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Abstract: This paper considers a rod with an insulated side surface, at the edges of which there
is heat exchange with the external environment. It is assumed that the thermal process in the rod
is controlled by the effect of the ambient temperature on the thermal state in the rod through its
boundary temperatures. Using the technique of separation of variables and methods based on the
theory of control of finite-dimensional systems, we propose a constructive approach to build the
control function of the temperature conditions at the ends of the rod that change the temperature
state distribution in the rod from a given initial state to a final state within a specified time interval.
We have formulated the necessary and sufficient condition that the boundary control functions of the
temperature modes of the rod must satisfy in order for the problem to be completely controllable
under any allowable initial and final conditions. As an application of the proposed approach, we
have built the temperature control functions at the ends of the rod for the first two harmonics.
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1. Introduction

In the study of controllable thermal processes, there are problems of controlling ther-
mal processes whose mathematical models are described by partial differential equations
of the parabolic type [1–16]. These control problems find their application, for example,
in various fields of science and technology. In practice, there are often problems of thermal
diffusion in a rod, the ends of which are exposed to variable controlled temperatures.
These problems are reduced to the study of the thermal conduction equation, the boundary
conditions in which are expressed through control functions [6,9–15].

The relevance of issues of developing temperature control conditions of thermal
processes is well-established. A theoretical study of the above problems, as well as various
formulations of problems of control and optimal control of processes described by parabolic
equations, were given, in particular, in [1–16]. The papers [12–16] consider problems of
control and optimal control of a thermal (parabolic) equation using distributed control,
in particular, allowing taking into account of restrictions on the structure of the solution and
control [16], restrictions on the control and states [13], and point restrictions for control [14].
Often, there are boundary control problems of a thermal process in which it is necessary
to generate the desired temperature state within a given time interval. The problems of
boundary control of the thermal process in a rod have so far not been sufficiently researched.
This paper addresses the study of the boundary control of the thermal process in a rod.
In the paper, we use the approaches of boundary control for distributed systems, described,
in particular, in [17–19].
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In this paper, we consider a homogeneous rod with an insulated side surface, at the
ends of which heat exchange with the external environment takes place. It is assumed
that the thermal process in the rod is controlled as follows: by changing the ambient
temperatures (at the right and left ends) we influence the thermal state in the rod through
its boundary temperatures. Each of these boundary temperature functions serves as a
control (boundary controls).

This paper aims to develop a constructive approach to building a function of such
temperature conditions at the ends of the rod that change the distribution of the temperature
state in the rod from a given initial state to a final state within a given time interval.
We propose a constructive approach to constructing a control function for temperature
conditions at the ends of the rod, under the influence of which the distribution of the
temperature state in the rod transitions into a given final state from a given initial state at a
given time interval. The construction is based on the methods of separation of variables and
the theory of control for finite-dimensional systems. A necessary and sufficient condition is
also formulated for the complete controllability of the boundary control of the temperature
conditions of the rod under any feasible initial and final conditions. To illustrate the
constructiveness of the proposed approach, control functions for temperature regimes at
the ends of the rod are constructed for the first two modes. We carried out a comparative
analysis of the results of numerical calculations and identified patterns related to the
physical properties of materials. The study continues previously reported work [16].

2. Problem Statement

We consider the thermal process in a uniform rod of length l. Let the temperature
distribution in the rod be described by the function Z(x, t), 0 6 x 6 l, t0 < t < T, which
conforms to the parabolic equation

∂Z
∂t

= a
∂2Z
∂x2 , 0 < x < l, t > t0 (1)

subject to boundary conditions

Z(0, t) = µ(t), Z(l, t) = ν(t), t0 6 t 6 T. (2)

and the initial (at t = t0) and final (at t = T) conditions

Z(x, t0) = ϕ0(x), 0 6 x 6 l, (3)

Z(x, T) = ϕT(x), 0 6 x 6 l. (4)

In Equation (1), a = k
cρ is the coefficient of thermal conductivity of the rod material, ρ is

the material density, c is the specific heat capacity, and k is the heat conductivity coefficient
of the rod.

The considered thermal process can be stated in thermophysical terms as follows: We
consider a uniform rod with an insulated side surface, at the ends of which there is heat
exchange with the external environment, and the temperature of the external environment
at the time t at the left end is equal to µ(t), and at the right end is equal to ν(t). It is
assumed that the thermal process in the rod is controlled as follows: by changing the
ambient temperatures, we thus influence the thermal state in the rod through its boundary
functions µ(t) and ν(t). Each of these functions serves as a control (boundary controls).

It is assumed that the allowable controls µ(t) and ν(t) belong to L2(t0, T). The function
Z(x, t) ∈ L2(Ω), where the set Ω = {(x, t) : x ∈ [0, l], t ∈ [t0, T]}, and the function ϕ0(x),
ϕT(x) belong to L2(0, l). It is also assumed that all functions are such that the following
consistency conditions are satisfied:

µ(t0) = ϕ0(0), ν(t0) = ϕ0(l), µ(T) = ϕT(0), ν(T) = ϕT(l), (5)
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The problem of boundary control of the thermal process in a rod can be stated as follows.
Find such temperature conditions at the ends of the rod µ(t) and ν(t), t0 6 t 6 T that

change the temperature state distribution in the rod from a given initial state (3) to a final
state (4) within a given time interval.

3. Reduction of the Problem to a Problem with Zero Boundary Conditions

Since the boundary conditions (2) are non-homogeneous, we construct the solution to
Equation (1) as the sum [5]

Z(x, t) = W(x, t) + Y(x, t), (6)

where Y(x, t) is the function with boundary conditions

Y(0, t) = Y(l, t) = 0, (7)

to be determined, and the function W(x, t) is the solution to Equation (1) subject to conditions

W(0, t) = µ(t), W(l, t) = ν(t) (8)

and has the form
W(x, t) = µ(t) +

x
l
[ν(t)− µ(t)]. (9)

Substituting (6) into (1), given (9), yields the following equation for determining the
function Y(x, t)

∂Y
∂t

= a
∂2Y
∂x2 + f (x, t), 0 6 x 6 l, t0 6 t 6 T. (10)

where
f (x, t) =

x
l
[µ̇(t)− ν̇(t)]. (11)

By applying the approaches reported in [16], from the initial (3) and final conditions (4),
given the consistency conditions (5), we obtain that the function Y(x, t) must satisfy the
following initial

Y(x, t0) = ϕ0(x)− ϕ0(0)−
x
l
[ϕ0(l)− ϕ0(0)], (12)

and final
Y(x, T) = ϕT(x)− ϕT(0)−

x
l
[ϕT(l)− ϕT(0)] (13)

conditions.
Thus, the solution to the original problem is reduced to the problem of controlling

a thermal process described by the non-homogeneous Equation (10) with homogeneous
boundary conditions (7), which is stated as follows: find such temperature conditions
µ(t) and ν(t), t0 6 t 6 T that change the temperature state as described by the non-
homogeneous Equation (10) with homogeneous boundary conditions (7) from a given
initial state (12) to a final state (13) within a given time interval.

4. Problem Solution

Given that the boundary conditions (7) are homogeneous, and the consistency condi-
tions are met, the solution to Equation (10) is sought in the form

Y(x, t) =
∞

∑
k=1

Yk(t) sin
πk
l

x, Yk(t) =
2
l

l∫
0

Y(x, t) sin
πkx

l
dx. (14)

Let us represent the functions f (x, t), ϕ0(x), ϕT(x) as Fourier series in the basis
{

sin πkx
l

}
(k = 1, 2, . . .), and by substituting their values together with Y(x, t) into Equations (10) and (11)
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and conditions (12) and (13), we obtain that the Fourier coefficients Yk(t) satisfy a countable
number of systems of ordinary differential equations

Ẏk(t) + aλkYk(t) = fk(t), λk =

(
πk
l

)2
, k = 1, 2, . . . (15)

fk(t) = −
2

πk
(−1)k[µ̇(t)− ν̇(t)], (16)

Yk(t0) = ϕ
(0)
k −

2
πk

[
ϕ0(0)− (−1)k ϕ0(l)

]
, (17)

Yk(T) = ϕ
(T)
k − 2

πk

[
ϕT(0)− (−1)k ϕT(l)

]
. (18)

Here, the Fourier coefficients of the function f (x, t), ϕ0(x), ϕT(x) are denoted by fk(t), ϕ
(0)
k ,

and ϕ
(T)
k , respectively.

The general solution to the Equation (15) with the initial condition (17) has the form [5]

Yk(t) = Yk(t0)e−aλk(t−t0) +

t∫
t0

fk(τ)e−aλk(t−τ)dτ. (19)

Now, given the final condition (18), we obtain that the functions fk(τ), t0 6 τ 6 T for
each k = 1, 2, . . . must satisfy the following relation:

T∫
t0

fk(τ)e−aλk(T−τ)dτ = Yk(T)−Yk(t0)e−aλk(T−t0). (20)

By applying the approaches reported in [16–18], we obtain that the control functions µ(t)
and ν(t) for each k = 1, 2, . . . must satisfy the integral relation:

T∫
t0

µ(τ)eaλkτdτ − (−1)k
T∫

t0

ν(τ)eaλkτdτ = Ck, (21)

Ck =
1

aλk

{
πk
2

[
Yk(T)eaλkT −Yk(t0)eaλkt0

]
+[

ϕT(0)− (−1)k ϕT(l)
]
eaλkT −

[
ϕ0(0)− (−1)k ϕ0(l)

]
eaλkt0

}
.

Let us introduce the following notations:

H̄k(τ) =
(

eaλkτ −(−1)keaλkτ
)
, U(τ) =

(
µ(τ)
ν(τ)

)
. (22)

Then relation (21) is written as follows

T∫
t0

H̄k(τ)U(τ)dτ = Ck, k = 1, 2, . . . . (23)

Hence, the infinite integral relations (23) are obtained for finding the function U(τ),
τ ∈ [t0, T].

In practice, it is usually several first n (k = 1, 2, . . . , n) of relations (23) that are chosen
and the problem of control synthesis is solved by methods of the theory of control of
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finite-dimensional systems [1,16]. We will arrive at the solution to the problem by following
this approach. Consequently, for the first n relations, from (23), we have

T∫
t0

Hn(τ)Un(τ)dτ = ηn, (24)

where the following notations of block matrices are introduced

Hn(τ) =


H̄1(τ)
H̄2(τ)

...
H̄n(τ)

, ηn =


C1
C2
...

Cn

 (25)

where the dimension of Hn(τ) is (n× 2), and the dimension of ηn is (n× 1). Here and
below, the letter “n” in the lower index means “for the first n harmonics”.

It follows from relation (24) that the below statement about complete controllability is
valid [16–18].

Proposition 1. The first n harmonics of the dynamic process described by (15) with conditions
(16)–(18) are completely controllable, if, and only if, for any vector ηn (25), we can find a control
Un(t), t ∈ [t0, T] satisfying the condition (24).

The control Un(t), satisfying the integral relation (24), will be represented in the
form [18,19]

Un(t) = HT
n (t)S

−1
n ηn + en(t), (26)

where HT
n (t) is a transposed matrix, en(t) is a vector-valued function such that

T∫
t0

Hn(t)en(t)dt = 0, Sn =

T∫
t0

Hn(t)HT
n (t)dt. (27)

Here, Sn is a known matrix of dimension (n× n), for which it is assumed that det Sn 6= 0.
It follows from Formula (26) that there is a set of control functions solving the boundary

control problem.

5. Construction of the Solution in the Case of n = 2

To illustrate the above, let us construct the control functions in the case of n = 2. In this
case, from Formula (21), we will have the following integral relations

T∫
t0

µ2(τ)eaλ1τdτ +

T∫
t0

ν2(τ)eaλ1τdτ = C1,
T∫

t0

µ2(τ)eaλ2τdτ −
T∫

t0

ν2(τ)eaλ2τdτ = C2,

where the constants C1 and C2 are determined from Formula (21).

According to (27), the matrix S2 has the form S2 =

(
s11 0
0 s22

)
, where

sii =
1

aλi
(e2aλiT − e2aλit0), i = 1, 2.

Let us note that det S2 = s11s22 6= 0. The inverse matrix has the form

S−1
2 =

1
det S2

(
s22 0
0 s11

)
.

From Formula (26), it follows that
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U2(t) = HT
2 (t)S

−1
2 η2 + e2(t).

Assuming that e2(t) = 0, we obtain

µ2(τ) =
1

s11s22
[s22C1eaλ1τ + s11C2eaλ2τ ], ν2(τ) =

1
s11s22

[s22C1eaλ1τ − s11C2eaλ2τ ],

where

C1 =
1

aλ1

{π

2

[
Y1(T)eaλ1T −Y1(t0)eaλ1t0

]
+ [ϕT(0) + ϕT(l)]eaλ1T − [ϕ0(0) + ϕ0(l)]eaλ1t0

}
,

C2 =
1

aλ2

{
π
[
Y2(T)eaλ2T −Y2(t0)eaλ2t0

]
+ [ϕT(0)− ϕT(l)]eaλ2T − [ϕ0(0)− ϕ0(l)]eaλ2t0

}
,

or, in respect that (17) and (18), we have

C1 =
π

2aλ1

[
ϕ
(T)
1 eaλ1T − ϕ

(0)
1 eaλ1t0

]
, C2 =

π

aλ2

[
ϕ
(T)
2 eaλ2T − ϕ

(0)
2 eaλ2t0

]
.

Having the expressions of the function µ2(τ) and ν2(τ) from Formulas (16) and (19), we
obtain an explicit expression for the function Yk(t) in the form

Yk(t) = Yk(t0)e−aλk(t−t0) +
∫ t

t0

fk(τ)e−aλk(t−τ)dτ, k = 1, 2,

where

f1(τ) = −
4aλ1C1

πs11
eaλ1τ , f2(τ) = −

2aλ2C2

πs22
eaλ2τ .

Substituting these expressions as an integrand and integrating, we obtain

Y1(t) = Y1(t0)e−aλ1(t−t0) − 2C1

πs11
eaλ1t +

2C1

πs11
e−aλ1te2aλ1t0 ,

Y2(t) = Y2(t0)e−aλ2(t−t0) − C2

πs22
eaλ2t +

C2

πs22
e−aλ2te2aλ2t0 .

From (6), we obtain an explicit expression for the rod temperature function Y2(x, t), in the
case of n = 2, in the form

Y2(x, t) = Y1(t) sin
π

l
x + Y2(t) sin

2π

l
x.

Further, from the Formulas (6) and (9), for the temperature distribution function in the rod
Z2(x, t), 0 6 x 6 l, 0 < t < T, we will have

Z2(x, t) = W2(x, t) + Y2(x, t) = Y1(t) sin
π

l
x + Y2(t) sin

2π

l
x + µ2(t) +

x
l
[ν2(t)− µ2(t)].

6. Computational Experiment

Let us carry out numerical calculations for comparative analysis of the results and
identification of regularities related to the physical properties of materials. Assume that
the thermal diffusivity a = 1 (m2/s), l = 1 (m), and t0 = 0 (s), then λ1 = π2, λ2 = 4π2.
The case a = 1 is considered as a standard (in the mathematical sense) for the purpose of
comparison with the results for other values of a.

Let the following initial state be given for t = 0:

ϕ0(x) = x2 − x,

and the following final state be given for t = T:
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ϕT(x) = 0.

Then, we get

C1 =
4

π4 , C2 = 0, s11 =
e2π2T − 1

π2 , s22 =
e8π2T − 1

4π2 ,

µ2(t) = ν2(t) =
4eπ2t

π2(e2π2T − 1)
, f1(t) = −

16eπ2t

π
(

e2π2T − 1
) , f2(t) = 0,

Y1(t) = −
8(e2π2T + e2π2t − 2)e−π2t

π3
(

e2π2T − 1
) , Y2(t) = 0,

Y1(t0) = −
8

π3 , Y2(t0) = 0, Y1(T) = −
16(eπ2T − e−π2T)

π3(e2π2T − 1)
, Y2(T) = 0,

Y2(x, t) = −8(e2π2T + e2π2t − 2)e−π2t

π3(e2π2T − 1)
sin πx, W2(x, t) =

4eπ2t

π2(e2π2T − 1)
,

Z2(x, t) = −8(e2π2T + e2π2t − 2)e−π2t

π3(e2π2T − 1)
sin πx +

4eπ2t

π2(e2π2T − 1)
,

Z2(x, 0) = −8 sin πx
π3 +

4

π2
(

e2π2T − 1
) ,

Z2(x, T) = −16e−π2T

π3 sin πx +
4eπ2T

π2(e2π2T − 1)
.

Figure 1 shows the behavior of the obtained function of temperature distribution in the rod.

– 0.26

– 0.16

– 0.06

0.04

0.14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 1. Graphs of functions ϕ0(x) (red) and Z2(x, 3) (green).

Table 1 shows the estimation of the deviation of these functions

ε(tj) = max
0≤x≤1

∣∣Z2(x, tj)− ϕj(x)
∣∣, j = 0, 1, t1 = T,

and comparative analysis of the obtained results.

Table 1. Deviation estimates for a = 1.

T = 1 T = 3

ε(0) = 0.00801 ε(0) = 0.00801
ε(T) = 2× 10−5 ε(T) = 6× 10−14

Let the material of the rod be copper with a coefficient of thermal diffusivity (25 ◦C)
a = 1.11× 10−4 (m2/s). Denote α = π2a = 1.09553× 10−3, then, we have:



Mathematics 2023, 11, 2881 8 of 10

C1 =
36036.036

π4 , C2 = 0, s11 = 912.803(e2αT − 1), s22 = 228.201(e8αT − 1),

µ2(t) = ν2(t) =
0.405eαt

e2αT − 1
, f1(t) = −

0.000565eαt

e2αT − 1
, f2(t) = 0,

Y1(t) = −
0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
, Y2(t) = 0,

Y1(t0) = −
8

π3 , Y2(t0) = 0, Y1(T) = −
0.516(eαT − e−αT)

e2αT − 1
, Y2(T) = 0,

Y2(x, t) = −0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
sin πx, W2(x, t) =

0.405eαt

e2αT − 1
,

Z2(x, t) = −0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
sin πx +

0.405eαt

e2αT − 1
,

Z2(x, 0) = −0.258 sin πx +
0.405

e2αT − 1
,

Z2(x, T) = −0.516e−αT sin πx +
0.405eαT

e2αT − 1
.

Figures 2 and 3 show the behavior of the obtained function of temperature distribution
in the rod.

– 0.26

– 0.16

– 0.06

0.04

0.14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 2. Graphs of functions ϕ0(x) (red) and Z2(x, 4500) (green).

– 0.06
0.02
0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 3. Graphs of functions ϕT(x) = 0 and Z2(x, 1500) (green).

Table 2 shows the deviation estimate of these functions:

ε(tj) = max
0≤x≤1

∣∣Z2(x, tj)− ϕj(x)
∣∣, j = 0, 1; t1 = T,

and a comparative analysis of the obtained results for copper.

Table 2. Deviation estimates for a = 1.11× 10−4.

T = 300 T = 900 T = 1500 T = 4500

ε(0) = 0.44661 ε(0) = 0.07617 ε(0) = 0.02638 ε(0) = 0.01066
ε(T) = 0.60561 ε(T) = 0.17565 ε(T) = 0.08140 ε(T) = 0.00293

Let now the material of the rod be iron with thermal diffusivity a = 2.3× 10−5 (m2/s).
Denote α = π2a = 2.27001× 10−4, then, we have:
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C1 =
173913.043

π4 , C2 = 0, s11 = 4405.269(e2αT − 1), s22 = 1101.317(e8αT − 1),

µ2(t) = ν2(t) =
0.405eαt

e2αT − 1
, f1(t) = −

0.000117eαt

e2αT − 1
, f2(t) = 0,

Y1(t) = −
0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
, Y2(t) = 0,

Y1(t0) = −
8

π3 , Y2(t0) = 0, Y1(T) = −
0.516(eαT − e−αT)

e2αT − 1
, Y2(T) = 0,

Y2(x, t) = −0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
sin πx, W2(x, t) =

0.405eαt

e2αT − 1
,

Z2(x, t) = −0.258(e2αT + e2αt − 2)e−αt

e2αT − 1
sin πx +

0.405eαt

e2αT − 1
,

Z2(x, 0) = −0.258 sin πx +
0.405

e2αT − 1
,

Z2(x, T) = −0.516e−αT sin πx +
0.405eαT

e2αT − 1
.

As can be seen from the formulas obtained at the end of Section 5, the difference between
the corresponding formulas for copper and iron materials is only in the value α.

Figure 4 shows the behavior of the obtained function of temperature distribution in
the rod.

– 0.06

0.02

0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 4. Graphs of functions ϕT(x) = 0 and Z2(x, 7100) (green).

Table 3 shows the deviation estimate of these functions:

ε(tj) = max
0≤x≤1

∣∣Z2(x, tj)− ϕj(x)
∣∣, j = 0, 1; t1 = T,

and a comparative analysis of the obtained results for iron.

Table 3. Deviation estimates for a = 2.3× 10−5.

T = 900 T = 1500 T = 4500 T = 7100

ε(0) = 0.81364 ε(0) = 0.42595 ε(0) = 0.07100 ε(0) = 0.02745
ε(T) = 0.98502 ε(T) = 0.58378 ε(T) = 0.16766 ε(T) = 0.08423

Thus, the analysis of the results of the computational experiment confirms the fol-
lowing regularity of the physical properties of the rod material: the lower the thermal
diffusivity of the material, the more time is required for boundary control, which provides
the desired deviation ε.

So, using the proposed approach, given n = 2, we have constructed explicit expres-
sions of the thermal process control function solving the problem stated above and the
explicit expression of the corresponding rod temperature distribution function.

7. Conclusions

For a rod with an insulated side surface, we have proposed a constructive approach
to building a function of such temperature conditions at the ends of the rod that change
the distribution of the temperature state in the rod from a given initial state to a final state



Mathematics 2023, 11, 2881 10 of 10

within a given time interval. The proposed approach relies on the method of separation of
variables and methods of the theory of control of finite-dimensional systems. With the aid
of the Fourier method, the proposed approach can be applied to constructing control of
thermal conditions for other non-uniform thermal processes. This attests to the practical
significance of the results obtained. The results obtained can be used in the design of
boundary control of thermal processes.
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