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Abstract

:

In recent years, deep learning has been applied in numerous fields and has yielded excellent results. Convolutional neural networks (CNNs) have been used to analyze electrocardiography (ECG) data in biomedical engineering. This study combines the Taguchi method and CNNs for classifying ECG images from single heartbeats without feature extraction or signal conversion. All of the fifteen types (five classes) in the MIT-BIH Arrhythmia Dataset were included in this study. The classification accuracy achieved 96.79%, which is comparable to the state-of-the-art literature. The proposed model demonstrates effective and efficient performance in the identification of heartbeat diseases while minimizing misdiagnosis.
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1. Introduction


In recent years, deep learning applications have been developed in various fields and represent effective methods to solve various identification problems [1,2]. Deep learning was first introduced by Hinton et al. and focused on automatically learning features in input data [3]. Deep learning architectures include recurrent neural networks (RNNs), long short-term memory (LSTM) networks, convolutional neural networks (CNNs), and deep belief networks (DBNs) [1,2]. Compared with conventional machine learning methods, deep learning methods exhibit superior results in the fields of image recognition [4,5], speech recognition [6], medical imaging [7,8,9,10], iris recognition [11], and face detection and recognition [12]. In the field of biomedical engineering, many scholars have started to use deep learning methods to classify lung diseases [13], diagnose breast cancer [7,14,15,16], recognize brain hemorrhages from computed tomography [17], and detect arrhythmia in electrocardiography (ECG) signals [18,19,20,21,22]. Deep learning with a CNN is prevalent and demonstrates excellent performance in speech and image recognition. Representative CNNs include LeNet [23], AlexNet [4], VGG [24], and GoogLeNet [25], which are pioneers in the field.



Most ECG-related research is based on support vector machines (SVM), the K-nearest neighbors algorithm (kNN), probabilistic neural networks (PNN), or radial basis function neural networks (RBFNN) [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40]. The accuracy of these classification methods is 90–99%. A deep genetic ensemble of classifiers combining the advantages of ensemble learning, deep learning, and evolutionary computation was designed [41]. The computer-aided diagnosis (CAD) system of the aforementioned study was divided into four steps: (1) ECG signal preprocessing, (2) heartbeat segmentation, (3) feature extraction, and (4) classification [42]. These steps are designed to recognize heartbeat types accurately; however, these methods are complex and cumbersome; therefore, numerous scholars have used deep learning methods in ECG in recent years [42,43,44,45]. For example, in 2016, Zubair et al. [46] used a one-dimensional (1D) CNN to classify ECG signals in the MIT-BIH Arrhythmia Database. The classification accuracy of the CNN in that study was 92.70%. In 2017, Acharya et al. [47] developed a nine-layer deep CNN to identify five categories of heartbeat automatically using ECG signals in the MIT-BIH Arrhythmia Database; this CNN’s classification accuracy was 94.03%. In 2018, Oh et al. [21] proposed an automated system that used a CNN and LSTM to diagnose signals from the MIT-BIH Arrhythmia Database. The LSTM network is another widely used deep learning algorithm for analyzing time series, and the accuracy of this architecture is 98.10%. In 2018, Yildirim et al. [19] proposed the use of convolution operations in ECG; 1000 10-s ECG signal segments were used from the MIT-BIH Arrhythmia Database and classified using a 1D CNN. The overall classification accuracy was 91.33%. A novel deep learning approach for ECG heartbeat classification was conducted on the MIT-BIH Arrhythmia Database and showed more efficient results [48]. A deep residual network (ResNet) was presented for the classification of cardiac arrhythmias [49]. In 2023, a systematic review will be performed on the ECG database, preprocessing, DL methodology, evaluation paradigm, performance metric, and code availability to identify research trends, challenges, and opportunities for DL-based ECG arrhythmia classification [50].



In the aforementioned literature, CNNs have been used to detect arrhythmia in ECG signals. CNNs comprise one or more convolutional layers and a completely connected top layer (corresponding to a classical neural network); moreover, they include associated weights and a pooling layer. This structure enables CNNs to accept two-dimensional (2D) input data. CNNs provide superior results in terms of image and speech recognition compared with other deep learning structures. Moreover, CNNs can be trained using a back-propagation algorithm. Compared with other feedforward neural networks, CNNs require fewer parameters; thus, their structure is favorable for deep learning [2].



Several scholars have used 2D ECG images for analysis. In 2018, Xu et al. [10] used the modified frequency slice wavelet transform (MFSWT) on the MIT-BIH Atrial Fibrillation Database and implemented a CAD system that automatically detects atrial fibrillation. This method converts a 1-s ECG signal into a time-frequency image and then extracts and classifies the time-frequency image using a 12-layer CNN; the method achieved average accuracy, sensitivity, and specificity of 81.07%, 74.96%, and 86.41%, respectively, with five-fold cross-validation. Moreover, when unsatisfactory ECG signals were excluded from the test data, the average accuracy, sensitivity, and specificity rose to 84.85%, 79.05%, and 89.99%, respectively. The study demonstrated that atrial fibrillation could be correctly detected from transient signals. Samiee et al. [51] proposed a novel feature extraction method based on the mapping of 1D EEG signals into a 2D texture image. The fault diagnosis method first converts time-domain vibration signals into 2D gray-level images to exploit texture information from the converted images [52]. Islam et al. converted a 1D vibration signal to a 2D gray-level texture image for fault diagnosis of an induction motor [53]. Azad et al. used a multi-class support vector machine for classification on texture data of 2D images, which were transformed from 1D signals [54]. Li et al. (2018) [55] noted that although CNNs can be used to classify ECG data in the diagnosis of cardiovascular diseases, the ECG used in most related literature is a 1D ECG signal, but CNNs are more suitable for multidimensional modes or image recognition applications. The authors combined the heartbeat pattern and rhythm from 1D digital ECG signals in the MIT-BIH Arrhythmia Database and used one-hot encoding to map them onto a 2D image. Using CNN for classification, the researchers achieved an average accuracy of 99.1%. In 2018, Al Rahhal et al. [9] proposed a transfer learning method to detect and classify arrhythmia using data from the MIT-BIH Arrhythmia Database, the Institute of Cardiological Technics (INCART), and the MIT-BIH Supraventricular Arrhythmia Database (SVBD). The researchers employed a deep CNN trained on ImageNet. Since this CNN could only use images as input, they used the continuous wavelet transform (CWT) to convert 1D digital ECG signals into 2D ECG time-frequency images. The results for the MIT-BIH Arrhythmia Database, INCART, and MIT-BIH SVDB data were superior to those obtained by previous methods. Augmented data was commonly used to provide a comprehensive understanding of the heartbeat morphology [56,57,58,59]. For example, an automated system named ‘CardioNet’ is proposed for faster and more robust classification of heartbeats for arrhythmia detection using an augmentation process [57].



The aforementioned applications of CNNs for analyzing ECG images necessitated human intervention methods (e.g., MFSWT, one-hot encoding, CWT) to convert ECG signals into images before CNN classification. This study aimed to eliminate human intervention in the ECG signal conversion process while providing satisfactory results in ECG classification. The proposed system combines the Taguchi method and CNNs for arrhythmia classification by using ECG images with single heartbeats without feature extraction or signal conversion. The main contributions of the study are as follows:




	
Combining the Taguchi method and CNNs for arrhythmia classification.



	
Comparing the classification results with and without electrocardiograph denoising.



	
Parameter setting using orthogonal arrays in the convolution layers and max-pooling layers of the CNN.



	
Successfully classifies fifteen different types of heartbeats into five major classes.



	
Using ECG images with single heartbeats without feature extraction or signal conversion.








The remainder of the paper is organized as follows: The material and method, including the dataset, preprocessing, and architecture of CNN, are presented in Section 2. The experimental results, including the ECG dataset used, preprocessing, and performance using different combinations of orthogonal arrays, are given in Section 3. The comparative analysis is given in Section 4. Finally, the conclusion is drawn in Section 5.




2. Materials and Methods


2.1. Data Used


The MIT-BIH Arrhythmia Database [60] was used in this study. The database includes forty-eight 30-minute, two-lead ECG record segments comprising 15 beat types. This study divided these 15 beat types into one of the following five categories according to the Association for the Advancement of Medical Instrumentation (AAMI) EC57:1998 standard [61]: non-ectopic beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). Table 1 shows the beat types in the arrhythmia database. These five categories were used for the experiments in this study.




2.2. Preprocessing


2.2.1. Electrocardiograph Denoising


When collecting ECG signals, the ECG signal amplitude can be inconsistent because of the collection instruments chosen as well as patient and environmental factors; thus, ECG signals often contain noise. However, ECG signal denoising can mostly restore the original signal.



The denoising methods for ECG signals are many. This study referred to Singh et al. [62] to select mother wavelet basis functions. Their method is mainly used to eliminate the noise superimposed on an ECG signal. Therefore, in this study, all ECG signals were denoised using a Daubechies wavelet (db8). Moreover, this study established sets of ECG images both with and without denoising to compare the classification results and determine the effect of denoising.




2.2.2. Heartbeat Segmentation


Each patient has a unique heartbeat pattern; however, in heartbeat segmentation, a separate ECG signal is formed of PQRST for a single heartbeat. Related studies using a fixed sample centered on the R peak have not ensured that a single ECG signal could contain PQRST for a single heartbeat. Therefore, this study used Equations (1) and (2) to segment heartbeats [63].


    N   L e f t   =     ( R   N   −   R   N − 1   )  /  2    



(1)






    N   R i g h t   =     ( R   N + 1   −   R   N   )  /  2    



(2)






  N =   N   L e f t   +   N   R i g h t    



(3)




where     R   N     is the position of the Nth R peak,     N   L e f t     is the total number of samples between the (N − 1)th and Nth R peaks divided by 2,     N   R i g h t     is the total number of samples between the Nth and (N + 1)th R peaks divided by 2, and N is the number of samples for the length of the ECG signal. Figure 1 shows a schematic of heartbeat segmentation.





2.3. Creating an Image Dataset


ECG signals were converted into ECG images to create an image database. MFSWT [10], one-hot encoding [38], and CWT [9] are commonly used to draw ECG images. MFSWT and CWT map ECG signals onto spectrograms for analysis. One-hot encoding obtains ECG images by encoding ECG signal records. All of these methods use ECG signals to present ECG images in another form; thus, the original ECG signals cannot be presented. The image indicates the ECG value of the ECG signal in the corresponding time space by representing the amplitudes of the EEG signals as a function of time. Therefore, this study plotted ECG images using preprocessed ECG signals (Figure 2). This method directly draws ECG images to obtain ECG image datasets with and without denoising.




2.4. Convolutional Neural Network


A CNN is a conventional deep learning model comprising one or more convolution layers and a completely connected layer, with an image input layer, pooling layer, average pooling layer, rectified linear unit (ReLU) layer, dropout layer, and softmax layer. This architecture enables CNNs to provide superior image and speech recognition compared with other deep learning architectures [4,23,24,25]. This study employed a CNN because this network does not require additional methods for artificial feature extraction or classification [26,27,28,29,30]. The following provides a detailed description of the architecture. The more network layers, the better the learning results. However, increasing the number of network layers increases the calculation time; thus, the performance of learning architectures depends on the complexity of the problem [64]. The number of parameter combinations in CNN could be high; this study arranged CNN parameter combinations and selected the optimal configuration using a Taguchi orthogonal array. The Taguchi method identifies key effective parameters with much fewer experiments. The CNN model in the Deep Learning Library constructed in Matlab software version R2019a was used for CNN model building and execution in this study. The specification of the computer used for the calculation in this study is an Intel(R) Core(TM) i7-8700 CPU at 3.20 GHz and 3.19 GHz with a RAM of 32.0 GB.



2.4.1. Image Input Layer


The image input layer is the first layer of a CNN and is a requirement of all networks. Images with a size of 250 × 250 pixels were imported in this study.




2.4.2. Convolution Layers


A convolution is a linear operation that involves the multiplication between an array of input data and a kernel, a two-dimensional array of weights. Convolution uses a ‘kernel’ to extract certain ‘features’ from an input image. After convolution, features are generated and used as input to the subsequent layer. This study employed two convolution layers in its CNN ReLU layers.



ReLU refers to Rectified Linear Uni and is the most commonly used activation function for the outputs of the CNN neurons [65]. The function of a ReLU layer is to convert input neurons into new neuron outputs using Equation (4). In this function, x is the input of the neuron. If x is greater than 0, h(x) directly outputs the input x. If x is less than or equal to 0, the output of h(x) is 0. Therefore, the problem of gradient disappearance can be effectively overcome. In this study, two ReLU layers were employed after the convolution layers.


  h   x   =       x   x > 0         0   x ≤ 0          



(4)








2.4.3. Max-Pooling Layers


The pooling layers compute the maximum or average over a region of a feature map. The primary function of pooling is to reduce the number of features and parameters. Mean pooling and maximum pooling are generally used. The maximum pooling used in this study is based on the parameters of the kernel and stride set by the user to maximize adjacent feature points. This study’s CNN included two pooling layers.




2.4.4. Fully Connected Layers


The fully connected layer connects with the output of the previous layer and is typically used in the last stages of the CNN to connect to the output layer and construct the desired number of outputs. The number of outputs can be determined, and the number of categories for final classification is set or mapped to the final layer. This study utilized two fully connected layers.




2.4.5. Softmax Layer


The Softmax layer is placed just before the output layer. Softmax assumes that each example is a member of exactly one class. The Softmax layer must have the same number of nodes as the output layer. Softmax assigns decimal probabilities to each class in a multi-class problem. A softmax layer normalizes an input value to provide an output value of 0–1 using the softmax function and classifies the output according to the output value. This study employed one softmax layer in its CNN.



Table 2 details the specifics of each parameter. Conv 1 kernel size = 11 × 11, 15 × 15 and 20 × 20; Conv 1 Number of kernel = 48 and 96; Conv 1 Stride = 4, 6 and 8; Conv 1 Padding = 1 and 2; Pooling 1 Kernel size = 3 × 3 and 5 × 5; Pooling 1 Stride = 2 and 3; Conv 2 kernel size = 5 × 5 and 7 × 7; Conv 2 Number of kernel = 128 and 256; Conv 2 Stride = 1 and 2; Conv 2 Padding = 2, 3 and 4; Pooling 2 Kernel size = 2 × 2 and 3 × 3; Pooling 2 Stride = 2 and 3. There are nine two-level factors and three three-level factors in total for the above twelve parameters. Dropout: randomly dropping out nodes during training was used to reduce overfitting and improve generalization error in CNN in this study. The setting of dropout was suggested from related literature. A value of 0.5 was selected for dropout from the tests of our experiments.






3. Results


3.1. Preprocessing


3.1.1. ECG Denoising


This study used a Daubechies wavelet (db8) [65] to perform denoising in MATLAB of all ECG signals in the arrhythmia database. Figure 3 shows the signal denoising results for the five categories: nonectopic beats (N), supraventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F), and unknown beats (Q). In Figure 3, the red is the denoised signal, and the blue is the original signal. The results show that denoising can substantially reduce the noise of an ECG signal while retaining the original peak.




3.1.2. Heartbeat Segmentation


Table 3 shows that the heart rate of each patient is different, and thus, using a fixed time interval or a fixed number of samples to perform heartbeat segmentation would be inappropriate. Moreover, for any one patient, the heart rate may not be constant. Therefore, this study used Equations (1)–(3) to perform heartbeat segmentation for each patient, and the results are presented in Figure 4. The figure illustrates the 11–15th heartbeats of patient 100. Each patient’s heart rate was different; therefore, the number of heartbeat samples varied by patient. The resampling technique was used to ensure the input dimension of the image was the same size. Heartbeat segmentation was performed on 48 ECG signals from the MIT-BIH Arrhythmia Database; Table 1 defines the five categories based on the AAMI standard [61]. Non-ectopic beats (N) included the normal beat, left bundle branch block beat, right bundle branch block beat, atrial escape beat, and nodal escape beat. Since this type of beat accounted for 83% (n = 90,631) of the total heartbeats, ten percent (90,631 × 10% = 9063) non-ectopic beats were randomly selected (Table 4) in this study. Table 4 presents the number of ECG images (N = 9063, S = 2781, V = 7236, F = 803, and Q = 8043); 80%, 10%, and 10% of the data comprised the training, validation, and test sets, respectively, with 10-fold cross validations. Since the number of heart beats for type F was notably lower than the other four types, the succeeding experiments were split into classifying five types and four types (without type F) to compare the difference in classification performance of unbalanced data.



Through preprocessing, 27,926 ECG signals for each of two experiments—with (Experiment 1) and without (Experiment 2) denoising—were obtained, and corresponding ECG images were drawn. The size of each ECG image was 250 × 250 pixels.





3.2. Convolutional Neural Network


According to Taguchi’s catalog of orthogonal arrays, this study used a L36 orthogonal array for the parameter setting of 12 parameters (nine two-level factors and three three-level factors in Table 2) in the convolution layers and max-pooling layers of the CNN. The parameter settings are listed in Table 5. Table 5 also shows the average accuracies of CNN classification for each parameter setting in Experiments 1 and 2, which were repeated five times for the test dataset. The highest accuracy for Experiment 1 was 96.47%, and the training time was 322 s (Experiment #10). The highest accuracy for Experiment 2 was 96.79%, and the training time was 290 s (Experiment #21). The parameter values of Combination #10 for experiment 1 are Conv 1 kernel size = 11 × 11, Conv 1 Number of kernel = 96, Conv 1 Stride = 4, Conv 1 Padding = 2, Pooling 1 Kernel size = 5 × 5, Pooling 1 Stride = 2, Conv 2 kernel size = 7 × 7, Conv 2 Number of kernel = 256, Conv 2 Stride = 1, Conv 2 Padding = 4, Pooling 2 Kernel size = 2 × 2, Pooling 2 Stride = 2; the parameter values of Combination #21 for experiment 2 are: Conv 1 kernel size = 20 × 20, Conv 1 Number of kernel = 48, Conv 1 Stride = 4, Conv 1 Padding = 2, Pooling 1 Kernel size = 3 × 3, Pooling 1 Stride = 2, Conv 2 kernel size = 7 × 7, Conv 2 Number of kernel = 256, Conv 2 Stride = 1, Conv 2 Padding = 4, Pooling 2 Kernel size = 3 × 3, Pooling 2 Stride = 3. Furthermore, results showed that a smaller stride in the convolution layers corresponded to higher accuracy. This observation indicates that a smaller stride in convolution extracts more details from ECG images.



The CNN results under each parameter setting are discussed as follows: The detailed information about the structures of the proposed CNN method that achieves the highest accuracy for Experiments 1 and 2 is shown in Figure 5. Figure 6 represents the highest accuracies of Experiments 1 and 2. Obviously, the accuracy for fusion beats (F) was considerably lower than that for the other four categories. Therefore, this study removed the F type and used CNN to classify it under the optimal parameter settings of Experiments 1 and 2. The metrics showing accuracy, precision, recall, and F1-score are listed in Table 6. For five-class classification, the accuracy, precision, recall, and F1-score for Experiment 1 are 96.47%, 95.11%, 93.27%, and 94.14%, respectively. The accuracy, precision, recall, and F1-score for Experiment 2 are 96.79%, 96.12%, 93.19%, and 94.52%, respectively. After deleting fusion beats (F), the accuracy, precision, recall, and F1-score for Experiment 1 are 97.31%, 96.80%, 96.41%, and 96.60%, respectively. The accuracy, precision, recall, and F1-score for Experiment 2 are 97.20%, 96.73%, 96.31%, and 96.51%, respectively. Figure 7 reveals that removing F did not notably improve overall accuracy because the results for each category remained similar. Thus, the results were classified into five categories. Moreover, Figure 6 reveals no substantial difference in the individual or overall classification results of Experiments 1 and 2; thus, the denoising of ECG images did not considerably improve the accuracy of classification.




3.3. Comparison of Optimizers


This study used the stochastic gradient descent (SGD) optimization method in Experiments 1 and 2 in Section 3.2. In addition, this study used different optimizers, including SGD, adaptive moment estimation (Adam), and root-mean-square propagation (RMSProp), to compare the classification accuracies of different optimizers. In these three optimizers, the learning rate (η) was set to 0.001. Table 7. Performance of the proposed CNN with different optimization methods shows the results of using different optimizers to train the CNN. For both Experiments 1 and 2, SGD achieved the highest accuracy among the methods at 96.47% and 96.79%, respectively. Figure 8 and Figure 9 present the validation loss of Experiments 1 and 2 during convergence of each of these three optimization methods, respectively. The convergence of RMSProp was not satisfactory, having still not converged after 20 epochs.





4. Discussion


Many ECG studies have used the MIT-BIH Arrhythmia Database for testing. Table 8 summarizes related research on arrhythmia. Martis et al. [26] and Pławiak [30] have used machine learning methods to extract and classify ECG signal features. Since 2016, scholars have used 1D CNNs for analyzing ECGs because they do not require feature extraction for classification. The subtle changes in ECG signals are hardly detected by the naked eye. Several computer-aided diagnosis systems have been presented in the last decade. The standard steps in conventional machine learning methods for ECG classification are signal pre-processing, heartbeat segmentation, feature detection, feature selection, and classification. To have higher classification accuracy, different pre-processing methods, feature reduction methods, or extracted features were commonly executed with some human intervention. The more human intervention, the more misjudgment. One of the advantages of CNN is that the steps of feature reduction, feature extraction, and feature selection are no longer required. To minimize the variation and effect of human intervention and to learn the hidden information in the data, CNN is employed in this study. From the literature, the classification accuracies of 1D-CNN (90–99%) [19,21,46,47] are comparable to the results from conventional machine learning methods (90–99%) [26,30]. Instead of a 1D CNN, as in much of the previous literature, a CNN was used to classify ECG images in this study. Moreover, this study used variable signal lengths (Section 2.2.2). Oh et al. [21] used variable signal lengths, too. In Oh’s study, 1D CNN with LSTM was able to achieve 98.10% accuracy for classifying normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB), and premature ventricular contraction (PVC). Unlike Oh’s study, all fifteen types (five classes) in the MIT-BIH Arrhythmia Database [60] were included in this study.




5. Conclusions


This study combines the Taguchi method and CNNs for classifying ECG images from single heartbeats without feature extraction or signal conversion for fifteen heartbeats (five classes) in the MIT-BIH Arrhythmia Dataset. The classification accuracy was 96.79%. The developed system can serve as a starting point for creating a full-fledged tool for the early detection of problems in the ECG signals of patients to guide doctors in their treatment.



The advantages of the proposed models include: classification made by the proposed model that is reproducible with no observer biases; artificial feature extraction and selection that are not required in the proposed model; and the CNN parameter setting that uses the Taguchi orthogonal array and dramatically reduces the number of experiments. There are some drawbacks and limitations; for example, the identification of the R peak is required; small sample sizes for each group are used in this study; the sample size for each group is imbalanced; and each sample cannot simultaneously be a member of multiple classes.



Although the Taguchi-CNN model automatically recognizes five classes of heartbeat on the MIT-BIH Arrhythmia Database with favorable results, the application of similar CNNs on other databases is encouraged and needs to be considered in future research. Since the Taguchi method was applied to reduce the number of experiments, not all parameter combinations were tested in this study. The parameter settings outside the range of this study were not tested. The selected parameter combination with the highest accuracy is only guaranteed within the variable ranges in this study. Other optimization methods for parameter setting are encouraged in future studies. In addition, since a small and imbalanced sample size was used in this study, a larger and more balanced sample size is expected to be tested in the future.
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Figure 1. Schematic of heartbeat segmentation (The P wave in an ECG complex indicates atrial depolarization. The QRS is responsible for ventricular depolarization and the T wave is ventricular repolarization.). 
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Figure 2. ECG segments for MIT-BIH Arrhythmia Database beats. 






Figure 2. ECG segments for MIT-BIH Arrhythmia Database beats.



[image: Mathematics 11 02841 g002]







[image: Mathematics 11 02841 g003 550] 





Figure 3. Denoising of MIT-BIH Arrhythmia Database recordings. 
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Figure 4. Heartbeat segmentation. 
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Figure 5. CNN architecture. 
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Figure 6. Experiment 1 and Experiment 2 confusion matrices of heartbeat classification results for the test data. 
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Figure 7. Experiment 1 and Experiment 2 confusion matrices of the heartbeat classification results without F. 
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Figure 8. Experiment 1 compares the convergence speeds of three optimizations. 
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Figure 9. Experiment 2 compares the convergence speeds of three optimizations. 
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Table 1. MIT-BIH Arrhythmia Database beat types classified according to the AAMI EC57:1998 standard.
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Class

	
Non Ectopic Beat (N)

	
Supra-Ventricular Ectopic Beats (S)

	
Ventricular Ectopic Beats (V)

	
Fusion Beat (F)

	
Unknown Beat (Q)






	
Type

	
1. Normal beat

	
1. Atrial premature beat

	
1. Premature ventricular contraction beat

	
1. Fusion of ventricular and normal beat

	
1. Paced beat




	
2. Left bundle branch block beat

	
2. Aberrated atrial premature beat

	
2. Ventricular escape beat

	

	
2. Fusion of paced and normal beats




	
3. Right bundle branch block beat

	
3. Nodal (junctional) premature beat

	

	

	
3. Unclassifiable beat




	
4. Atrial escape beat

	
4. Supra-ventricular premature beat

	

	

	




	
5. Nodal (junctional) escape beat
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Table 2. Details of parameters of each layer of the proposed CNN.
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No

	
Layer Name

	
Layer Parameters

	
Experiment






	
1

	
Image Input

	
Image size

	
250 × 250




	
2

	
Convolution 1

	
Kernel size

	
11 × 11, 15 × 15, 20 × 20




	
Number of Kernel

	
48, 96




	
Stride

	
4, 6, 8




	
Padding

	
1, 2




	
3

	
Activation function

	
ReLU

	




	
4

	
Pooling 1

	
Kernel size

	
3 × 3, 5 × 5




	
Stride

	
2, 3




	
5

	
Convolution 2

	
Kernel size

	
5 × 5, 7 × 7




	
Number of Kernel

	
128, 256




	
Stride

	
1, 2




	
Padding

	
2, 3, 4




	
6

	
Activation function

	
ReLU

	




	
7

	
Pooling 2

	
Kernel size

	
2 × 2, 3 × 3




	
Stride

	
2, 3




	
8

	
Fully Connected

	

	
1000




	
9

	
Activation function

	
ReLU

	




	
10

	
Dropout

	

	
0.5




	
11

	
Fully Connected

	

	
5




	
12

	
Soft-max
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Table 3. Heart rates of patients from the MIT-BIH Arrhythmia Database.
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	No.
	Record
	Heart Rate
	No.
	Record
	Heart Rate
	No.
	Record
	Heart Rate





	1
	100
	76
	21
	122
	83
	41
	222
	88



	2
	101
	62
	22
	123
	51
	42
	223
	88



	3
	102
	73
	23
	124
	54
	43
	228
	71



	4
	103
	70
	24
	200
	93
	44
	230
	82



	5
	104
	77
	25
	201
	68
	45
	231
	67



	6
	105
	90
	26
	202
	72
	46
	232
	61



	7
	106
	70
	27
	203
	104
	47
	233
	105



	8
	107
	71
	28
	205
	89
	48
	234
	92



	9
	108
	61
	29
	207
	80
	
	
	



	10
	109
	85
	30
	208
	101
	
	
	



	11
	111
	71
	31
	209
	102
	
	
	



	12
	112
	85
	32
	210
	90
	
	
	



	13
	113
	60
	33
	212
	92
	
	
	



	14
	114
	63
	34
	213
	110
	
	
	



	15
	115
	65
	35
	214
	77
	
	
	



	16
	116
	81
	36
	215
	113
	
	
	



	17
	117
	51
	37
	217
	76
	
	
	



	18
	118
	77
	38
	219
	77
	
	
	



	19
	119
	70
	39
	220
	69
	
	
	



	20
	121
	63
	40
	221
	82
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Table 4. Number of beats by type.
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	Class
	N
	S
	V
	F
	Q
	Total





	Experiment 1
	9063
	2781
	7236
	803
	8043
	27,926



	Experiment 2
	9063
	2781
	7236
	803
	8043
	27,926
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Table 5. Performance of CNN under different parameter settings.
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A

	
B

	
C

	
D

	
E

	
F

	
G

	
H

	
I

	
J

	
K

	
L

	
Experiment 1

	
Experiment 2




	
No.

	
Conv1

Kernel Size

	
Conv1

Number of Kernel

	
Conv1

Stride

	
Conv1

Padding

	
Pooling 1

Kernel Size

	
Pooling 1

Stride

	
Conv2

Kernel Size

	
Conv2

Number of Kernel

	
Conv2

Stride

	
Conv2

Padding

	
Pooling 2

Kernel Size

	
Pooling 2

Stride

	
Acc.

	
Time

Elapsed

	
Acc.

	
Time

Elapsed






	
1

	
11 × 11

	
48

	
4

	
1

	
3 × 3

	
2

	
5 × 5

	
128

	
1

	
2

	
2 × 2

	
2

	
96.47%

	
222

	
96.63%

	
216




	
2

	
15 × 15

	
48

	
6

	
1

	
3 × 3

	
2

	
5 × 5

	
128

	
1

	
3

	
2 × 2

	
2

	
96.17%

	
161

	
96.38%

	
161




	
3

	
20 × 20

	
48

	
8

	
1

	
3 × 3

	
2

	
5 × 5

	
128

	
1

	
4

	
2 × 2

	
2

	
96.02%

	
161

	
96.30%

	
161




	
4

	
11 × 11

	
48

	
4

	
1

	
3 × 3

	
3

	
7 × 7

	
256

	
2

	
2

	
2 × 2

	
2

	
95.77%

	
173

	
95.90%

	
173




	
5

	
15 × 15

	
48

	
6

	
1

	
3 × 3

	
3

	
7 × 7

	
256

	
2

	
3

	
2 × 2

	
2

	
95.48%

	
162

	
95.89%

	
161




	
6

	
20 × 20

	
48

	
8

	
1

	
3 × 3

	
3

	
7 × 7

	
256

	
2

	
4

	
2 × 2

	
2

	
95.72%

	
159

	
95.96%

	
159




	
7

	
11 × 11

	
48

	
4

	
2

	
5 × 5

	
2

	
5 × 5

	
128

	
2

	
3

	
3 × 3

	
2

	
95.38%

	
185

	
95.36%

	
185




	
8

	
15 × 15

	
48

	
6

	
2

	
5 × 5

	
2

	
5 × 5

	
128

	
2

	
4

	
3 × 3

	
2

	
94.12%

	
158

	
94.11%

	
160




	
9

	
20 × 20

	
48

	
8

	
2

	
5 × 5

	
2

	
5 × 5

	
128

	
2

	
2

	
3 × 3

	
2

	
90.37%

	
150

	
92.11%

	
152




	
10

	
11 × 11

	
96

	
4

	
2

	
5 × 5

	
2

	
7 × 7

	
256

	
1

	
4

	
2 × 2

	
2

	
96.47%

	
322

	
96.61%

	
322




	
11

	
15 × 15

	
96

	
6

	
2

	
5 × 5

	
2

	
7 × 7

	
256

	
1

	
2

	
2 × 2

	
2

	
95.76%

	
187

	
96.23%

	
188




	
12

	
20 × 20

	
96

	
8

	
2

	
5 × 5

	
2

	
7 × 7

	
256

	
1

	
3

	
2 × 2

	
2

	
94.75%

	
200

	
95.06%

	
201




	
13

	
11 × 11

	
96

	
6

	
1

	
5 × 5

	
3

	
5 × 5

	
256

	
1

	
4

	
3 × 3

	
2

	
96.07%

	
196

	
95.93%

	
195




	
14

	
15 × 15

	
96

	
8

	
1

	
5 × 5

	
3

	
5 × 5

	
256

	
1

	
2

	
3 × 3

	
2

	
94.29%

	
169

	
94.77%

	
172




	
15

	
20 × 20

	
96

	
4

	
1

	
5 × 5

	
3

	
5 × 5

	
256

	
1

	
3

	
3 × 3

	
2

	
96.26%

	
706

	
96.57%

	
711




	
16

	
11 × 11

	
96

	
6

	
2

	
3 × 3

	
3

	
7 × 7

	
128

	
2

	
4

	
3 × 3

	
2

	
93.79%

	
174

	
93.90%

	
182




	
17

	
15 × 15

	
96

	
8

	
2

	
3 × 3

	
3

	
7 × 7

	
128

	
2

	
2

	
3 × 3

	
2

	
93.07%

	
352

	
93.38%

	
181




	
18

	
20 × 20

	
96

	
4

	
2

	
3 × 3

	
3

	
7 × 7

	
128

	
2

	
3

	
3 × 3

	
2

	
93.42%

	
584

	
93.47%

	
540




	
19

	
11 × 11

	
48

	
6

	
2

	
3 × 3

	
2

	
7 × 7

	
256

	
1

	
2

	
3 × 3

	
3

	
95.84%

	
336

	
96.09%

	
403




	
20

	
15 × 15

	
48

	
8

	
2

	
3 × 3

	
2

	
7 × 7

	
256

	
1

	
3

	
3 × 3

	
3

	
95.26%

	
233

	
95.35%

	
262




	
21

	
20 × 20

	
48

	
4

	
2

	
3 × 3

	
2

	
7 × 7

	
256

	
1

	
4

	
3 × 3

	
3

	
96.47%

	
284

	
96.79%

	
290




	
22

	
11 × 11

	
48

	
6

	
1

	
5 × 5

	
3

	
7 × 7

	
128

	
1

	
3

	
3 × 3

	
3

	
93.17%

	
278

	
93.57%

	
166




	
23

	
15 × 15

	
48

	
8

	
1

	
5 × 5

	
3

	
7 × 7

	
128

	
1

	
4

	
3 × 3

	
3

	
93.04%

	
270

	
93.24%

	
158




	
24

	
20 × 20

	
48

	
4

	
1

	
5 × 5

	
3

	
7 × 7

	
128

	
1

	
2

	
3 × 3

	
3

	
93.24%

	
225

	
93.23%

	
185




	
25

	
11 × 11

	
48

	
8

	
2

	
5 × 5

	
3

	
5 × 5

	
256

	
2

	
3

	
2 × 2

	
3

	
94.60%

	
171

	
94.75%

	
151




	
26

	
15 × 15

	
48

	
4

	
2

	
5 × 5

	
3

	
5 × 5

	
256

	
2

	
4

	
2 × 2

	
3

	
95.91%

	
325

	
96.22%

	
185




	
27

	
20 × 20

	
48

	
6

	
2

	
5 × 5

	
3

	
5 × 5

	
256

	
2

	
2

	
2 × 2

	
3

	
94.36%

	
249

	
94.51%

	
168




	
28

	
11 × 11

	
96

	
8

	
1

	
3 × 3

	
2

	
5 × 5

	
256

	
2

	
3

	
3 × 3

	
3

	
95.10%

	
189

	
95.41%

	
168




	
29

	
15 × 15

	
96

	
4

	
1

	
3 × 3

	
2

	
5 × 5

	
256

	
2

	
4

	
3 × 3

	
3

	
96.06%

	
256

	
96.41%

	
247




	
30

	
20 × 20

	
96

	
6

	
1

	
3 × 3

	
2

	
5 × 5

	
256

	
2

	
2

	
3 × 3

	
3

	
94.79%

	
194

	
94.93%

	
196




	
31

	
11 × 11

	
96

	
8

	
2

	
3 × 3

	
3

	
5 × 5

	
128

	
1

	
4

	
2 × 2

	
3

	
95.20%

	
165

	
95.41%

	
173




	
32

	
15 × 15

	
96

	
4

	
2

	
3 × 3

	
3

	
5 × 5

	
128

	
1

	
2

	
2 × 2

	
3

	
95.86%

	
195

	
96.10%

	
204




	
33

	
20 × 20

	
96

	
6

	
2

	
3 × 3

	
3

	
5 × 5

	
128

	
1

	
3

	
2 × 2

	
3

	
95.24%

	
186

	
95.45%

	
195




	
34

	
11 × 11

	
96

	
8

	
1

	
5 × 5

	
2

	
7 × 7

	
128

	
2

	
2

	
2 × 2

	
3

	
91.83%

	
158

	
91.96%

	
254




	
35

	
15 × 15

	
96

	
4

	
1

	
5 × 5

	
2

	
7 × 7

	
128

	
2

	
3

	
2 × 2

	
3

	
95.03%

	
217

	
95.09%

	
498




	
36

	
20 × 20

	
96

	
6

	
1

	
5 × 5

	
2

	
7 × 7

	
128

	
2

	
4

	
2 × 2

	
3

	
92.73%

	
187

	
92.13%

	
321
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Table 6. Performance metrics of experiments.
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	Class
	Accuracy
	Precision
	Recall
	F1-Score





	Experiment 1
	5
	96.47%
	95.11%
	93.27%
	94.14%



	Experiment 2
	5
	96.79%
	96.12%
	93.19%
	94.52%



	Experiment 1
	4
	97.31%
	96.80%
	96.41%
	96.60%



	Experiment 2
	4
	97.20%
	96.73%
	96.31%
	96.51%
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Table 7. Performance of the proposed CNN with different optimization methods.






Table 7. Performance of the proposed CNN with different optimization methods.





	Optimization
	SGD
	Adam
	RMSProp





	Learning rate (η)
	0.001
	0.001
	0.001



	Experiment 1 Acc.
	96.47%
	95.17%
	92.37%



	Experiment 2 Acc.
	96.79%
	93.02%
	94.81%
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Table 8. Comparison with related literature.
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	Year
	Author
	Length of Signal
	No of Classes
	Feature Set
	Classifier
	Overall ACC.





	2013
	Martis et al. [26]
	200 samples
	5
	DWT+ICA
	PNN
	99.28%



	2016
	Zubair et al. [46]
	1000 samples
	5
	Raw data
	1D-CNN
	92.70%



	2017
	Acharya et al. [47]
	360 samples (1 s)
	5
	Raw data
	1D-CNN
	94.03%



	2017
	Acharya et al. [47]
	2 s

5 s
	4
	Raw data
	1D-CNN
	92.50%

94.90%



	2018
	Oh et al. [21]
	Variable length
	5 *
	Raw data
	CNN-LSTM
	98.10%



	2018
	Pławiak [30]
	3600 samples (10 s)
	13

15

17
	Frequency components of the power spectral density of the ECG signal
	Evolutionary-Neural System (based on SVM)
	94.60%

91.28%

90.20%



	2018
	Yildirim et al. [19]
	3600 samples (10 s)
	13

15

17
	Rescaling raw data
	1D-CNN
	95.20%

92.51%

91.33%



	2018
	Yildirim [66]
	360 samples
	5
	Raw data
	DBLSTM-WS
	99.39%



	2019
	Jiang et al. [56]
	49,953
	4
	Augmented
	DAE+1D-CNN
	98.40%



	2021
	Pal et al. [57]
	
	29
	Augmented
	CardioNet
	98.92%



	2021
	Ullah [58]
	109,446
	5 *
	Generating new data
	CNN
	99.12%



	2022
	Alqudah [67]
	10,502 beats
	6
	
	MobileNet
	93.80%



	2022
	Ma [59]
	
	5 *
	Expanded data
	ECG-DCGAN
	98.70%



	2023
	Pandy et al. [68]
	
	5 *
	Balancing data
	Hybrid
	99.40%



	2023
	This study
	300 samples
	5
	Raw data
	Taguchi+CNN
	Experiment 2

96.79%







* Five classes selected from the dataset are not the same as those we selected in the study.
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