques to gauge the model’s effectiveness. Then, for the initial step of C&C
identification of botnets, the superior one is selected. The proposed botmaster’s connection to
the internet and its route through the control and command servers, which communicated
with the workstations directly, are shown in Figure 2.

Figure 1. C&C Communication Stages.

Figure 2. The architecture of the proposed botnet classification method.

Figure 2. The architecture of the proposed botnet classification method.

3.1. Dataset Description

We use the publicly accessible Center for Cyber Clean collection, which includes the
C09, C10, C08, and C13 datasets and contains packets with traffic of 6667 as port numbers
for IRC & 80 for HTTP. A C&C server connection is necessary for the bot.

Mathematics 2023, 11, 2840 5 of 21

3.2. Kernel-Based Feature Selection

The main advantage of the method using kernel is that for a higher-dimensional
decision boundary, we are optimising a primitive function that solely considers the dot
product of the feature vectors updated. As a result, with the kernel function, we can
easily swap out these dot product statements. Using this plan, the selection of features
is optimized.

A point pool n is produced for the training phase D:

D =
{
(xi, yi)

n
i=1, xi ∈ Rd and yi ∈ {+1,−1}

}
(1)

Depending on the category to which xi belongs, the value of yi is either 1 or 1, a vector
which is xi with p dimensions. Any hyperplane with a set of points must have x to satisfy
the conditions.

w. × b = 0 (2)

where “.” stands for the dot-product and “w” stands for the vector normally. The offset of
the hyperplane along w is bw in origin. In addition, resolving the following optimization
issue involves evaluating the parameters (b,w).

argmin
w;b

1
2 ‖ w ‖2 +C

n
∑

i=1
ξi

s.t.∀i, yi{w·xi + b} ≥ 1− ξi; ξi ≥ 0
(3)

The measure of regularization C is used to balance the trade-off between the error of
the training sample and the margin. To achieve a good generalization performance, the
value of C should be greater than zero, with slack variables ξi that take on positive values.
Essentially, C serves as a regularization measure in this context.

max
n

∑
i=1

ai −
1
2

n

∑
j=1

n

∑
j=1

aiαjyiyjk
(

xi | xj
)

(4)

t
n
∑

i=1
yiαi = 0

0 ≤ αi ≤ C, i, j = 1, 2, . . . , n
(5)

This aids in the development of various kernel techniques and the analysis of their con-
vergence characteristics. Moreover, the kernel function is represented by k(xi, xj) = (xi)T (xj),
and I stands for the Lagrange coefficients. The optimal parameters, *, w*, and b* must meet
the Karush-Kuhn Tucker (KKT) criteria.

α*
i

[
yi

(
n

∑
j=1

α*
j yjk

(
xi, xj

)
+ b*

)
− 1 + ξi

]
= 0, i, j = 1, 2, . . . , n (6)

A tiny subset of j is typically non-zero when categorizing. According to Equation
(9), the nonzero j are known as support vectors since they produce the ideal separation
hyperplane:

ω*T ϕ(x) + b* =
n

∑
j=1

α*
j yjk

(
xi, xj

)
+ b* = 0 (7)

The many kernels optimize kernel weights during SVM training. Equation (9) is
translated by employing multiple kernels, and a double formed for multiple kernels are
generated as shown in Equations (10)–(13):

max
n

∑
i=1

αi −
1
2

n

∑
j=1

n

∑
j=1

αiαjyiyj

2

∑
i=1

βrkl
(
xi, xj

)
(8)

Mathematics 2023, 11, 2840 6 of 21

s.t.
n

∑
j=1

yiαi = 00 ≤ αi ≤ C, i, j = 1, 2, . . . , n (9)

βl ≥ 0,
m
∑

i=1
βl = 1 (10)

The variables of the above equations are
xi, xj: Input feature vectors or data points in the dataset.
αi*: Lagrange coefficients or dual variables associated with each data point. These

coefficients determine the importance of each data point in defining the decision boundary.
yi: The corresponding class labels or target values for each data point.
w*: The weight vector that defines the optimal hyperplane for classification.
b*: The bias term or threshold for the optimal hyperplane. The problem is broken

down into two steps: determining the best weights, l am using the sparse approach and
lowering the soft marginal error function, l using linear programming.

3.3. Ensemble Categorization Using Stacking Technique

To address a problem using computer intelligence, ensemble learning involves the
fusion of numerous models and deliberate generation, such as classifications or experts [23].
Ensemble learning is often utilized to improve performances (classification, function ap-
proximation, prediction etc.)

As seen in Equation (14), ensemble F typically includes a collection of forecasters of a
function fi’.

F = {fi′, i = 1, . . . , k} (11)

A set of examples {x1, f (x1)), (xn, f (xn)} which are contained in the data. The goal is to
use an induction method or learner to stimulate a real unknown function f′ (16), as shown
in the Equation (15): f: X→R1, where, f′(X) = f(x)€X

A method that predicts or estimates future outcomes is referred to as a forecast or
predictor, denoted by f′ as illustrated in Equation (16). This regression aims to minimize
the Squared of the Mean Error, a type of lost method that measures the squared average
difference between the actual values and the predicted.

MSE =
1
n

n

∑
i

(
f ′(xi)− f (xi)

)2 (12)

MSE (f) = bias(f) 2 + var(f) (13)

Consideration of M1, M2, and M3 is the only model where x train and y train are
the training datasets with dependent and independent variables, respectively. The testing
dataset can be considered as x test and y-test. Train M1, M2, and M3 are not dependent on
the same dataset results in M1. M2. Fit xtrain, ytrain-, Fit xtrain, ytrain-, and M3. Fitxtrain,
ytrain, which produces corresponding predicted outputs ym3, ym2, and ym1. The final
predictions are the majority of the vote (Fp) among these outputs. The stacking method
is used to produce second-level data, which is similar to K-fold cross-validation. This
approach was provided out of sampled predictions and captured the unique strengths of
each model. Linear stacking uses a linear combination with values ai, am, as shown in
Equation (18), to predictions of the stack are f = f1, f2, f3, . . . , fm. Cross-validation and
stacked regression are excellent combinations.

F(stack)(x) =
m

∑
i=1

aifi(x) (14)

Mathematics 2023, 11, 2840 7 of 21

The input vector used to train the meta-learner is represented by “an.” The trainee
model can learn how to produce data to make final predictions at the next level. Stacking
provides multiple models, allowing for the selection of different sub-learners to learn the
best prediction combination. This technique is sometimes referred to as “blending” because
the model of meta blends these predictions from the subsystems, as illustrated in Figure 3.
Algorithm for Ensemble Classifiers with Stacking (PROPOSED).

Mathematics 2023, 11, 2840 7 of 21

method is used to produce second-level data, which is similar to K-fold cross-validation.
This approach was provided out of sampled predictions and captured the unique
strengths of each model. Linear stacking uses a linear combination with values ai, am, as
shown in Equation (18), to predictions of the stack are f = f1, f2, f3, ..., fm. Cross-validation
and stacked regression are excellent combinations.

F(stack)(x) =  ୫
୧ୀଵ aifi(x) (14)

The input vector used to train the meta-learner is represented by “an.” The trainee
model can learn how to produce data to make final predictions at the next level. Stacking
provides multiple models, allowing for the selection of different sub-learners to learn the
best prediction combination. This technique is sometimes referred to as “blending”
because the model of meta blends these predictions from the subsystems, as illustrated in
Figure 3. Algorithm for Ensemble Classifiers with Stacking (PROPOSED)

Figure 3. Ensemble classification process.

3.4. Genetic Algorithm
In the context of the paper, the Genetic Algorithm (GA) is utilized as an intelligent

optimization algorithm to determine the optimal feature selection for feeding into the
machine learning classifiers [24,25]. Optimization algorithms find wide applications in
various fields [26,27]. Optimization algorithms have been used in applications ranging
from structural [28] to blockchain [29] to predictive modelling [30].

The objective is to identify and inhibit bot threats and improve the performance of
botnet detection. The GA is a metaheuristic algorithm inspired by natural selection and
evolution [31]. It involves using a population of candidate solutions (in this case, features)
that undergo selection, crossover, and mutation operations to evolve towards an optimal
solution. The GA explores the solution space by iteratively evaluating and evolving
candidate solutions based on their fitness or performance. In the suggested methodology,
the GA is employed with the Particle Swarm Optimization (PSO) algorithm to establish
the ideal order of features to use in the Kernel-based Ensemble Meta Classifier (KEMC)
Strategy. The GA helps search for the most informative and relevant features by iteratively
evaluating different combinations of features and selecting the ones that contribute the
most to the performance of botnet detection.

By leveraging the GA’s ability to explore and exploit the search space efficiently, the
model aims to identify the optimal subset of features that can effectively discriminate
between botnet and legitimate network traffic. This feature selection process helps
improve the accuracy and effectiveness of the machine learning classifiers used for botnet
detection.

Figure 3. Ensemble classification process.

3.4. Genetic Algorithm

In the context of the paper, the Genetic Algorithm (GA) is utilized as an intelligent
optimization algorithm to determine the optimal feature selection for feeding into the
machine learning classifiers [24,25]. Optimization algorithms find wide applications in
various fields [26,27]. Optimization algorithms have been used in applications ranging
from structural [28] to blockchain [29] to predictive modelling [30].

The objective is to identify and inhibit bot threats and improve the performance
of botnet detection. The GA is a metaheuristic algorithm inspired by natural selection
and evolution [31]. It involves using a population of candidate solutions (in this case,
features) that undergo selection, crossover, and mutation operations to evolve towards an
optimal solution. The GA explores the solution space by iteratively evaluating and evolving
candidate solutions based on their fitness or performance. In the suggested methodology,
the GA is employed with the Particle Swarm Optimization (PSO) algorithm to establish
the ideal order of features to use in the Kernel-based Ensemble Meta Classifier (KEMC)
Strategy. The GA helps search for the most informative and relevant features by iteratively
evaluating different combinations of features and selecting the ones that contribute the
most to the performance of botnet detection.

By leveraging the GA’s ability to explore and exploit the search space efficiently, the
model aims to identify the optimal subset of features that can effectively discriminate
between botnet and legitimate network traffic. This feature selection process helps improve
the accuracy and effectiveness of the machine learning classifiers used for botnet detection.

Hence, the GA plays a crucial role in the suggested methodology by intelligently
optimizing the feature selection process, enabling the identification and inhibition of bot
threats through improved botnet detection. The genetic algorithm draws inspiration from
Darwin’s theory of natural evolution. It was initially proposed by Professor Holland in 1975
and is based on natural selection principles such as crossover, selection, and mutation. The
algorithm associates each genetic chromosome with a potential solution to the problem and
evolves the best model over multiple generations of reproduction. Biological evolutionary
algorithms include evolutionary strategies, genetic algorithms and rules derived from other
AI research projects. The first generation is created using the genetic algorithm’s code,
and the process of individual evolution depends on the individual’s adaptation to the

Mathematics 2023, 11, 2840 8 of 21

environment, involving three fundamental processes: selection, crossing, and mutation.
These processes aim for the achievement of the survival of the fittest individuals.

Selection: The term “selection” refers to the process of selection of the best individuals
from a group while excluding the inferior ones. This process is based on evaluating their
fitness. Individuals with a higher quality level are considered fitter and, therefore, more
likely to be selected. They are also more likely to have offspring in the next generation. The
individuals who are considered to be of high quality are selected to move to the next level
based on their fitness values. Therefore, the stronger an individual’s ability to reproduce is,
the higher the number of offspring that will carry its genes.

Crossing: The next step in the genetic algorithm process is crossing, where two high-
quality individuals are randomly chosen to produce offspring at a specific point. This
crossing process is essential to increase the searchability of the algorithm. Additionally,
a mutation occurs when a few genes are altered randomly to improve the population in
diversity. The offspring inherit superior traits from their parents, making them theoretically
better suited to the environment. The algorithm eliminates individuals with a low fitness
value after each iteration and keeps those with a high fitness value. The offspring continue
to cycle this way until the global unique solution for the fitness method is discovered.
Genetic algorithms are widely used in various fields, such as structural health monitoring,
materialist identification, and data mining, and their potential applications will continue to
expand as the technology develops.

3.5. PSO with GA

Swarm intelligence optimization has become a popular computer technique for solving
complex distributed problems except for global models and centralized control. It involves
using the swarm intelligence traits, such as collaboration, distribution, speed, and resilience.
Particle swarm optimization (PSO) is an evolutionary algorithm that was first proposed
in 1995 and simulated the social behaviour of a biological population by distributing
individual information across groups to direct the population towards the desired direction.
Unlike genetic algorithms, PSO treats each member of the population as a particle that
moves across the search space at a fixed speed, modifying it dynamically based on its
own flight experience and that of its friends. PSO has been effectively used in various
domains, including production scheduling, multi-objective optimization, system decision-
making, fuzzy control, and system identification [32]. PSO uses a positive feedback loop
for collective optimization, gradually moving towards a better area based on each particle’s
fit with its surroundings before finding the ideal solution to the problem. Particle position
and velocity are properties that particles modify according to a formula using individual
extremum pbesti and group extremum gbesti to change location and speed.

Vi = vi + c1 ∗ rand() ∗ (pbesti − xi) + c2 ∗ rand() ∗ (gbesti − xi) (15)

Xi = xi + vi (16)

This equation involves particles indexed from i = 1 to n, where n represents the total
number of particles. The particle’s velocity is represented by vi, while rand() signifies a
random number between zero and one. The particle’s current position is represented by
xi, and c1 and c2 represent the learning factor. In Equation (15), Vi represents the updated
velocity of particle i, vi is the current velocity of particle i, c1 and c2 are acceleration
coefficients, rand() generates a random number between 0 and 1,pbesti is the personal best
position of particle i, and gbesti is the global best position among all particles.

Equation (16) represents the updated position of particle i, where Xi is the up-
dated position, xi is the current position, and vi is the updated velocity calculated in
the previous equation.

Mathematics 2023, 11, 2840 9 of 21

4. Results and Discussion

All the experimentations are carried out in Python 3.11.2 on a Windows system with
an Intel (R) Core (TM) i7-3770 CPU 3.40 GHz and 16 GB of RAM.

4.1. Performance Evaluation

The experimental results were evaluated using several criteria: precision, sensitivity,
specificity, and F-measure. A comparison was made between the proposed (Ensemble
Classifier Algorithm Stacking Process) and two state-of-the-art techniques, namely Support
Vector Machine (SVM), Extreme Learning Machine (ELM) and Convolutional Neural Net-
work (CNN). Table 1 presents the statistically significant characteristics identified during a
network of two users having a connection. The false non-negative rate, accuracy (Acc), true
positive rate (TPR)& f-measure were the performance metrics that were considered for the
supervision applications. Botnets like Neris, Rbot, Vitut, Menti, and Sogou were considered
for this purpose. The definitions for these requirements were established as follows:

TP indicates an accurate botnet attack prediction.
TN indicates the standard data’s right prediction.
FP specifies the wrong categorization of a botnet assault.
FN specifies the inaccurate classification of normal data.

Table 1. Description of the feature set.

Attributes Data Types No. of Attributes Desc

No. of Packet Flt 6 No. of pkt transmitted
Bytes Flt 8 Entire bytes received

Packet size sMean Str 5 Stream pkt send from src to target
Packet size dMax Flt 7 Max pkt send from src to target
Average CONV Int 6 Periods of CONV
No. of DASQry Flt 4 DNS query

DNS Ratio Str 5 DNS pkt
Rep.TCP count Int 5 TCP comm. Between 2 network

Accuracy (Acc): This is the ratio of all datasets correctly identified for bugging and
debugging to all bugging and debugging reports.

Acc =
TP + TN

TP + TN + FP + FN
(17)

Sensitivity (Sc), which is determined according to Equation (18), is the proportion of
negative cases that are wrongly categorized.

Sc =
FP

FP + TN
(18)

The ratio of non-negative examples that are correctly identified is known as specificity
(Sp), and it is calculated using Equation (19).

Sp =
TP

TP + FN
(19)

The F− measure in Equation (20) is created by merging precision and recall into a
single metric.

F− measure =
(I + β)TP

β(TP(TP + FN) + TP(TP + FP))
(20)

The accuracy comparison of the existing CNN, ELM, SVM, and suggested PROPOSED
algorithms is shown in Table 2. The comparison of accuracy between the proposed method
and the current ELM, CNN, and SVM methods is presented in Figure 4. The number of

Mathematics 2023, 11, 2840 10 of 21

datasets analyzed is displayed on the X-axis, while the corresponding accuracy percentages
are shown on Y-axis (Figure 5). The proposed method achieved an accuracy score of
94.08%, which is 3.68% better than the current ELM, CNN, and SVM methods that achieved
91.6% -> ELM, 92.56% -> CNN, and 92.56% -> SVM, respectively, as indicated by in Table 1.
Table 3 compares the sensitivity achieved by the proposed approach with existing methods
such as CNN, ELM, and SVM.

Table 2. Evaluation of accuracy.

No. of Packets ELMs CNNs SVMs PROPOSEDs

50 88.3 90.3 90.4 92.3
100 90.6 90.6 91.7 94.6
150 93.6 93.6 94.6 95.6
200 93.9 94.9 96.2 95.3
250 95 95.6 97 97.3

Mathematics 2023, 11, 2840 10 of 21

Sp = TPTP + FN (19)

The F − measure in Equation (20) is created by merging precision and recall into a
single metric. F − measure = (I + β)TPβ(TP(TP + FN) + TP(TP + FP)) (20)

The accuracy comparison of the existing CNN, ELM, SVM, and suggested PROPOSED
algorithms is shown in Table 2. The comparison of accuracy between the proposed method
and the current ELM, CNN, and SVM methods is presented in Figure 4. The number of
datasets analyzed is displayed on the X-axis, while the corresponding accuracy percentages
are shown on Y-axis (Figure 5). The proposed method achieved an accuracy score of 94.08%,
which is 3.68% better than the current ELM, CNN, and SVM methods that achieved 91.6% ->
ELM, 92.56% -> CNN, and 92.56% -> SVM, respectively, as indicated by in Table 1. Table 3
compares the sensitivity achieved by the proposed approach with existing methods such
as CNN, ELM, and SVM.

Moreover, Figure 6 visually represents the sensitivity comparison between the
PROPOSED approach and the CNN, ELM, and SVM methods. The number of datasets
analysed (X-axis) versus % of sensitivity values computed (Y-axis). The PROPOSED
approach scored a sensitivity of 86.5%, outperforming ELM by 3.44%, CNN by 3.3%, and
SVM by 1.44%. In contrast, Table 4 shows the specificity comparison between PROPOSED
and existing algorithms, where CNN, ELM, and SVM techniques achieved 83.14%, 83.8%,
and 85.14%, respectively.

Figure 4. Structure of Genetic Techniques. Figure 4. Structure of Genetic Techniques.

Table 3. Evaluation of sensitivity.

No. of Packets ELMs CNNs SVMs PROPOSEDs

50 79.6 79.9 81.2 83.4
100 81.6 82.3 84.5 85.6
150 84.7 84.9 86.5 87.8
200 85.8 86.4 87.8 89.6
250 90.3 89.8 91.2 91.6

Mathematics 2023, 11, 2840 11 of 21

Mathematics 2023, 11, 2840 11 of 21

Table 2. Evaluation of accuracy.

No. of Packets ELMs CNNs SVMs PROPOSEDs
50 88.3 90.3 90.4 92.3

100 90.6 90.6 91.7 94.6
150 93.6 93.6 94.6 95.6
200 93.9 94.9 96.2 95.3
250 95 95.6 97 97.3

Figure 5. Comparison of accuracy.

Figure 6. Comparison of sensitivity.

Table 3. Evaluation of sensitivity.
No. of Packets ELMs CNNs SVMs PROPOSEDs

50 79.6 79.9 81.2 83.4
100 81.6 82.3 84.5 85.6
150 84.7 84.9 86.5 87.8
200 85.8 86.4 87.8 89.6
250 90.3 89.8 91.2 91.6

Figure 5. Comparison of accuracy.

Moreover, Figure 6 visually represents the sensitivity comparison between the PRO-
POSED approach and the CNN, ELM, and SVM methods. The number of datasets analysed
(X-axis) versus % of sensitivity values computed (Y-axis). The PROPOSED approach
scored a sensitivity of 86.5%, outperforming ELM by 3.44%, CNN by 3.3%, and SVM by
1.44%. In contrast, Table 4 shows the specificity comparison between PROPOSED and
existing algorithms, where CNN, ELM, and SVM techniques achieved 83.14%, 83.8%, and
85.14%, respectively.

Mathematics 2023, 11, 2840 11 of 21

Table 2. Evaluation of accuracy.

No. of Packets ELMs CNNs SVMs PROPOSEDs
50 88.3 90.3 90.4 92.3

100 90.6 90.6 91.7 94.6
150 93.6 93.6 94.6 95.6
200 93.9 94.9 96.2 95.3
250 95 95.6 97 97.3

Figure 5. Comparison of accuracy.

Figure 6. Comparison of sensitivity.

Table 3. Evaluation of sensitivity.
No. of Packets ELMs CNNs SVMs PROPOSEDs

50 79.6 79.9 81.2 83.4
100 81.6 82.3 84.5 85.6
150 84.7 84.9 86.5 87.8
200 85.8 86.4 87.8 89.6
250 90.3 89.8 91.2 91.6

Figure 6. Comparison of sensitivity.

Table 4. Evaluation of specificity.

No. of Packets ELMs CNNs SVMs PROPOSEDs

50 80.3 82.2 83.4 82.4
100 83.6 84.5 85.6 87.5
150 85.7 85.6 87.8 86.3
200 86.8 87.8 88.6 86.5
250 89.9 88.9 80.2 89.4

Mathematics 2023, 11, 2840 12 of 21

Existing CNN, ELM, and SVM approaches are compared to the newly proposed
method using the F-based metric, and the results are shown in Table 5. To the contrary,
Figure 7 displays the percentage values of the F-measure on the Y-axis, and analytical
datasets utilised on the X-axis. The PROPOSED method achieved the highest F-measure of
86.6%, outperforming ELM by 3.18%, CNN by 3.02%, and SVM by 1.86%. However, the
existing CNN, ELM, and SVM methods scored 83.42%, 83.58%, and 84.74%, respectively.

Table 5. Evaluation of F-measure.

No. of Packets ELMs CNNs SVMs PROPOSEDs

50 68.2 69.6 69.9 70.5
100 72.6 73.6 74.7 76.8
150 76.8 77.5 78.6 78.5
200 80.3 81.6 82.6 83.7
250 83.5 85.9 86.2 86

Mathematics 2023, 11, 2840 12 of 21

Table 4. Evaluation of specificity.

No. of Packets ELMs CNNs SVMs PROPOSEDs
50 80.3 82.2 83.4 82.4
100 83.6 84.5 85.6 87.5
150 85.7 85.6 87.8 86.3
200 86.8 87.8 88.6 86.5
250 89.9 88.9 80.2 89.4

Existing CNN, ELM, and SVM approaches are compared to the newly proposed
method using the F-based metric, and the results are shown in Table 5. To the contrary,
Figure 7 displays the percentage values of the F-measure on the Y-axis, and analytical
datasets utilised on the X-axis. The PROPOSED method achieved the highest F-measure
of 86.6%, outperforming ELM by 3.18%, CNN by 3.02%, and SVM by 1.86%. However, the
existing CNN, ELM, and SVM methods scored 83.42%, 83.58%, and 84.74%, respectively.

Table 5. Evaluation of F-measure.
No. of Packets ELMs CNNs SVMs PROPOSEDs

50 68.2 69.6 69.9 70.5
100 72.6 73.6 74.7 76.8
150 76.8 77.5 78.6 78.5
200 80.3 81.6 82.6 83.7
250 83.5 85.9 86.2 86

Figure 7. Comparison of specificity.

Figure 8 compares the F-based measure percentage values obtained by the newly
proposed method and the existing CNN, ELM, and SVM methods, where the X-axis
shows the number of datasets analyzed, and the Y-axis shows the percentages generated
by the F-test. The PROPOSED method outperforms ELM, CNN, and SVM, achieving an
F-measure percentage of 78.24%, 3% higher than ELM, 2.4% better than CNN, and 1.02%
better than the SVM. In contrast, the existing CNN, ELM, and SVM methods attain F-
measure percentages of 75.34%, 76.54%, and 77.32%, respectively. Additionally, Table 6
compares various parameters between the proposed method and the existing ELM, CNN,
and SVM algorithms. The use of mathematical techniques in optimization technology is a

Figure 7. Comparison of specificity.

Figure 8 compares the F-based measure percentage values obtained by the newly
proposed method and the existing CNN, ELM, and SVM methods, where the X-axis
shows the number of datasets analyzed, and the Y-axis shows the percentages generated
by the F-test. The PROPOSED method outperforms ELM, CNN, and SVM, achieving
an F-measure percentage of 78.24%, 3% higher than ELM, 2.4% better than CNN, and
1.02% better than the SVM. In contrast, the existing CNN, ELM, and SVM methods attain
F-measure percentages of 75.34%, 76.54%, and 77.32%, respectively. Additionally, Table 6
compares various parameters between the proposed method and the existing ELM, CNN,
and SVM algorithms. The use of mathematical techniques in optimization technology is
a practical application that is widely used across various fields of engineering to handle
diverse challenges. Developing intelligent optimization techniques suitable for real-world
engineering problems has long been an essential area of research due to the complexity
and nonlinearity of these problems. Swarm intelligence is a kind of heuristic searching
algorithm derived from genetic studies or observing the social behaviour of small creatures
such as ants and bees. In swarm intelligence algorithms, individuals are represented
by particles that move and interact with each other according to a set of rules. This
approach is particularly useful in solving nonconvex, nonlinear, or non-differentiable
optimization problems where the organizational structure of the method is not critical.

Mathematics 2023, 11, 2840 13 of 21

Swarm intelligence algorithms, which are commonly used, encompass particle swarm
optimization and genetic algorithms are two examples of such methods.

Mathematics 2023, 11, 2840 13 of 21

practical application that is widely used across various fields of engineering to handle
diverse challenges. Developing intelligent optimization techniques suitable for real-world
engineering problems has long been an essential area of research due to the complexity
and nonlinearity of these problems. Swarm intelligence is a kind of heuristic searching
algorithm derived from genetic studies or observing the social behaviour of small
creatures such as ants and bees. In swarm intelligence algorithms, individuals are
represented by particles that move and interact with each other according to a set of rules.
This approach is particularly useful in solving nonconvex, nonlinear, or non-differentiable
optimization problems where the organizational structure of the method is not critical.
Swarm intelligence algorithms, which are commonly used, encompass particle swarm
optimization and genetic algorithms are two examples of such methods.

Figure 8. Comparison of F-measure.

Table 6. Simulation factors of configuration thresholds.

Name of Factor Ranges
No. of layer 1–6
No. of Hidden layer 1–4
Learning Rate 10−1–10−5
Drop Out 0.2–0.5
Optimizers SGD, Adam, Adamax, Nadam, Ptrl, RMSprop
Function of activation Sigmoid, softsign, selu
Function of loss MSE

The process of adjusting hyperparameters in PROPOSED is challenging but
significant. It involves selecting the appropriate activation and optimization functions and
determining the optimal model structure. In addition, diagnostic procedures such as
overfitting-underfitting must be enabled, and early halting functionality and batch-epoch
definition should be established during the learning process. Underfitting occurs when
NNs have not been trained for a sufficient amount of time, or the training set is not
significant enough to establish the proper relationship between input and output
variables, while overfitting happens when the model is too tightly matched to a small
number of data points, rendering it only applicable to the original dataset. To prevent
overfitting, the dropout regularization method is used to miss some neurons’ connections
when training the model randomly. This study utilised the Optuna open-source platform

Figure 8. Comparison of F-measure.

Table 6. Simulation factors of configuration thresholds.

Name of Factor Ranges

No. of layer 1–6
No. of Hidden layer 1–4
Learning Rate 10−1–10−5

Drop Out 0.2–0.5
Optimizers SGD, Adam, Adamax, Nadam, Ptrl, RMSprop
Function of activation Sigmoid, softsign, selu
Function of loss MSE

The process of adjusting hyperparameters in PROPOSED is challenging but signif-
icant. It involves selecting the appropriate activation and optimization functions and
determining the optimal model structure. In addition, diagnostic procedures such as
overfitting-underfitting must be enabled, and early halting functionality and batch-epoch
definition should be established during the learning process. Underfitting occurs when
NNs have not been trained for a sufficient amount of time, or the training set is not sig-
nificant enough to establish the proper relationship between input and output variables,
while overfitting happens when the model is too tightly matched to a small number of
data points, rendering it only applicable to the original dataset. To prevent overfitting, the
dropout regularization method is used to miss some neurons’ connections when training
the model randomly. This study utilised the Optuna open-source platform to optimize
PROPOSED performance and produce more accurate predictions for Android malware.
Various PROPOSED model structures were designed by Optuna, and their hyperparame-
ters were adjusted to assess their prediction performance. The PROPOSED was trained
on the dataset for 2000 epochs with internal parameters updated after every 25 records,
and Optuna was set to perform PROPOSED model optimization and evaluation 50 times.
Each of the impacts of the hyperparameter on the PROPOSED system’s objective value
(prediction accuracy) is depicted in Figure 5.

It is observed that the Dropout factor at the input nodes has the most significant
impact (44%) on the model’s best value for the best prediction accuracy. The learning rate
(lr) parameter has a 21% effect on the model’s best prediction. The number of units located

Mathematics 2023, 11, 2840 14 of 21

at the input nodes and the total number of layers contribute 20% and 15%, respectively, to
the model’s best value. Figure 9 also provides a useful plot demonstrating the relationship
between the different hyperparameter values and the best forecast result. This chart clarifies
how the value of each hyperparameter is related to the PROPOSED model’s optimal value.

Mathematics 2023, 11, 2840 14 of 21

to optimize PROPOSED performance and produce more accurate predictions for Android
malware. Various PROPOSED model structures were designed by Optuna, and their
hyperparameters were adjusted to assess their prediction performance. The PROPOSED
was trained on the dataset for 2000 epochs with internal parameters updated after every
25 records, and Optuna was set to perform PROPOSED model optimization and
evaluation 50 times. Each of the impacts of the hyperparameter on the PROPOSED
system’s objective value (prediction accuracy) is depicted in Figure 5.

It is observed that the Dropout factor at the input nodes has the most significant
impact (44%) on the model’s best value for the best prediction accuracy. The learning rate
(lr) parameter has a 21% effect on the model’s best prediction. The number of units located
at the input nodes and the total number of layers contribute 20% and 15%, respectively,
to the model’s best value. Figure 9 also provides a useful plot demonstrating the
relationship between the different hyperparameter values and the best forecast result. This
chart clarifies how the value of each hyperparameter is related to the PROPOSED model’s
optimal value.

Figure 9. Relevance of hyperparameters to the suggested model.

Figure 10 displays the empirical distributions of the PROPOSED model. According
to the confirmation performance analysis, the PROPOSED model outperformed the
shallow are classified assessed in Section 4.2 in terms of performance when it came to
predicting Android malware.

Figure 9. Relevance of hyperparameters to the suggested model.

Figure 10 displays the empirical distributions of the PROPOSED model. According to
the confirmation performance analysis, the PROPOSED model outperformed the shallow
are classified assessed in Section 4.2 in terms of performance when it came to predicting
Android malware.

Mathematics 2023, 11, 2840 15 of 21

Figure 10. The suggested model’s hyperparameters are coordinated in a parallel scheme.

Figure 11 presents the remaining performance measures for the PROPOSED system.
Figure 12a shows precision curves for learning and forecasting phases over the various
epochs, whereas Figure 12b shows the cross-entropy (loss). Last but just not least, Figure
12c provides the model’s confusion matrix. According to the evaluation results described
above, the PROPOSED system with the best prediction results has a four-layer
architecture, including two hidden layers. Figure 13 depicts the model’s abstract
architectural perspective, and Table 7 summarises each layer’s parameters. The Adamax
optimizer, Binary Cross-Entropy (loss), and Softsign activation functions can all be used
with the optimized model. Figure 14 displays the classifier’s history of optimization over
the epochs. In particular, the model’s optimized prediction accuracy increased by 2% from
the XGboost one to 86%.

Figure 11. Probability distribution of the PROPOSED system.

Figure 10. The suggested model’s hyperparameters are coordinated in a parallel scheme.

Figure 11 presents the remaining performance measures for the PROPOSED system.
Figure 12a shows precision curves for learning and forecasting phases over the various
epochs, whereas Figure 12b shows the cross-entropy (loss). Last but just not least, Figure 12c
provides the model’s confusion matrix. According to the evaluation results described above,
the PROPOSED system with the best prediction results has a four-layer architecture, includ-
ing two hidden layers. Figure 13 depicts the model’s abstract architectural perspective, and

Mathematics 2023, 11, 2840 15 of 21

Table 7 summarises each layer’s parameters. The Adamax optimizer, Binary Cross-Entropy
(loss), and Softsign activation functions can all be used with the optimized model. Figure 14
displays the classifier’s history of optimization over the epochs. In particular, the model’s
optimized prediction accuracy increased by 2% from the XGboost one to 86%.

Mathematics 2023, 11, 2840 15 of 21

Figure 10. The suggested model’s hyperparameters are coordinated in a parallel scheme.

Figure 11 presents the remaining performance measures for the PROPOSED system.
Figure 12a shows precision curves for learning and forecasting phases over the various
epochs, whereas Figure 12b shows the cross-entropy (loss). Last but just not least, Figure
12c provides the model’s confusion matrix. According to the evaluation results described
above, the PROPOSED system with the best prediction results has a four-layer
architecture, including two hidden layers. Figure 13 depicts the model’s abstract
architectural perspective, and Table 7 summarises each layer’s parameters. The Adamax
optimizer, Binary Cross-Entropy (loss), and Softsign activation functions can all be used
with the optimized model. Figure 14 displays the classifier’s history of optimization over
the epochs. In particular, the model’s optimized prediction accuracy increased by 2% from
the XGboost one to 86%.

Figure 11. Probability distribution of the PROPOSED system.

Figure 11. Probability distribution of the PROPOSED system.

Mathematics 2023, 11, 2840 16 of 21

Table 7. Total parameters of the PROPOSED.
Type of Layers Shape of the Output Layer Factors
Dense (239, none) 238,953
1st dense (92, none) 21,750
2nd dense (428, none) 40,285
3rd dense (1, none) 429

Figure 12. Analysis of the Proposed System’s Curve Performances (a) Accuracy (b) Cross Entropy
(c) Confusion Matrix

Figure 13. The proposed design has four levels: input (238) and hidden (427) and intermediate (91),
and output (1).

Figure 12. Analysis of the Proposed System’s Curve Performances (a) Accuracy (b) Cross Entropy
(c) Confusion Matrix.

Mathematics 2023, 11, 2840 16 of 21

Mathematics 2023, 11, 2840 16 of 21

Table 7. Total parameters of the PROPOSED.
Type of Layers Shape of the Output Layer Factors
Dense (239, none) 238,953
1st dense (92, none) 21,750
2nd dense (428, none) 40,285
3rd dense (1, none) 429

Figure 12. Analysis of the Proposed System’s Curve Performances (a) Accuracy (b) Cross Entropy
(c) Confusion Matrix

Figure 13. The proposed design has four levels: input (238) and hidden (427) and intermediate (91),
and output (1).
Figure 13. The proposed design has four levels: input (238) and hidden (427) and intermediate (91),
and output (1).

Table 7. Total parameters of the PROPOSED.

Type of Layers Shape of the Output Layer Factors

Dense (239, none) 238,953
1st dense (92, none) 21,750
2nd dense (428, none) 40,285
3rd dense (1, none) 429

Mathematics 2023, 11, 2840 17 of 21

Figure 14. Evidence for the suggested model’s prior optimizations.

The proposed method consistently demonstrates superior performance, particularly
in terms of accuracy, compared to ELMs, CNNs, and SVMs across various numbers of
packets. With accuracy values ranging from 92.3% to 97.3%, the proposed method
outperforms ELMs by 2 to 4 percentage points, CNNs by 0.4 to 4 percentage points, and
SVMs by 0.3 to 2.9 percentage points. These results highlight the effectiveness of the
proposed method in achieving higher accuracy rates, making it a promising approach for
packet analysis tasks.

For 250 packets:
• Proposed accuracy: 97.3%
• ELMs accuracy: 95%
• CNNs accuracy: 95.6%
• SVMs accuracy: 97%

The proposed method exhibits superior performance compared to ELMs by 2.3
percentage points, CNNs by 1.7 percentage points, and SVMs by 0.3 percentage points in
terms of accuracy.

4.2. Examination of SHAP- Shapley Additive Explanations Characteristics
Analyzing important features is crucial in machine learning (ML) models. This

involves thoroughly evaluating and interpreting the model to determine the impact of
input features on the system’s prediction. To gain a better understanding of the
PROPOSED system and aid in this process, we utilized the SHAP unified framework [33].
Figures 15 and 16 illustrate the impact and contributions of the most significant input
features to the system’s classification output. The factors with the most influence on the
outcome are listed in descending order in Figure 15, with each input feature’s high and
low values represented in red and blue text, respectively—for example, 𝑐𝑜𝑚. 𝐺𝑜𝑜𝑔𝑙𝑒. 𝑎𝑛𝑑𝑟𝑜𝑖𝑑. 𝑐1𝑑𝑚. 𝑖𝑛𝑡𝑒𝑛𝑡. 𝑅𝐸𝐶𝐸𝐼𝑉𝐸 appears to have the most significant
influence on the result, where low values increase the probability of an application being
malware, and high values decrease that likelihood. On the other hand, Figure 16 evaluates
the average magnitude of influence on the system’s output for each input parameter, with
only the features contributing to the system’s prediction displayed. The Intent. RECEIVE
feature significantly affects the system’s output, with a SHAP value of more than 0.08 in
both figures. Low values have a non-negative impact, making the system most accurate at
around 0.1 SHAP value. However, maximum levels of the same features have a negative

Figure 14. Evidence for the suggested model’s prior optimizations.

The proposed method consistently demonstrates superior performance, particularly in
terms of accuracy, compared to ELMs, CNNs, and SVMs across various numbers of packets.
With accuracy values ranging from 92.3% to 97.3%, the proposed method outperforms
ELMs by 2 to 4 percentage points, CNNs by 0.4 to 4 percentage points, and SVMs by 0.3 to

Mathematics 2023, 11, 2840 17 of 21

2.9 percentage points. These results highlight the effectiveness of the proposed method in
achieving higher accuracy rates, making it a promising approach for packet analysis tasks.

For 250 packets:

• Proposed accuracy: 97.3%
• ELMs accuracy: 95%
• CNNs accuracy: 95.6%
• SVMs accuracy: 97%

The proposed method exhibits superior performance compared to ELMs by 2.3 per-
centage points, CNNs by 1.7 percentage points, and SVMs by 0.3 percentage points in terms
of accuracy.

4.2. Examination of SHAP- Shapley Additive Explanations Characteristics

Analyzing important features is crucial in machine learning (ML) models. This in-
volves thoroughly evaluating and interpreting the model to determine the impact of input
features on the system’s prediction. To gain a better understanding of the PROPOSED
system and aid in this process, we utilized the SHAP unified framework [33]. Figures 15
and 16 illustrate the impact and contributions of the most significant input features to the
system’s classification output. The factors with the most influence on the outcome are listed
in descending order in Figure 15, with each input feature’s high and low values represented
in red and blue text, respectively—for example, com.Google.android.c1dm.intent.RECEIVE
appears to have the most significant influence on the result, where low values increase the
probability of an application being malware, and high values decrease that likelihood. On
the other hand, Figure 16 evaluates the average magnitude of influence on the system’s
output for each input parameter, with only the features contributing to the system’s predic-
tion displayed. The Intent. RECEIVE feature significantly affects the system’s output, with
a SHAP value of more than 0.08 in both figures. Low values have a non-negative impact,
making the system most accurate at around 0.1 SHAP value. However, maximum levels
of the same features have a negative effect. As a result, projections of around −0.3 SHAP
were off—this class. The DEFAULT feature affects the model’s output by 0.06%, where low
amounts have a negative effect and high levels have an opposite effect at about 0.1. It is
worth noting that only seven of the twenty features are Android permissions, with the rest
being intents.

Mathematics 2023, 11, 2840 18 of 21

effect. As a result, projections of around −0.3 SHAP were off—this class. The DEFAULT
feature affects the model’s output by 0.06%, where low amounts have a negative effect
and high levels have an opposite effect at about 0.1. It is worth noting that only seven of
the twenty features are Android permissions, with the rest being intents.

Figure 15. Features of the importance of the PROPOSED system.

Figure 16. SHAP values for the features’ input in the PROPOSED system.

4.3. Discussion
The experimental results of the proposed Ensemble Classifier Algorithm Stacking

Process were evaluated using various criteria such as precision, sensitivity, specificity, and
F-measure. A comparison was made between the proposed method and three state-of-the-
art techniques: Support Vector Machine (SVM), Extreme Learning Machine (ELM), and
Convolutional Neural Network (CNN). The evaluation focused on the performance
metrics relevant to botnet attack prediction, including false non-negative rate, accuracy
(Acc), true positive rate (TPR), and F-measure. The accuracy comparison of the four
algorithms is presented in Table 2. The proposed method achieved an accuracy score of
94.08%, outperforming the existing ELM, CNN, and SVM methods that achieved 91.6%,

Figure 15. Features of the importance of the PROPOSED system.

Mathematics 2023, 11, 2840 18 of 21

Mathematics 2023, 11, 2840 18 of 21

effect. As a result, projections of around −0.3 SHAP were off—this class. The DEFAULT
feature affects the model’s output by 0.06%, where low amounts have a negative effect
and high levels have an opposite effect at about 0.1. It is worth noting that only seven of
the twenty features are Android permissions, with the rest being intents.

Figure 15. Features of the importance of the PROPOSED system.

Figure 16. SHAP values for the features’ input in the PROPOSED system.

4.3. Discussion
The experimental results of the proposed Ensemble Classifier Algorithm Stacking

Process were evaluated using various criteria such as precision, sensitivity, specificity, and
F-measure. A comparison was made between the proposed method and three state-of-the-
art techniques: Support Vector Machine (SVM), Extreme Learning Machine (ELM), and
Convolutional Neural Network (CNN). The evaluation focused on the performance
metrics relevant to botnet attack prediction, including false non-negative rate, accuracy
(Acc), true positive rate (TPR), and F-measure. The accuracy comparison of the four
algorithms is presented in Table 2. The proposed method achieved an accuracy score of
94.08%, outperforming the existing ELM, CNN, and SVM methods that achieved 91.6%,

Figure 16. SHAP values for the features’ input in the PROPOSED system.

4.3. Discussion

The experimental results of the proposed Ensemble Classifier Algorithm Stacking
Process were evaluated using various criteria such as precision, sensitivity, specificity, and
F-measure. A comparison was made between the proposed method and three state-of-
the-art techniques: Support Vector Machine (SVM), Extreme Learning Machine (ELM),
and Convolutional Neural Network (CNN). The evaluation focused on the performance
metrics relevant to botnet attack prediction, including false non-negative rate, accuracy
(Acc), true positive rate (TPR), and F-measure. The accuracy comparison of the four
algorithms is presented in Table 2. The proposed method achieved an accuracy score of
94.08%, outperforming the existing ELM, CNN, and SVM methods that achieved 91.6%,
92.56%, and 92.56%, respectively. This indicates the effectiveness of the proposed method
in accurately identifying and categorizing botnet attacks.

Furthermore, the sensitivity evaluation in Table 3 demonstrates that the proposed
approach achieved a sensitivity of 86.5%, surpassing the ELM by 3.44%, CNN by 3.3%,
and SVM by 1.44%. The comparison in Table 4 shows that the proposed method achieved
a specificity of 82.4%, while CNN, ELM, and SVM achieved 83.14%, 83.8%, and 85.14%,
respectively. To assess the overall performance, the F-measure was used as a combined
metric of precision and recall. The proposed method achieved the highest F-measure of
86.6%, surpassing ELM by 3.18%, CNN by 3.02%, and SVM by 1.86%. The existing CNN,
ELM, and SVM methods achieved F-measure percentages of 75.34%, 76.54%, and 77.32%,
respectively. These results highlight the superiority of the proposed method in accurately
predicting and categorizing botnet attacks. The optimization of hyperparameters in the
proposed method was crucial for achieving the best prediction accuracy. Factors such as
the number of layers, hidden layers, learning rate, dropout, optimizers, activation, and loss
functions were considered. The Optuna open-source platform was utilized to optimize
the performance of the proposed method. Through optimization, the proposed model
architecture with four layers, including two hidden layers, achieved the best prediction
results. The Adamax optimizer, Binary Cross-Entropy (loss), and Softsign activation
function were identified as the optimal choices for the model.

Furthermore, the importance of input features was analyzed using the SHAP (Shap-
ley Additive Explanations) framework. The analysis revealed the significant impact
of certain features on the system’s classification output—for example, the
com.Google.android.c1dm.intent.RECEIVE feature had the most influence, where low val-
ues increased the probability of an application being classified as malware. The In-

Mathematics 2023, 11, 2840 19 of 21

tent.RECEIVE and class.DEFAULT features also exhibited notable influences on the sys-
tem’s output. Finally, the experimental results and evaluations demonstrate the effec-
tiveness of the proposed Ensemble Classifier Algorithm Stacking Process in accurately
predicting and categorizing botnet attacks. The proposed method outperformed the ex-
isting state-of-the-art accuracy, sensitivity, specificity, and F-measure techniques. The
optimization of hyperparameters and the analysis of input feature importance further
enhanced the performance and interpretability of the proposed method. These findings
highlight the potential of the proposed method for effective botnet detection and classifica-
tion in real-world applications. Future research can focus on expanding the evaluation to
larger datasets and exploring the generalizability of the proposed method to other types of
cybersecurity threats.

5. Conclusions

The effectiveness of the machine learning architecture is probed by changing the
number of hidden layers and the number of neurons in the meta-ensembles. We built a
model using machine learning to identify malware for the fileless. We could select the
top-performing model and tweak its hyperparameters to improve its accuracy by training it
on a fileless malware and benign samples dataset and then evaluating its performance on a
testing dataset. Using publicly available datasets, we assess the efficacy of botnet detection.
Less emphasis is placed on testing and evaluating network flow performance and deter-
mining whether a file has been subjected to a botnet attack. This study proposes combining
the GA and PSO to the fractional order finding techniques for grayscale representations,
which can then be used to develop an intelligent optimization-based fractional grey model.
After putting this model through its paces, we found that it reliably forecasted future
cyber security trends. The model needs more work before it can be used in other contexts.
Methods for increasing the reliability of predictions could be investigated in subsequent
studies. The primary focus of this publication was on short-term forecasting; hence, our
future work will integrate algorithms based on deep learning that can be incorporated into
this model to make predictions over the intermediate and long term.

Author Contributions: S.J.—conceptualization, methodology, formal analysis, investigation,
writing—original draft, A.A.—conceptualization, methodology, formal analysis, investigation,
writing—original draft, M.M.—conceptualization, methodology, resources, writing—review and editing,
K.R.I.—conceptualization, formal analysis, investigation, writing—original draft, J.D.—methodology,
validation, writing—original draft, P.J.—methodology, validation, writing—review and editing,
M.E.—methodology, validation, writing—review and editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the project SP2023/074 Application of Machine and Process
Control Advanced Methods supported by the Ministry of Education, Youth and Sports, Czech Republic.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available through email to the
corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Etaher, N.; Weir, G.R.; Alazab, M. From ZeuS to Zitmo: Trends in Banking Malware. In Proceedings of the 2015 IEEE Trust-

Com/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015.
2. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing the performance of supervised machine learning algorithms when used with a

manual feature selection process to detect Zeus malware. Int. J. Grid Util. Comput. 2022, 13, 495. [CrossRef]
3. Sarojini, S.; Asha, S. Botnet detection on the analysis of Zeus panda financial botnet. Int. J. Eng. Adv. Technol. 2019, 8, 1972–1976.

[CrossRef]
4. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-Rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware Detection Issues, Challenges, and

Future Directions: A Survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

https://doi.org/10.1504/IJGUC.2022.126167
https://doi.org/10.35940/ijeat.F7941.088619
https://doi.org/10.3390/app12178482

Mathematics 2023, 11, 2840 20 of 21

5. Owen, H.; Zarrin, J.; Pour, S.M. A survey on botnets, issues, threats, methods, detection and prevention. J. Cybersecur. Priv. 2022,
2, 74–88. [CrossRef]

6. Bukvić, L.; Škrinjar, J.P.; Fratrović, T.; Abramović, B. Price Prediction and Classification of Used-Vehicles Using Supervised
Machine Learning. Sustainability 2022, 14, 17034. [CrossRef]

7. Preethi, P.; Asokan, R. Modelling LSUTE: PKE Schemes for Safeguarding Electronic Healthcare Records over Cloud Communica-
tion Environment. Wirel. Pers. Commun. 2019, 117, 2695–2711. [CrossRef]

8. Preethi, P.; Asokan, R. A High Secure Medical Image Storing and Sharing in Cloud Environment Using Hex Code Cryptography
Method—Secure Genius. J. Med. Imaging Health Inform. 2019, 9, 1337–1345. [CrossRef]

9. Wu, Z.; Cao, J.; Wang, Y.; Wang, Y.; Zhang, L.; Wu, J. hPSD: A Hybrid PU-Learning-Based Spammer Detection Model for Product
Reviews. IEEE Trans. Cybern. 2020, 50, 1595–1606. [CrossRef]

10. Riccardi, M.; Di Pietro, R.; Palanques, M.; Vila, J.A. Titans’ revenge: Detecting Zeus via its own flaws. Comput. Netw. 2013, 57,
422–435. [CrossRef]

11. Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly resilient peer-to-peer botnets are here: An analysis of
Gameover Zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas”
(MALWARE), Fajardo, PR, USA, 22–24 October 2013.

12. Li, B.; Zhou, X.; Ning, Z.; Guan, X.; Yiu, K.-F.C. Dynamic event-triggered security control for networked control systems with
cyber-attacks: A model predictive control approach. Inf. Sci. 2022, 612, 384–398. [CrossRef]

13. Quadir, A.; Jaiswal, D.; Daftari, J.; Haneef, S.; Iwendi, C.; Jain, S.K. Efficient Dynamic Phishing Safeguard System Using Neural
Boost Phishing Protection. Electronics 2022, 11, 3133. [CrossRef]

14. Soniya, B.; Wilscy, M. Detection of randomized bot command and control traffic on an end-point host. Alex. Eng. J. 2016, 55,
2771–2781. [CrossRef]

15. Cheng, B.; Zhu, D.; Zhao, S.; Chen, J. Situation-Aware IoT Service Coordination Using the Event-Driven SOA Paradigm. IEEE
Trans. Netw. Serv. Manag. 2016, 13, 349–361. [CrossRef]

16. Jiang, H.; Wang, M.; Zhao, P.; Xiao, Z.; Dustdar, S. A Utility-Aware General Framework with Quantifiable Privacy Preservation
for Destination Prediction in LBSs. IEEE/ACM Trans. Netw. 2021, 29, 2228–2241. [CrossRef]

17. Yao, Y.; Zhao, J.; Li, Z.; Cheng, X.; Wu, L. Jamming and Eavesdropping Defense Scheme Based on Deep Reinforcement Learning
in Autonomous Vehicle Networks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1211–1224. [CrossRef]

18. Thorat, S.A.; Khandelwal, A.K.; Bruhadeshwar, B.; Kishore, K. Payload Content based Network Anomaly Detection. In
Proceedings of the 2008 First International Conference on the Applications of Digital Information and Web Technologies
(ICADIWT), Ostrava, Czech Republic, 4–6 August 2008.

19. Chen, P.; Liu, H.; Xin, R.; Carval, T.; Zhao, J.; Xia, Y.; Zhao, Z. Effectively Detecting Operational Anomalies in Large-Scale IoT
Data Infrastructures by Using a GAN-Based Predictive Model. Comput. J. 2022, 65, 2909–2925. [CrossRef]

20. Guan, Z.; Jing, J.; Deng, X.; Xu, M.; Jiang, L.; Zhang, Z.; Li, Y. DeepMIH: Deep Invertible Network for Multiple Image Hiding.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 372–390. [CrossRef]

21. Azab, A.; Alazab, M.; Aiash, M. Machine Learning Based Botnet Identification Traffic. In Proceedings of the 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016. [CrossRef]

22. Venkatesh, K.; Nadarajan, R.A. HTTP Botnet Detection Using Adaptive Learning Rate Multilayer Feed-Forward Neural Network.
In Information Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 38–48. [CrossRef]

23. Liu, X.; Shi, T.; Zhou, G.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. Emotion classification for short texts: An improved multi-label
method. Humanit. Soc. Sci. Commun. 2023, 10, 306. [CrossRef]

24. Ganesh, N.; Shankar, R.; Čep, R.; Chakraborty, S.; Kalita, K. Efficient Feature Selection Using Weighted Superposition Attraction
Optimization Algorithm. Appl. Sci. 2023, 13, 3223. [CrossRef]

25. Rajendran, S.; Ganesh; Čep, R.; Narayanan; Pal, S.; Kalita, K. A conceptual comparison of six nature-inspired metaheuristic
algorithms in process optimization. Processes 2022, 10, 197. [CrossRef]

26. Eslami, M.; Neshat, M.; Khalid, S.A. A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of
Power System Damping Controllers. Sustainability 2022, 14, 541. [CrossRef]

27. Khajehzadeh, M.; Taha, M.R.; Eslami, M. Efficient gravitational search algorithm for optimum design of retaining walls. Struct.
Eng. Mech. 2013, 45, 111–127. [CrossRef]

28. Kalita, K.; Dey, P.; Haldar, S.; Gao, X.-Z. Optimizing frequencies of skew composite laminates with metaheuristic algorithms. Eng.
Comput. 2020, 36, 741–761. [CrossRef]

29. Cao, B.; Wang, X.; Zhang, W.; Song, H.; Lv, Z. A Many-Objective Optimization Model of Industrial Internet of Things Based on
Private Blockchain. IEEE Netw. 2020, 34, 78–83. [CrossRef]

30. Li, B.; Tan, Y.; Wu, A.-G.; Duan, G.-R. A Distributionally Robust Optimization Based Method for Stochastic Model Predictive
Control. IEEE Trans. Autom. Control 2022, 67, 5762–5776. [CrossRef]

31. Kalita, K.; Dey, P.; Haldar, S. Robust genetically optimized skew laminates. Proc. Inst. Mech. Eng. Part C 2019, 233, 146–159.
[CrossRef]

https://doi.org/10.3390/jcp2010006
https://doi.org/10.3390/su142417034
https://doi.org/10.1007/s11277-019-06932-8
https://doi.org/10.1166/jmihi.2019.2757
https://doi.org/10.1109/TCYB.2018.2877161
https://doi.org/10.1016/j.comnet.2012.06.023
https://doi.org/10.1016/j.ins.2022.08.093
https://doi.org/10.3390/electronics11193133
https://doi.org/10.1016/j.aej.2016.04.004
https://doi.org/10.1109/TNSM.2016.2541171
https://doi.org/10.1109/TNET.2021.3084251
https://doi.org/10.1109/TIFS.2023.3236788
https://doi.org/10.1093/comjnl/bxac085
https://doi.org/10.1109/TPAMI.2022.3141725
https://doi.org/10.1109/trustcom.2016.0275
https://doi.org/10.1007/978-3-642-30955-7_5
https://doi.org/10.1057/s41599-023-01816-6
https://doi.org/10.3390/app13053223
https://doi.org/10.3390/pr10020197
https://doi.org/10.3390/su14010541
https://doi.org/10.12989/sem.2013.45.1.111
https://doi.org/10.1007/s00366-019-00728-x
https://doi.org/10.1109/MNET.011.1900536
https://doi.org/10.1109/TAC.2021.3124750
https://doi.org/10.1177/0954406218756943

Mathematics 2023, 11, 2840 21 of 21

32. Shankar, R.; Ganesh, N.; Čep, R.; Narayanan, R.C.; Pal, S.; Kalita, K. Hybridized Particle Swarm—Gravitational Search Algorithm
for Process Optimization. Processes 2022, 10, 616. [CrossRef]

33. Gebreyesus, Y.; Dalton, D.; Nixon, S.; De Chiara, D.; Chinnici, M. Machine Learning for Data Center Optimizations: Feature
Selection Using Shapley Additive exPlanation (SHAP). Futur. Internet 2023, 15, 88. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/pr10030616
https://doi.org/10.3390/fi15030088

	Introduction
	Motivation and Incitement
	Architecture of the ZBot Malware

	Related Works
	Methodology for KEMC: ZBot Malware Prediction
	Dataset Description
	Kernel-Based Feature Selection
	Ensemble Categorization Using Stacking Technique
	Genetic Algorithm
	PSO with GA

	Results and Discussion
	Performance Evaluation
	Examination of SHAP- Shapley Additive Explanations Characteristics
	Discussion

	Conclusions
	References

