
Citation: Xu, T.; Gao, Z.; Zhuang, Y.

Fault Prediction of Control Clusters

Based on an Improved Arithmetic

Optimization Algorithm and BP

Neural Network. Mathematics 2023,

11, 2891. https://doi.org/10.3390/

math11132891

Academic Editors: Adrian Deaconu,

Petru Adrian Cotfas and Daniel

Tudor Cotfas

Received: 16 May 2023

Revised: 17 June 2023

Accepted: 22 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Fault Prediction of Control Clusters Based on an Improved
Arithmetic Optimization Algorithm and BP Neural Network
Tao Xu 1,2, Zeng Gao 1 and Yi Zhuang 1,*

1 The College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China; xutao16@nuaa.edu.cn (T.X.); gaozeng@nuaa.edu.cn (Z.G.)

2 Jiangsu Automation Research Institute, Lianyungang 222061, China
* Correspondence: zy16@nuaa.edu.cn

Abstract: Higher accuracy in cluster failure prediction can ensure the long-term stable operation of
cluster systems and effectively alleviate energy losses caused by system failures. Previous works have
mostly employed BP neural networks (BPNNs) to predict system faults, but this approach suffers
from reduced prediction accuracy due to the inappropriate initialization of weights and thresholds.
To address these issues, this paper proposes an improved arithmetic optimization algorithm (AOA) to
optimize the initial weights and thresholds in BPNNs. Specifically, we first introduced an improved
AOA via multi-subpopulation and comprehensive learning strategies, called MCLAOA. This approach
employed multi-subpopulations to effectively alleviate the poor global exploration performance caused
by a single elite, and the comprehensive learning strategy enhanced the exploitation performance
via information exchange among individuals. More importantly, a nonlinear strategy with a tangent
function was designed to ensure a smooth balance and transition between exploration and exploita-
tion. Secondly, the proposed MCLAOA was utilized to optimize the initial weights and thresholds
of BPNNs in cluster fault prediction, which could enhance the accuracy of fault prediction models.
Finally, the experimental results for 23 benchmark functions, CEC2020 benchmark problems, and two
engineering examples demonstrated that the proposed MCLAOA outperformed other swarm intelli-
gence algorithms. For the 23 benchmark functions, it improved the optimal solutions in 16 functions
compared to the basic AOA. The proposed fault prediction model achieved comparable performance
to other swarm-intelligence-based BPNN models. Compared to basic BPNNs and AOA-BPNNs, the
MCLAOA-BPNN showed improvements of 2.0538 and 0.8762 in terms of mean absolute percentage
error, respectively.

Keywords: arithmetic optimization algorithm; multi-subpopulation; comprehensive learning; BP neural
network; failure prediction

MSC: 68T20; 90C26

1. Introduction

In recent years, due to the rapid development of computer technology, computer
systems have been widely applied in various industries within the national economy,
greatly promoting socioeconomic development. At the same time, higher requirements
have been placed on the sustainable and stable operation of computer systems, and people
are increasingly concerned about the availability of computer systems [1–5]. Currently,
providing continuous and stable services in control cluster systems is an urgent issue in
computer cluster technology.

Previous work has mostly focused on load balancing [6,7], resource scheduling [4,8],
fault tolerance [9,10], and other aspects of cluster systems. However, recently, limited re-
search has been conducted on improving system stability through fault prediction. Control
cluster fault prediction aims to predict node failures at an early stage, enabling proactive

Mathematics 2023, 11, 2891. https://doi.org/10.3390/math11132891 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132891
https://doi.org/10.3390/math11132891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1400-7820
https://orcid.org/0000-0003-0706-0148
https://doi.org/10.3390/math11132891
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132891?type=check_update&version=2

Mathematics 2023, 11, 2891 2 of 28

resource scheduling and enhancing the availability of the cluster system. Pinto et al. [11]
designed a distributed computing system for Hadoop clusters and used SVM for cluster
fault prediction. Mukwevho et al. [12] analyzed three fault-tolerant techniques and achieved
fault prediction through proactive methods. Das et al. [13] employed log analysis for fault
prediction. However, most of these fault prediction approaches required building custom
models according to specific requirements and were not widely applicable, and while
neural-network-based fault prediction can be widely applied, it suffers from issues such
as slow convergence and susceptibility to local optima due to sensitivity to initial weights
and thresholds. Fortunately, swarm intelligence approaches can effectively adjust these
parameters. The novel research field successfully combines machine learning and swarm
intelligence approaches and proved to be able to obtain outstanding results in different
areas [14,15]. Therefore, in this work, we design a novel intelligent algorithm and employ
it to find the optimal parameters in the neural network prediction model.

The arithmetic optimization algorithm (AOA) is a new metaheuristic algorithm pro-
posed by Abualigah et al. in 2021, which primarily utilizes basic arithmetic operators to
perform exploration (multiplication and division) and exploitation (subtraction and addi-
tion) [16]. The algorithm’s main advantages lie in its simplicity, ease of programming, and
fewer parameters [17], which have led researchers to apply it in various fields, including
engineering design [18–20], cloud computing [21], and image processing [22], to name a
few [23–25]. However, the AOA faces challenges in dealing with complex optimization
problems, particularly regarding issues of local optima and slow convergence. Recently,
improved versions of the AOA have emerged as a trend. For example, Li et al. [18] em-
ployed 10 chaotic maps to modify the control parameters and improve the exploration and
exploitation stages during the iteration process. However, this approach did not modify the
mathematical model, which implies that it may still encounter local optima when faced with
complex optimization problems. Çelik [19] employed information exchange [26,27], Gaus-
sian distribution [26], and quasi-opposition [28,29] to propose an information-exchanged
Gaussian AOA with quasi-opposition learning (IEGQO-AOA), which improved the con-
vergence performance without significantly increasing the computational complexity of
the algorithm. Gölcük et al. [23] employed highly disruptive polynomial mutation and
local escaping operators to propose an improved AOA for training feedforward neural
networks. These methods [19,23] employed mutation factors to improve the exploration
performance of the AOA, enabling it to escape local optima. However, mutation factors may
generate solutions that deviate from the optimal solution, thus reducing the convergence
speed. Kaveh et al. [25] improved population diversity and convergence performance by
modifying the mathematical model in the exploration and exploitation stage of the AOA
and applied the improved AOA to structural optimization. Some research works have
improved the performance of the AOA by combining it with other meta-heuristic algo-
rithms, such as the sine cosine algorithm (SCA) [20], the salp swarm algorithm (SSA) [21],
and the aquila optimizer (AO) [30]. It is worth noting that the aforementioned algorithms
improved the global optimization performance by introducing mutation factors, modifying
the control parameters, or incorporating other algorithms.

Swarm intelligence algorithms consist of two main phases, namely exploration and
exploitation [31–34]. The purpose of exploration is to search the regions where the global
optimum may exist. Exploitation aims to further refine and precisely search the promising
regions identified during exploration. It is well known that the key to optimizing perfor-
mance in swarm intelligence lies in the search capabilities of exploration and exploitation,
as well as the balance and transition between these two phases. However, the AOA utilizes
multiplication and division operators in the exploration phase and addition and subtraction
operators in the exploitation phase, and it revolves around a single elite individual without
involving information sharing among individuals. These limitations greatly restrict the
exploration and exploitation performance of the algorithm. In addition, a linear mechanism
does not accurately reflect the complex optimization process; therefore, it fails to facilitate a
smooth transition from the exploration phase to the exploitation phase.

Mathematics 2023, 11, 2891 3 of 28

Motivated by the aforementioned analysis, we proposed a novel improved AOA via
multi-subpopulation (MS) and comprehensive learning (CL) strategies for global optimiza-
tion (MCLAOA). Subsequently, the MCLAOA was combined with a BP neural network
(BPNN) to form the MCLAOA-BPNN model for cluster fault prediction. Firstly, we pro-
posed the novel MCLAOA. Specifically, the MS was applied in the exploration phase,
where we divided the population into several subpopulations, and each subpopulation
revolved around its own sub-elite. This strategy alleviated the weakness of a single elite in
terms of exploration performance and enhanced population diversity. The CL was used
in the exploitation phase to increase the information sharing among individuals and sped
up the convergence of the algorithm. In addition, to ensure a smooth transition from the
exploration phase to the exploitation phase, a nonlinear math optimizer accelerated (MOA)
with a tangent function was employed instead of the standard MOA. After obtaining the
high-performance MCLAOA, we combined it with the BPNN to form the MCLAOA-BPNN
cluster fault prediction model. The model utilized MCLAOA to obtain the best initial
weights and thresholds for BPNN, thereby improving prediction accuracy and providing
the foundation for resource scheduling and sustainable operation of cluster systems.

In this work, the main contributions are summarized as follows:

(1) To enhance the accuracy of cluster fault prediction, we attempted to design a new
optimization algorithm and combined it with BPNN to form the MCLAOA-BPNN
cluster fault prediction model. The model utilized MCLAOA to optimize the initial
weights and thresholds of BPNN.

(2) To address the lack of individual information sharing in both the exploration and
exploitation phases, we proposed the MCLAOA. This approach employed the MS and
CL strategies to modify the mathematical models of the exploration and exploitation
phases, thereby improving the optimization performance.

(3) To ensure a smooth transition from the exploration phase to the exploitation phase for
the MCLAOA, we designed a nonlinear MOA with tangent functions to replace the
linear mechanism in the standard AOA.

(4) Experimental results over 23 benchmark functions, CEC2020 benchmark problems,
and two engineering examples showed that the proposed MCLAOA has much
stronger merit. In addition, the MCLAOA-BPNN had better prediction accuracy
compared to other algorithms.

The remainder of this paper is structured as follows: The standard AOA is introduced
in Section 2, and the proposed MCLAOA is presented in Section 3. In Section 4, results
and analysis of the proposed algorithm are presented using 23 benchmark functions,
CEC2020 benchmark problems, and two engineering design problems. Section 5 presents
the MCLAOA-BPNN model for cluster fault prediction and compares it with other models.
At last, the conclusion of this paper is provided in Section 6.

2. Arithmetic Optimization Algorithm (AOA)

Inspired by the arithmetic operators, the AOA is proposed as a new intelligent algo-
rithm. The basic principle of AOA is shown in Figure 1, which is mainly divided into the
exploration phase and the exploitation phase [16].

2.1. Math Optimizer Accelerated (MOA)

Before optimization, the MOA is designed to determine whether the population is
performing the exploration phase or the exploitation phase. Here, given a random number
r1 between 0 and 1, the global exploration phase is executed if r1 < MOA, otherwise,
the local exploitation phase is executed. The MOA can be formulated as:

MOA(t) = Min + t×
(

Max−Min
T

)
, (1)

Mathematics 2023, 11, 2891 4 of 28

where t and T are the current iteration and the maximum number of iterations, respectively.
Max and Min represent the maximum value and minimum value of the accelerated function.

individuals are influenced by a single elite and improve the exploration performance of the

algorithm. CL is used in the exploitation phase to increase the information sharing among

individuals and speed up the convergence of the algorithm. In addition, to ensure a smooth transition

from the exploration phase to the exploitation phase, a nonlinear math optimizer accelerated (MOA)

with a tangent function is employed instead of the standard MOA. In addition, in order to further

verify that the proposed MCLOA has the ability to solve the present practical problem, the proposed

MCLOA is applied for back propagation neural network (BPNN), called MCLOA-BPNN, for solve

cluster fault prediction as a real thought-provoking case study.

In this work, the main contributions are summarized as follows:

(1) To improve the exploration and exploitation capabilities of AOA, we introduce MS and CL

into the exploration and exploitation phases of the optimization process, respectively, called

MCLAOA.

(2) In the optimization process of the proposed MCLAOA, a nonlinear MOA with tangent

functions is employed to replace the linear mechanism in the standard AOA for a smooth transition

from the exploration phase to the exploitation phase.

(3) We attempt to optimize the parameters in the BPNN using the proposed MCLAOA, and

apply it to cluster fault prediction to improve the prediction accuracy.

(4) Experimental results over 23 benchmark functions and two engineering examples show that

the proposed MCLAOA has much stronger merit. In addition, MCLAOA-BPNN has better

prediction accuracy compared to other algorithms.

The remainder of this paper is structured as follows: The standard AOA is introduced in Section

2, and the proposed MCLAOA is presented in Section 3. In Section 4, results and analysis of the

proposed algorithm presented using two engineering design problems and 23 benchmark functions.

Section 5 presents the MCLAOA-BPNN model for cluster fault prediction and compares it with

other models. At last, the conclusion of this paper is provided in Section 6.

2 Arithmetic optimization algorithm (AOA)

Inspired by the arithmetic operators, AOA is proposed as a new intelligent algorithm. The basic

principle of AOA is shown in Fig.1, which is mainly divided into exploration phase and exploitation

phase [7].

A

M

S

D

Exploration

Exploitation

Destination

Solution

Fig.1 Updating toward or away from destination Figure 1. Updating toward or away from destination.

2.2. Exploration Phase

In this phase, the AOA mainly adopts division and multiplication search strategy to
find better candidate solutions, and the mathematical model is as follows:

Xi,j =

{
best

(
Xj
)
÷ (MOP + ∂)× Sj, r2 < 0.5,

best
(
Xj
)
×MOP× Sj, otherwise,

(2)

MOP(t) = 1− t1/α

T1/α
, (3)

Sj =
(
UBj − LBj

)
× η + LBj, (4)

where Xi,j represents the position of the jth dimension of the ith individual, and best
(
Xj
)

is the jth dimension in the best solution of all individuals. ∂ is a small integer number
that prevents the denominator from being 0. MOP(t) is a parameter representing the step
size factor of the current iteration, Sj denotes the step size of the jth dimension, and r2 is a
random number in [0,1]. UBj and LBj represent the upper and lower bound value of the
jth dimension, respectively. η is the control parameter that regulates the search process,
and α is a sensitive parameter. η and α are set to 0.5 and 5, respectively, according to the
literature [16].

2.3. Exploitation Phase

This phase performs the local exploitation. Additive and subtractive operators are
adopted to search for the optimal solution. Specifically, given a random number r3 between
0 and 1, if r3 < 0.5, the subtractive operator is employed to search for the optimal solution,
otherwise, the additive operator is employed to update the population position, which can
be expressed as follows:

Xi,j =

{
best

(
Xj
)
−MOP× Sj, r3 < 0.5,

best
(
Xj
)
+ MOP× Sj, otherwise.

(5)

3. Proposed Method

From the mathematical model of AOA, it can be seen that all individuals perform
expansion or reduction operations around the elite (best) in the exploration phase, which
affects the search ability of the AOA. The exploitation phase employs a fixed step factor
(Sj) without memory retention, which can lead to a lack of information exchange between
individuals and reduce convergence effectiveness. In addition, the MOA with a linear
mechanism cannot solve complex optimization problems. To deal with the above short-

Mathematics 2023, 11, 2891 5 of 28

comings, an improved AOA was proposed to solve the global optimization problem by
MS strategy and CL strategy. Compared with the standard AOA, three operators, MS, CL
and nonlinear MOA with tangent function, were introduced in this paper. The specific
mathematical model is as follows.

3.1. Multi-Subpopulation (MS) Strategy

Global search refers to identifying the optimal region for the target within a larger
search space to prevent the algorithm from getting trapped in local optima [35,36]. However,
according to Equation (2), it is known that all individuals explore the search space based
on the best

(
Xj
)

and a fixed step size factor (Sj), which reduces population diversity and
exploration performance. Therefore, we propose the MS strategy to improve the exploration
performance of AOA, as shown in Figure 2.

()

()
3

,

, 0.5

,

j j

i j

j j

best X MOP S r
X

best X MOP S otherwise

 −
=

+

, (5)

3 Proposed method

From the mathematical model of AOA, it can be seen that all individuals perform expansion

or reduction operations around the elite (best) in the exploration phase, which affects the search

ability of the algorithm. The exploitation phase employs a fixed step factor (jS) without memory

retention, which can lead to a lack of information exchange between individuals and reduce

convergence effectiveness. In addition, MOA with linear mechanism cannot solve complex

optimization problems. To deal with the above shortcomings, an improved AOA is proposed to solve

the global optimization problem by MS strategy and CL strategy. Compared with the standard AOA,

three operators, MS, CL and nonlinear MOA with tangent function, are introduced in this paper, and

the specific mathematical model is as follows.

3.1 multi-subpopulation (MS) strategy

Global search refers to identifying the optimal region for the target within a larger search space

to prevent the algorithm from getting trapped in local optima [20]. However, according to Eq. (2),

it is known that all individuals explore the search space based on ()jbest X and a fixed step size

factor (jS), which reduces population diversity and exploration performance. Therefore, we

propose MS strategy to improve the exploration performance of AOA, as shown in Fig. 2.

The individual with the best

fitness value in each group

The 1-th group The 2-th group

The p-th groupThe 2-th groupThe 1-th groupSub-elite group

The p-th group

Population

Exchange of information

between groups

Divide the population into p groups

Multi-subpopulation

Regroup after updating position

The 1-th group The 2-th group The p-th group

Recombined multi-subpopulations

Fig. 2 The flowchart of MS strategy Figure 2. The flowchart of the MS strategy.

To be specific, first a population size Np is given, which is divided into p subpop-
ulations. Second, all individuals are evaluated for fitness, and the individual with the
minimum fitness value in each group is selected as the sub-elite, forming a sub-elite group.
Then, all individuals except for the sub-elite group are rearranged into p groups to explore
the search space. Finally, each sub-elite is randomly assigned to different groups. Here,
the sub-elite group gbest can be expressed as Equation (6),

gbest =

gbest1

gbest2

...
gbestp

sub−elite

=

arg fbest([x1,1, x1,2, · · · , x1,q])
arg fbest([x2,1, x2,2, · · · , x2,q])

...
arg fbest([xp,1, xp,2, · · · , xp,q])

, (6)

where p is the number of sub-elite groups, q represents the number of individuals contained
in each sub-population, arg fbest denotes the inverse function of fitness evaluation, and
gbestk (k = 1, 2, . . . , p) represents the position of the kth sub-elite individual in the sub-elite
group. By introducing the MS strategy, the diversity of the population can be ensured,
the exploration ability can be increased in the search space, and the algorithm can be
prevented from falling into local optima.

Mathematics 2023, 11, 2891 6 of 28

3.2. Comprehensive Learning (CL) Strategy

After finding some promising solutions during the exploration phase, local exploita-
tion means attempting to delve deeper into these solutions to find better ones [35,36].
However, according to Equations (4) and (5), it can be seen that the position update rule
during the exploration phase involves upper and lower bounds without any information
exchange between individuals. That is, all individuals only affect the convergence rate by
increasing or decreasing a fixed step factor. Inspired by the CL particle swarm optimizer
(CLPSO) [37], the CL strategy is used during the exploitation phase. On the one hand,
the CL strategy can preserve individual historical information and facilitate information
sharing. On the other hand, the population does not learn from all dimensions of a single
individual, but rather from different dimensions of the entire population. The learning
probability for each dimension is determined based on a probability value [37]. The learning
probability for the ith individual can be described as follows:

Pcl
i = 0.05 + 0.45

exp
(
10(i− 1)

/
(Np− 1)

)
− 1

exp(10)− 1
, (7)

where Np is population size. The pseudo-code of the MCLAOA is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the CL strategy
1: for i = 1: Np
2: Generate random number r
3: Compute the learning probability value (Pcl

i) using Equation (7).
4: Give the index of two random individuals, f ′i,j and f ′′i,j .

5: if r < Pcl
i

6: if f
(

X f ′ i,j

)
< f

(
X f ′′ i,j

)
7: X f i,j = X f ′ i,j
8: Else
9: X f i,j = X f ′′ i,j
10: End if
11: Else
12: X f i,j = Xi,j
13: End if
14: End for

3.3. Improved AOA with MS and CL (MCLAOA)

Based on the above analysis, the MS and CL strategies were introduced into the
standard AOA to increase population diversity and improve the convergence performance.
For the the MCLAOA, the MS strategy was only applied in the exploration phase, while
the CL strategy was only applied in the exploitation phase. The specific details of these
improvements will be introduced in the following subsection.

Exploration phase: In this phase, considering that expanding or shrinking by a certain
proportion always limits the exploration performance of AOA, inspired by the teaching-
learning-based optimization (TLBO) [38], we introduced the teaching phase of TLBO.
Specifically, half of the subpopulations adopted the exploration phase of AOA, and the rest
adopted the teaching phase.

For the first half of the subpopulation specifically, the MS strategy was introduced
in Section 3.1. We employed multiple sub-elites to replace a single elite, increasing the
diversity of solutions generated and preventing premature convergence due to local optima
issues. We applied Equation (6) to Equation (2), and the modified Equation (2) can be
described as:

Xk
i,j =

{
gbestk(Xj

)
÷ (MOP + ∂)× Sj, r2 < 0.5,

gbestk(Xj
)
×MOP× Sj, otherwise,

(8)

where Xk
i,j represents the position of the jth dimension of the ith individual in the kth group.

Mathematics 2023, 11, 2891 7 of 28

For the second half of the population,

Xi,j = Xi,j + rand×
(
best

(
Xj
)
− TF × Xave

)
, (9)

where Xave is the average value of all individuals, and TF denotes the teacher factor
(TF = round[1 + rand(0, 1)]) .

Exploitation phase: The standard AOA cannot retain memory during the exploitation
phase, which lead to slow convergence. The CL strategy was introduced into Equation (5),
individuals can exchange information, speeding up the algorithm’s convergence to the global
optimum. Therefore, the specific modification is shown in Equation (10):

Xi,j =

 best
(
Xj
)
−MOP×

(
X f i,j − Xi,j

)
, r3 < 0.5,

best
(
Xj
)
+ MOP×

(
X f i,j − Xi,j

)
, otherwise,

(10)

where f i, j defines the value of the ith individual in the jth dimension, which determines
whether the individual X f i,j learns in its own or other individuals’ different dimensions.
For choosing its own or other individual’s dimension, it depends on the learning probability
Pcl

i in Equation (7). If the random number r is greater than Pcl
i , it is learned from its own

dimension X f i,j, otherwise it occurs from another individual’s dimension X f i,j.
Modified MOA: The parameter MOA, which varies linearly with the number of

iterations, cannot reflect the real optimization problem. Therefore, this paper modifies MOA
using non-linear parameters with a tangent function, as shown in Figure 3. The tangent
function is introduced into Equation (1), and its modified MOA can be expressed as:

MOA′(t) = Min + (Max−Min)× tan
(

0.25
t
T

π

)
. (11)

As can be seen from Figure 3, compared with the original MOA, MOA′ can better
balance and transition the exploration and exploitation.

Figure 3. The MOA with the increase of iterations.

In summary, the MS and teaching strategies were applied in the exploration phase.
The MS improved population diversity and enabled faster global search. Furthermore,
the search method in the exploration phase is limited by a step factor determined by the
upper and lower bounds, which constrains the algorithm’s search capability. Therefore,
we introduced the teaching phase of TLBO [38], where collective information from all
individuals was used to mitigate this limitation. The CL strategy was applied in the
exploitation phase of the algorithm, accelerating the convergence to the global optimum
through information exchange among individuals. This strategy addressed the slow
convergence issue caused by the addition and subtraction operators. In addition, we

Mathematics 2023, 11, 2891 8 of 28

designed Equation (11) to effectively balance and smoothly transition between exploration
and exploitation. We denote the improved AOA as MCLAOA. The detailed flowchart of
the proposed MCLAOA is described in Figure 4. For clarity, the main contributions of this
paper are highlighted, including MOA′, the exploration phase, and the exploitation phase.
In addition, the pseudo-code of MCLAOA is shown in Algorithm 2.

Algorithm 2 Pseudo-code of the proposed MCLAOA
1: Initialize: population size Np, position Xi,j, parameters η and α, the maximum number of
iterations T, p group (sub-population).
2: Update:
3: While t < T
4: Calculate the Fitness Function for the given solutions.
5: Find the best solution (Determined best so far).
6: Update the MOA’ value and MOP value using Equations (11) and (3).
7: for i = 1: Np
8: for j = 1 to Positions do
9: Generate a random value between [0, 1] (r1, r2, and r3)
10: if r1 > MOA then
11: %%%Exploration phase%%%
12: For the first half of the subpopulation,
13: if r2 > 0.5 then
14: (1) Apply the Division math operator (D “÷”)
15: Update the ith solutions’ positions using the first rule in Equation (8).
16: Else
17: (2) Apply the Division math operator (M “ ×”)
18: Update the ith solutions’ positions using the first rule in Equation (8).
19: End if
20: For the second half of the subpopulation,
21: Update the ith solutions’ positions using Equation (9).
22: Else
23: %%%Exploitation phase%%%
24: Generate random number r
25: Compute the learning probability value (Pcl

i) using Equation (7).
26: Decide whether X f i,j is its own or another individual.
27: if r3 > 0.5 then
28: (1) Apply the Subtraction math operator (S “-”).
29: Update the ith solutions’ positions using the first rule in Equation (10).
30: Else
31: (2) Apply the Addition math operator (A “+”).
32: Update the ith solutions’ positions using the second rule in Equation (10).
33: End if
34: End if
35: End for j
36: End for i
37: t = t + 1
38: End While
39: Output: Return the best solution best.

3.4. Computational Complexity

Compared to the standard AOA, the proposed MCLAOA mainly introduces the
MS strategy, CL strategy, and the modified MOA. Considering that the MS strategy in-
volves sub-elite groups, it is necessary to conduct a fitness evaluation ranking, denoted as
O(Np · log(Np)). The computational complexity of the CL strategy is O(Np · D), where
D is the dimension. The computational complexity of the modified MOA is almost un-
changed compared to the original MOA. Therefore, the computational complexity of the
proposed MCLAOA is O(MCLAOA) = O(Np · D) +O(T · (Np · D + Np · log(Np))). If T
is much greater than 1, then O(MCLAOA) ≈ O(T · Np · (D + log(Np))).

Mathematics 2023, 11, 2891 9 of 28

Determine the using

Algorithm 1

Compute the learning

probability value using

Equation (7)

cl

iP
Compute the learning

probability value using

Equation (7)

cl

iP

Start
Initialize the parameters of

MCLAOA

Generate the candidate

solutions

While t<T

Calculate the fitness function

Update MOA’, MOP

If r1<MOA’

Half of subpopulation using

Equation (8)

Half of subpopulation using

Equation (9)

Select the top-p best solutions

using Equation (6)

Divide the population into p

subpopulations
,fi jX

Update the solutions using

Equation (10)

t=t+1

Save the best

solutions

End

Exploration

 phase

E
x
p
lo

it
a
ti

o
n

 p
h
a
se

Yes

No

Yes No

Determine the using

Algorithm 1

Compute the learning

probability value using

Equation (7)

cl

iP

Start
Initialize the parameters of

MCLAOA

Generate the candidate

solutions

While t<T

Calculate the fitness function

Update MOA’, MOP

If r1<MOA’

Half of subpopulation using

Equation (8)

Half of subpopulation using

Equation (9)

Select the top-p best solutions

using Equation (6)

Divide the population into p

subpopulations
,fi jX

Update the solutions using

Equation (10)

t=t+1

Save the best

solutions

End

Exploration

 phase

E
x
p
lo

it
a
ti

o
n

 p
h
a
se

Yes

No

Yes No

Figure 4. Flowchart of the proposed MCLAOA.

4. Results and Analysis

The experiments were conducted using MATLAB2017b, and they were run on a PC
with Intel Core i7-10700 2.90GHz and 16GB RAM. To examine the performance of the
proposed MCLAOA, the 23 benchmark functions and 2 engineering design problems were
employed. Among them, 23 benchmark functions [16] are shown in Table 1.

To verify the advanced performance of the proposed MCLAOA, comparisons were
made with several algorithms, including (1) some versions of AOA, such as the AOA [16],
the chaotic AOA (CAOA) [18], (2) advanced metaheuristic algorithms, such as the rep-
tile search algorithm (RSA) [39], the whale optimization algorithm (WOA) [40], and the
grasshopper optimization algorithm (GOA) [41], (3) the classical metaheuristic algorithm
and particle swarm optimization (PSO) [42], and (4) the winner of CEC competition, the
L-SHADE [43]. For some versions of AOA, the AOA was employed to validate the effec-
tiveness of MCLAOA, while the CAOA was employed to test the strong competitiveness
of MCLAOA compared to the versions of AOA. It is worth noting that the CAOA [18]
has been proven to outperform some advanced algorithms, including the HHO [44], the
EO [45], and the WHO [46], in certain optimization problems. For advanced and classical
metaheuristic algorithms, these comparative algorithms can confirm that the MCLAOA
achieves state-of-the-art performance and outperforms classical algorithms of the same type.
For the winner of CEC competition, once it is confirmed that the MCLAOA outperforms
the LSHADE, it can be classified as a high-performance optimizer. All algorithms were set
with parameters as shown in Table 2. For the sake of fairness in comparison, the maximum
function evaluation with a population size of Np = 50 and FES = 100,000 was selected
for 23 benchmark functions. All algorithms were independently run 30 times on each test

Mathematics 2023, 11, 2891 10 of 28

function. To compare the superiority and inferiority of these algorithms, the evaluation
indicators used were the average (ave) and standard deviation (std) as well as the best
optimal value (best), and convergence curves were used to indicate the convergence perfor-
mance of the algorithms. Box plots were adopted to verify the stability of the algorithms.
The Wilcoxon rank-sum test and Friedman rank test were employed to reflect the statis-
tical significance of the algorithms [47]. Next, experimental analysis was conducted on
23 benchmark functions.

Table 1. 23 benchmark functions.

Type No. Description R Dim fmin

Unimodal functions

F1 Sphere [−100, 100] 30 0
F2 Schwefel 2.22 [−10, 10] 30 0
F3 Schwefel 1.2 [−100, 100] 30 0
F4 Schwefel 2.21 [−100, 100] 30 0
F5 Rosenbrock [−30, 30] 30 0
F6 Step [−100, 100] 30 0
F7 Quartic [−1.28, 1.28] 30 0

Multimodal functions

F8 Schwefel [−500, 500] 30 −418.98 ×D
F9 Rastrigin [−5.12, 5.12] 30 0
F10 Ackley [−32, 32] 30 0
F11 Griewank [−600, 600] 30 0
F12 Penalized [−50, 50] 30 0
F13 Penalize 2 [−50, 50] 30 0

Fixed-dimension

F14 Foxholes [−65.536, 65.536] 2 0.9980
F15 Kowalik [−5, 5] 4 0.0003

F16
Six-hump

Camel-Back [−5, 5] 2 −1.0316

F17 Branin [−5, 5] 2 0.398
F18 Goldstein-Price [−2, 2] 2 3
F19 Hartman 3 [1, 3] 3 −3.863

multimodal
functions F20 Hartman 6 [0, 1] 6 −3.322

F21 Shekel5 [0, 10] 4 −10.153
F22 Shekel7 [0, 10] 4 −10.403
F23 Shekel10 [0, 10] 4 −10.536

Table 2. The parameter setting of the algorithms.

Algorithms Parameters Values

MCLAOA α, η, Max, Min, p 5, 0.5, 1, 0.2, 5
AOA [16] α, η, Max, Min 5, 0.5, 1, 0.2

CAOA [18] α, η 5, 0.5
RSA [39] α, β 0.1, 0.1

WOA [40] b, l, a, p 1, [−1, 1], 2 to 0, [0,1]
GOA [41] l, f , c 1.5, 0.5, [0,1]
PSO [42] W, C1, C2, Vmax 0.9 to 0.4, 2, 2, 4

L-SHADE [43] H, Pbestrate, Arcrate 5, 0.11, 1.4

4.1. Results Comparisons Using 23 Benchmark Functions

The 23 benchmark functions [16] are a classic function benchmark for evaluating op-
timization algorithms which can be divided into three types: unimodal functions (F1–F7),
multimodal functions (F8–F13), and fixed-dimension multimodal functions (F14–F23). For de-
tails on the 23 benchmark functions, please refer to Table 1. The experimental results of all
algorithms with ave, std, and best are shown in Table 3, and the best results of each function
are marked in bold type.

Mathematics 2023, 11, 2891 11 of 28

Table 3. Numerical results of MCLAOA with other algorithms using 23 benchmark functions.

Function Criteria MCLAOA AOA CAOA RSA WOA GOA PSO LSHADE

F1

ave 0.00E+00 6.42E-08 0.00E+00 0.00E+00 4.94E-324 2.81E-06 8.77E-03 3.96E-22
std 0.00E+00 6.66E-08 0.00E+00 0.00E+00 0.00E+00 1.88E-06 4.74E-03 9.97E-22
best 0.00E+00 1.93E-13 0.00E+00 0.00E+00 0.00E+00 7.02E-07 2.04E-03 2.67E-24

F2

ave 0.00E+00 3.23E-05 0.00E+00 0.00E+00 3.91E-222 6.14E+00 1.32E+00 6.53E-08
std 0.00E+00 9.34E-05 0.00E+00 0.00E+00 0.00E+00 1.05E+01 8.00E-01 2.31E-07
best 0.00E+00 8.55E-17 0.00E+00 0.00E+00 1.61E-234 4.51E-03 2.90E-01 4.49E-12

F3

ave 0.00E+00 6.71E-06 0.00E+00 0.00E+00 2.85E+03 3.91E+02 9.53E-02 1.12E-01
std 0.00E+00 1.44E-05 0.00E+00 0.00E+00 2.97E+03 1.27E+03 4.78E-02 1.29E-01
best 0.00E+00 6.75E-14 0.00E+00 0.00E+00 1.37E+02 1.81E+01 1.44E-02 6.81E-03

F4

ave 0.00E+00 1.96E-03 0.00E+00 0.00E+00 2.48E+01 6.73E-01 5.61E-01 6.07E+00
std 0.00E+00 3.63E-03 0.00E+00 0.00E+00 2.63E+01 6.27E-01 3.46E-01 1.82E+00
best 0.00E+00 1.13E-05 0.00E+00 0.00E+00 8.14E-04 1.47E-01 1.22E-01 2.61E+00

F5

ave 2.88E+01 2.56E+01 2.74E+01 8.64E+00 2.58E+01 1.09E+02 4.23E+01 3.72E+01
std 3.45E-01 3.87E-01 3.26E-01 1.34E+01 2.80E-01 2.40E+02 3.33E+01 2.32E+01
best 2.81E+01 2.45E+01 2.62E+01 5.85E-29 2.50E+01 1.88E+01 2.28E+01 1.26E+01

F6

ave 9.67E+00 1.42E-07 9.92E-05 6.58E+00 2.87E-04 2.53E-06 7.66E-03 7.18E-22
std 2.74E-01 3.68E-08 4.17E-05 7.59E-01 9.95E-05 1.80E-06 3.64E-03 2.02E-21
best 5.80E-01 7.47E-08 4.63E-05 5.06E+00 1.37E-04 6.00E-07 2.41E-03 3.60E-25

F7

ave 9.55E-07 8.93E-06 9.93E-06 1.84E-05 6.32E-04 1.68E-02 6.69E-02 3.70E-02
std 1.08E-06 8.50E-06 8.78E-06 1.76E-05 6.85E-04 5.28E-03 2.47E-02 1.55E-02
best 4.20E-09 2.90E-07 1.47E-07 7.54E-07 5.45E-05 8.52E-03 2.87E-02 1.18E-02

F8

ave −1.02E+06 −5.66E+03 −8.16E+03 −5.51E+03 −1.22E+04 −7.26E+03 −4.23E+03 −2.09E+04
std 4.98E+05 4.31E+02 4.46E+02 1.61E+02 5.97E+02 6.82E+02 1.68E+03 8.66E+01
best −2.16E+06 −6.51E+03 −8.98E+03 −5.74E+03 −1.26E+04 −8.40E+03 −7.70E+03 −2.09E+04

F9

ave 0.00E+00 2.14E-09 0.00E+00 0.00E+00 0.00E+00 1.68E+02 4.00E+01 4.28E-08
std 0.00E+00 1.12E-08 0.00e+00 0.00E+00 0.00E+00 5.62E+01 1.13E+01 2.05E-08
best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.17E+01 2.39E+01 4.65E-09

F10

ave 8.88E-16 1.29E-05 8.88E-16 8.88E-16 4.44E-15 1.47E+00 3.55E+00 2.56E+00
std 0.00E+00 2.49E-05 0.00e+00 0.00E+00 2.29E-15 9.42E-01 6.02E-01 5.37E-01
best 8.88E-16 1.51E-12 8.88E-16 8.88E-16 8.88E-16 1.97E-04 2.53E+00 1.56E+00

F11

ave 0.00E+00 7.01E-07 7.53E-04 0.00E+00 9.44E-04 2.34E-02 1.08E-02 6.22E-03
std 0.00E+00 2.31E-07 4.04E-03 0.00E+00 5.17E-03 1.81E-02 1.49E-02 1.34E-02
best 0.00E+00 4.02E-07 3.64E-06 0.00E+00 0.00E+00 1.05E-03 2.32E-04 1.11E-16

F12

ave 5.29E-02 2.27E-01 1.27E-04 1.18E+00 9.80E-04 2.42E+00 1.45E-01 1.29E-01
std 2.87E-02 2.60E-02 1.50E-04 3.66E-01 4.24E-03 1.44E+00 1.84E-01 2.59E-01
best 1.35E-02 1.84E-01 1.33E-05 5.04E-01 1.90E-05 1.29E-01 3.42E-05 1.85E-22

F13

ave 2.47E+00 2.96E+00 2.85E+00 2.53E-01 6.79E-03 7.09E-03 5.67E-01 2.47E-01
std 1.06E-01 1.70E-02 1.58E-01 7.40E-01 1.92E-02 9.50E-03 1.28E+00 7.92E-01
best 2.25E+00 2.91E+00 2.22E+00 5.29E-32 3.96E-04 9.16E-06 6.10E-04 4.97E-24

F14

ave 7.05E+00 9.60E+00 7.69E+00 2.54E+00 1.13E+00 9.98E-01 1.26E+00 9.98E-01
std 5.12E+00 4.79E+00 3.45E+00 1.92E+00 5.03E-01 3.44E-16 9.32E-01 0.00E+00
best 9.98E-01 9.98E-01 9.98E-01 1.01E+00 9.98E-01 9.98E-01 9.98E-01 9.98E-01

F15

ave 5.68E-03 2.12E-03 7.14E-04 9.71E-04 5.00E-04 8.09E-03 1.05E-03 3.38E-04
std 1.04E-02 4.95E-03 1.13E-03 3.41E-04 2.73E-04 1.26E-02 3.66E-03 1.67E-04
best 4.51E-04 3.08E-04 3.12E-04 4.68E-04 3.09E-04 3.08E-04 3.07E-04 3.07E-04

F16

ave −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00
std 1.13E-02 1.34E-12 7.85E-12 2.66E-04 1.83E-13 2.45E-15 6.78E-16 6.78E-16
best −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00

F17

ave 3.98E-01 3.98E-01 3.98E-01 4.01E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
std 1.25E-09 1.54E-07 5.77E-07 6.34E-03 8.31E-09 3.66E-08 0.00E+00 0.00E+00
best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

Mathematics 2023, 11, 2891 12 of 28

Table 3. Cont.

Function Criteria MCLAOA AOA CAOA RSA WOA GOA PSO LSHADE

F18

ave 3.00E+00 8.40E+00 1.11E+01 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00
std 1.22E-14 1.65E+01 1.26E+01 3.96E-05 8.75E-07 3.17E-14 1.26E-15 1.68E-15
best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

F19

ave −3.86E+00 −3.86E+00 −3.86E+00 −3.85E+00 −3.86E+00 −3.76E+00 −3.86E+00 −3.86E+00
std 2.32E-15 3.40E-07 7.21E-04 1.38E-02 2.09E-03 2.39E-01 2.40E-03 2.71E-15
best −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00

F20

ave −3.27E+00 −3.30E+00 −3.28E+00 −2.89E+00 −3.23E+00 −3.28E+00 −3.24E+00 −3.31E+00
std 1.06E-01 4.51E-02 5.85E-02 2.51E-01 8.78E-02 5.83E-02 8.22E-02 3.63E-02
best −3.32E+00 −3.32E+00 −3.32E+00 −3.16E+00 −3.32E+00 −3.32E+00 −3.32E+00 −3.32E+00

F21

ave −10.1513 −9.39E+00 −9.98E+00 −5.06E+00 −9.98E+00 −5.64E+00 −6.65E+00 −9.82E+00
std 2.24E-03 2.01E+00 9.31E-01 3.03E-07 9.30E-01 3.37E+00 3.45E+00 1.28E+00
best −10.1532 −10.1532 −10.1532 −5.06E+00 −10.1532 −10.1532 −10.1532 −10.1532

F22

ave −10.4029 −9.35E+00 −9.97E+00 −5.09E+00 −9.83E+00 −5.80E+00 −6.93E+00 −1.02E+01
std 8.73E-16 2.42E+00 1.67E+00 2.89E-02 1.77E+00 3.64E+00 3.61E+00 1.22E+00
best −10.4029 −10.4029 −10.4029 −5.25E+00 −10.4029 −10.4029 −10.4029 −10.4029

F23

ave −10.5364 −7.95E+00 −1.03E+01 −5.13E+00 −1.05E+01 −6.02E+00 −7.09E+00 −10.5364
std 2.86E-15 3.73E+00 1.41E+00 1.40E-06 8.00E-05 4.03E+00 3.79E+00 1.75E-15
best −10.5364 −10.5364 −10.5364 −5.13E+00 −10.5364 −10.5364 −10.5364 −10.5364

Friedman rank test 2.1034 3.9655 3.3103 4.7241 4.2759 6.0345 6.3448 5.2414
rank 1 3 2 5 4 7 8 6

Note: The best results of each function were marked in bold type in terms of ave.

4.1.1. Unimodal Functions and Exploitation

The unimodal functions (F1–F7) have only one global solution and no local solution,
which is used to test the exploitation ability of the algorithm. It can be seen from Table 3
that the proposed MCLAOA has stronger advantages in terms of ave value compared to
other comparison algorithms, except for F5 and F6. For F1–F4, both the MCLAOA and the
CAOA achieve convergence with an ave value of 0, while the RSA also converges to 0.
However, the AOA fails to converge to 0 in terms of the best metric. These results indicate
that the exploitation performance of MCLAOA has been significantly improved. This is
attributed to the introduction of the CL strategy which modifies the mathematical model of
the exploitation phase and enhances the convergence to the optimal solution by sharing
information among individuals.

4.1.2. Multimodal Functions and Exploration

The multimodal function contains multiple local optimal solutions, which are used
to test the algorithm’s ability to escape from poor local optima and obtain the near-
global optimum. For multimodal functions (F8–F13) with a dimension of 30, the ave
value of the proposed MCLAOA ranks first except for F12 and F13. Compared with high-
dimension multimodal functions (F8–F13), fixed-dimension multimodal functions (F14–F23)
have only a few local minima, and the dimension of the function is small and fixed. It is
worth noting that the best values of all algorithms converge to the global optimum for
F16–F19, and for F20–F23, all algorithms except RSA also converge to the global optimum.
These results demonstrate their ability to converge to the global optimum. However, when
considering ave and std values together, the proposed MCLAOA exhibits superior perfor-
mance, indicating its ability to converge more stably to the global optimum. Therefore,
it can be seen from the experimental results of multimodal functions that the proposed
MCLAOA has good global exploration performance. The MS strategy divides the popu-
lation Np into p subpopulations by introducing p sub-elites instead of a single elite. This
strategy enhances the global search capability. Additionally, we introduce a teaching phase
to half of the subpopulations, which alleviates the limitations of expansion or shrinkage

Mathematics 2023, 11, 2891 13 of 28

step size factor in the exploration phase of AOA. As a result, the proposed MCLAOA
outperforms other algorithms, especially in F8, F21–F23.

4.1.3. Convergence Behavior Analysis

To observe the convergence of the proposed MCLAOA and comparison algorithms,
we record and save the fitness of the best solution for each iteration to draw the convergence
curve. The convergence results of all algorithms on 23 benchmark functions are shown in
Figure 5. It can be seen from Figure 5 that only the CAOA, the RSA, and the MCLAOA
show a clear downward trend on F1–F4, and the proposed MCLAOA shows a more obvious
decrease for F3 and F4 compared to the CAOA and the RSA. For multimodal functions
F8–F11, the proposed MCLAOA achieves a significantly faster convergence to the global
optimum compared to the other seven comparison algorithms. All algorithms can converge
to the global optimum for F16 and F17, but the convergence curve of the proposed MCLAOA
drops faster than the AOA and the CAOA. Moreover, the proposed MCLAOA ranks first
in convergence performance on F21–F23 among all comparison algorithms, indicating
its good exploitation performance. In summary, the proposed MCLAOA has achieved
advanced performance. Compared with the basic AOA and the improved version CAOA,
the proposed MCLAOA has improved convergence performance. In addition, since the
comparison algorithms are meta-heuristic algorithms with randomness, in this paper, we
employ Box plots to analyze the stability of the results. Box plots of the result of a global
minimum of the MCLAOA, the AOA, the CAOA, the RSA, the WOA, the GOA, the PSO
and the L-SHADE for F1, F7, F11, and F23 are shown in Figure 6. It can be observed from
Figure 6 that the proposed MCLAOA outperforms other algorithms in the stability of the
results during the running of the algorithm.

Based on the above analysis, the proposed MCLAOA shows strong advantages in
terms of convergence accuracy, convergence speed and robustness.

4.2. Statistical Analysis

It is worth mentioning that statistical analysis is very important for the statistical
authenticity of results in the field of optimization algorithms. In this paper, the Wilcoxon
rank-sum test and the Friedman test are employed.

The statistical results of 23 benchmark functions are shown in Table 4. From the
data results in Table 4, it can be observed that the proposed MCLAOA performs better
than other comparison algorithms in most functions among the 23 benchmark functions.
The number of functions in which the performance is improved compared to the basic
AOA and improved CAOA is 16 and 9, respectively.

Table 4. Statistical results over 23 benchmark functions.

Algorithm
23 Benchmark Functions

+ − ≈
AOA 4 16 3

CAOA 5 9 9
RSA 5 9 9

WOA 6 12 5
GOA 4 16 3
PSO 4 15 4

L-SHADE 5 13 5
Note: “+", “−", “≈" denote that the performance of the corresponding algorithm is statistically better than, worse
than, and similar to that of MCLAOA, respectively.

In order to compare the results of each run and determine the significance of the results,
a non-parametric pair-wise Wilcoxon rank-sum test has been employed. The tests were
conducted at a significance level of 5%. For the Wilcoxon rank-sum test, the best-performing
algorithm was chosen in each test function and compared to other algorithms. That is, if

Mathematics 2023, 11, 2891 14 of 28

the best algorithm is MCLAOA, pair-wise comparisons are made between MCLAOA and
AOA, MCLAOA and CAOA, MCLAOA and RSA, etc. Note that since the best algorithm
cannot be compared with itself; N/A is written for the best algorithm in each function to
indicate that it is not applicable. The results are presented in Table 5. It is evident from
Table 5 that these results are statistically significant, as the p-values are significantly less
than 0.05 for almost all functions.

Figure 5. Convergence curves for 23 benchmark functions. Better viewed in color with zoom-in.

Mathematics 2023, 11, 2891 15 of 28

Algorithm

-12

-10

-8

-6

-4

-2

0

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F23

Algorithm

0

2

4

6

8

10

12

14

16

18

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

10
-3 F1

Algorithm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F7

Algorithm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F11

Algorithm

-12

-10

-8

-6

-4

-2

0

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F23

Algorithm

0

2

4

6

8

10

12

14

16

18

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

10
-3 F1

Algorithm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F7

Algorithm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

O
b
je

c
ti
v
e

 f
u

n
c
ti
o

n

F11

Figure 6. Box plots of the result of a global minimum for functions F1, F7, F11, and F23.

Table 5. p-values of the Wilcoxon rank-sum test over 23 benchmark functions.

Function MCLAOA AOA CAOA RSA WOA GOA PSO LSHADE

F1 N/A 1.21E-12 N/A N/A 5.20E-06 1.21E-12 1.21E-12 1.21E-12
F2 N/A 1.21E-12 N/A N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F3 N/A 1.21E-12 N/A N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F4 N/A 1.21E-12 N/A N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12
F5 2.65E-06 7.96E-03 7.96E-03 N/A 7.96E-03 1.67E-05 2.88E-06 1.61E-06
F6 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 N/A
F7 N/A 1.60E-07 1.36E-07 3.47E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F8 N/A 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
F9 N/A 1.10E-02 N/A N/A N/A 1.21E-12 1.21E-12 1.21E-12
F10 N/A 1.21E-12 N/A N/A 9.84E-10 1.21E-12 1.21E-12 1.21E-12
F11 N/A 1.21E-12 1.21E-12 N/A 0.3337 1.21E-12 1.21E-12 1.18E-12
F12 3.02E-11 3.02E-11 N/A 3.02E-11 0.3183 3.02E-11 8.15E-05 0.3790
F13 2.67E-09 5.57E-10 6.12E-10 6.49E-07 0.2707 5.19E-02 1.04E-04 N/A
F14 1.20E-12 1.20E-12 1.20E-12 1.21E-12 1.21E-12 6.09E-13 6.58E-04 N/A
F15 1.99E-10 3.00E-10 3.63E-10 3.30E-10 3.99E-10 7.71E-11 2.91E-02 N/A
F16 6.28E-04 1.21E-12 1.21E-12 1.21E-12 1.19E-12 1.20E-12 N/A N/A
F17 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 6.15E-11 N/A N/A
F18 5.55E-05 5.20E-12 5.20E-12 5.20E-12 5.20E-12 5.19E-12 N/A 2.35E-03
F19 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 6.12E-14 1.69E-14
F20 2.20E-03 7.61E-09 1.88E-09 4.10E-12 1.79E-10 1.41E-09 6.32E-05 N/A
F21 N/A 6.97E-03 4.51E-02 3.01E-11 3.99E-04 2.71E-02 0.6616 1.23E-09
F22 N/A 7.80E-12 7.80E-12 7.80E-12 7.80E-12 7.80E-12 2.79E-02 9.39E-06
F23 N/A 1.46E-11 1.46E-11 1.46E-11 1.46E-11 1.46E-11 5.74E-02 6.48E-06

Note: N/A represents the best algorithm in terms of optimization performance among all the algorithms for the
corresponding function.

In order to calculate the ranking of each algorithm with statistical significance, we
conducted a Friedman rank test for all tested algorithms over 23 benchmark functions,
and the test results are shown in the last two rows of Table 3. The proposed MCLAOA

Mathematics 2023, 11, 2891 16 of 28

algorithm ranked first among all algorithms with a Friedman value of 2.1034. Through a
series of experiments, it has been verified that the proposed MCLAOA can be regarded as
an advanced optimizer with statistically significant results.

4.3. Scalability Analysis

This section uses scalability analysis to verify the reliability of the proposed MCLAOA.
Considering that the dimensions of fixed-dimension multimodal functions (F14–F23) are
fixed and cannot be changed, this paper selects one function from unimodal functions
and multimodal functions, respectively, for analysis, namely F1 and F10. In the process
of scalability analysis, the dimension ranges from 100 to 500, with a step size of 100.
The termination condition (i.e., FES = 100, 000 with Np = 50) and parameter settings are
consistent with the above experimental conditions, and each function is independently
executed 30 times at each dimension. The experimental results are shown in Figure 7,
where the x-axis represents the dimension and the y-axis represents the average fitness
value obtained from 30 independent runs at each dimension. It is worth noting that the red
dashed box represents the enlarged content.

Fig.6 Scalability analysis for functions

In summary, we comprehensively analyzed the optimization performance of MCLAOA from

several aspects, including accuracy, convergence curve, box-plots, statistical analysis, and

scalability analysis. These results also lay the foundation for the application of the algorithm to solve

more complex optimization problems.

4.4 Engineering design problem

So far, we have analyzed the performance of the proposed MCLAOA on unconstrained

function benchmarks. Next, we will discuss optimization problems under complex constraint

conditions in real-world scenarios. In this paper, two engineering examples, Three-bar truss design

and pressure vessel design, are employed to analyze the proposed MCLAOA.

4.4.1 Three-bar truss design problem

The objective of three-bar truss design problem is to minimize the weights of the bar structures

under certain constraints [7]. Three-bar truss design mainly involves two optimization parameters:

the cross-sections with 𝐴1 and 𝐴2. There are three constraint conditions, and the mathematical model

is shown in the following equations. Here, we compare the proposed MCLAOA with some existing

optimization algorithms, and the experimental results are shown in Table 6. The experimental

results demonstrate that the proposed MCLAOA exhibits strong competitiveness.

Take 1 2 1 2[] []x x x A A= = ,

Min. 1 2() (2 2)f x x x l= + ,

Subject to

1 2
1 2

1 1 2

2
2 2

1 1 2

3

2 1

2
() 0

2 2

() 0
2 2

1
() 0

2

x x
g x P

x x x

x
g x P

x x x

g x P
x x

+
= −

+

= −
+

= −
+

,

Figure 7. Scalability analysis for functions.

From Figure 7, it can be seen that for F1, almost all algorithms can converge to the
global optimum in all dimensions, except for the GOA, the PSO, and the L-SHADE. For F11,
the average fitness of MCLAOA, RSA, and WOA are very close as the dimension increases.
At dimension 500, the average fitness of MCLAOA is slightly lower than the RSA and the
WOA, which is determined by their mathematical models. However, compared to the AOA
and the CAOA, the MCLAOA performs the best in all dimensions, which strongly proves
that the proposed MCLAOA has been greatly improved. These results demonstrate that
the proposed MCLAOA is reliable, especially compared to the AOA and the CAOA, and
exhibits excellent performance even when facing high-dimensional optimization problems.

4.4. Results Comparisons Using CEC2020 Benchmark Problems

To further verify the strong competitiveness and optimization applicability of the pro-
posed MCLAOA, we selected a more complex functional benchmark (CEC2020 benchmark
problems [48]) and advanced comparison algorithm (the slime mould algorithm, SMA [49]
and the hybridizing TLBO with GOA, TLGOA [50]). Due to space limitations, the de-
tailed description and experimental results of CEC2020 are represented in the Appendix A.
These CEC2020 benchmark problems can be divided into four types: unimodal functions
(CF1), basic functions (CF2–CF4), hybrid functions (CF5–CF7), and composition functions
(CF8–CF10). For details on the CEC2020 benchmark problems with a dimension of 10, please
refer to Table A1. The parameter settings of SMA and TLGOA are consistent with the
original literature [49,50]. Among all the algorithms, the maximum function evaluation
with a population size of Np = 100 and FES = 100, 000 for CEC2020 benchmark problems,

Mathematics 2023, 11, 2891 17 of 28

and they were independently run 30 times. Similar to the 23 benchmark functions, we also
adopt ave, std, and best as evaluation metrics to assess the optimization performance of
all algorithms. The experimental results are shown in Table A2, and the best results are
marked in bold type.

From Table A2, it can be observed that the MCLAOA shows the best performance
in terms of ave values on CF2, CF8, CF9, and CF10. The TLGOA performs the best on CF4,
CF5, and CF7. The SMA exhibits the best performance on CF1, CF3, and CF6. Furthermore,
compared to the standard AOA, the MCLAOA demonstrates significantly better ave values,
indicating its effectiveness in improving optimization performance. It is worth noting that
the Friedman rank test for the MCLAOA in Table A2 is 2.3000, ranking first. The p-values
corresponding to the Wilcoxon rank-sum test in Table A3 are almost all significantly smaller
than 0.05. These results demonstrate that the experimental results obtained from Table A2
are statistically significant. Therefore, the proposed MCLAOA also demonstrates promising
performance on more complex benchmark problems.

In summary, we comprehensively analyzed the optimization performance of MCLAOA
from several aspects, including accuracy, convergence curve, box plots, statistical analysis,
and scalability analysis. These results also lay the foundation for the application of the
algorithm to solve more complex optimization problems.

4.5. Engineering Design Problem

To date, we have analyzed the performance of the proposed MCLAOA on unconstrained
function benchmarks. Next, we will discuss optimization problems under complex constraint
conditions in real-world scenarios. In this paper, two engineering examples, three-bar truss
design and a pressure vessel design, are employed to analyze the proposed MCLAOA.

4.5.1. Three-Bar Truss Design Problem

The objective of the three-bar truss design problem is to minimize the weights of the
bar structures under certain constraints [16]. The three-bar truss design mainly involves
two optimization parameters: the cross-sections with A1 and A2. There are three constraint
conditions, and the mathematical model is shown in the following equations. Here, we
compare the proposed MCLAOA with some existing optimization algorithms, and the
experimental results are shown in Table 6. The experimental results demonstrate that the
proposed MCLAOA exhibits strong competitiveness.

Take x = [x1 x2] = [A1 A2],
Min. f (x) = (2

√
2x1 + x2)l,

Subject to

g1(x) =
√

2x1+x2√
2x2

1+2x1x2
P− σ ≤ 0,

g2(x) = x2√
2x2

1+2x1x2
P− σ ≤ 0,

g3(x) = 1√
2x2+x1

P− σ ≤ 0,

where l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Table 6. Comparative results for the three-bar truss design problem.

Algorithm
Optimal Values of Design Variables

Optimal Cost
A1 A2

MCLAOA 0.7548 0.2920 187.4918
HHO [44] 0.7887 0.4083 263.8958
IAOA [51] 0.7897 0.4045 263.8537
CAOA [18] 0.7841 0.4237 263.9362

AOASC [20] 0.7884 0.4081 263.8523
OSAOA [52] 1.00 0.00 282.84

AOA [16] 0.79369 0.39426 263.9154
RSA [39] 0.7887 0.40805 263.8928
GOA [41] 0.7889 0.4076 263.8959

Mathematics 2023, 11, 2891 18 of 28

4.5.2. Pressure Vessel Design Problem

The objective of the pressure vessel design problem is to determine the total cost
of a cylindrical pressure vessel and minimize the result [16]. The pressure vessel design
involves four design variables: the inner radius (R), the thickness of the head (Th), thickness
of the shell (Ts), and the length of the cylindrical part without examining the head (L).
There are four constraints, and the mathematical model can be represented by the following
equations. Here, we will compare the proposed MCLAOA with some existing optimization
algorithms in terms of pressure vessel design, and the experimental results are shown in
Table 7. It can be clearly seen that the proposed MCLAOA has significant advantages in
solving the pressure vessel design problem.

Take x = [x1 x2 x3 x4] = [Ts Th R L],
Min. f (x) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1x4 + 19.84x2

1x3,

Subject to

g1(x) = −x1 + 0.0193x3 ≤ 0,
g2(x) = −x3 + 0.00954x3 ≤ 0,
g3(x) = −πx2

3x4 − 4
3 πx2

3 + 129600 ≤ 0,
g4(x) = x4 − 240 ≤ 0,
0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200.

Table 7. Comparative results for the pressure vessel design problem.

Algorithm
Optimal Values of Design Variables

Optimal Cost
Ts Th R L

MCLAOA 1.1134 0 67.2893 10 3675.9636
IAOA [51] 0.7637 0.3705 41.5666 184.1352 5813.5505
CAOA [18] 0.8416 0.4139 45.2890 155.7818 5822.6083

AOASC [20] 0.8254 0.4262 42.7605 169.3396 6048.6812
OSAOA [52] 0.8125 0.4375 42.0984 176.6512 6060.0479

MPA [53] 0.7782 0.3846 40.3196 200.00 5885.3353
HHO [44] 0.8176 0.4073 42.0917 176.7587 6000.4626
RSA [39] 0.8401 0.4190 43.3812 161.5556 6034.7591

WOA [40] 0.8125 0.4375 42.0983 176.6390 6059.7410
AOA [16] 0.8304 0.4162 42.7513 169.3454 6048.7844

5. Application of MCLAOA-BPNN for Cluster Fault Prediction

Due to the rapid development of computer technology, computer systems are widely
used in various industries of the national economy [54,55]. Most current software systems
can be viewed as cluster systems, which are parallel or distributed systems composed of a
large number of independent computers [56]. As the number of nodes in cluster systems
continues to increase, the frequency of node failures also increases, which will seriously
affect normal usage. In recent years, although existing research work [57,58] in cluster
system fault prediction has achieved good results, further improvement is needed in terms
of prediction accuracy and efficiency. Therefore, this paper proposed MCLAOA to optimize
BPNN parameters and design an MCLAOA-BPNN control cluster fault prediction method.

5.1. Control Cluster System

To meet the demand of uninterrupted and reliable running of multiple computing
jobs, a high-availability control cluster system is constructed. The network architecture
of the system is shown in Figure 8. The high-availability cluster for multiple computing
jobs consists of one central monitoring station and m computing units. Among them,
the central monitoring station is responsible for simulating two virtual computers (A and B
are backups of each other), completing the monitoring of the high-availability cluster. Each
computing unit is responsible for simulating n virtual computers, completing the simulation
of computing jobs, dynamic task allocation, migration, and other high availability cluster
equipment functions. However, to ensure the sustainable operation of the cluster system,
cluster fault prediction is crucial. Therefore, this paper designed a cluster fault prediction

Mathematics 2023, 11, 2891 19 of 28

method based on BPNN, and used the proposed MCLAOA to optimize the parameters in
the BPNN, thus improving the accuracy of cluster fault prediction.

For implementation details, the functions that control the cluster system were imple-
mented using C++. Qt Creator was utilized to showcase these functions via a graphical
interface, which also allowed for fault injection to observe the resource information of each
PC. The proposed MCLAOA-BPNN was executed on MATLAB, providing fault prediction
for the entire cluster system.

PC-A PC-B

PC

11

Compute-Unit 1

PC

12

PC

1n

Giga Bit Ethernet

Central Monitoring Station

PC

21

Compute-Unit 2

PC

22

PC

2n

PC

m1

Compute-Unit m

PC

m2

PC

mn

Operating System

Qt Creator C++ MATLAB

Fig.7 The network architecture of high-availability control cluster system

5.2 Cluster fault prediction based on MCLAOA-BPNN

5.2.1 BP neural network

The computation process of the BPNN consists of a forward computation process and a

backward computation process, which includes input layer, hidden layer, and output layer. The

BPNN inputs the data from the input layer, processes the data in the hidden layer, and then calculates

the difference between the processed data and the true data. If the obtained result does not meet the

set error value, it enters the backpropagation process. During backpropagation, the weights and

thresholds in each layer of neurons constantly change until the set error value or the predetermined

number of training times is reached.

The main process of BPNN is as follows:

Step 1: Parameter initialization: the number of nodes in the input layer, hidden layer, and output

layer, as well as the initial weights and thresholds of each neuron.

Step 2: Forward propagation.

Step 3: Calculation of the error value between the output data and the expected data.

Step 4: Update of weights and thresholds.

Step 5: Check whether the error value meets the set value. If not, return to Step 4 and update

the weights and thresholds until the set error value is reached or the maximum training times are

reached.

Figure 8. The network architecture of high-availability control cluster system.

5.2. Cluster Fault Prediction Based on MCLAOA-BPNN
5.2.1. BP Neural Network

The computation process of the BPNN consists of a forward computation process and
a backward computation process, which includes the input layer, the hidden layer, and
the output layer. The BPNN inputs the data from the input layer, processes the data in the
hidden layer, and then calculates the difference between the processed data and the true
data. If the obtained result does not meet the set error value, it enters the backpropagation
process. During backpropagation, the weights and thresholds in each layer of neurons
constantly change until the set error value or the predetermined number of training times
is reached. The main process of BPNN is as follows:

Step 1: Parameter initialization: the number of nodes in the input layer, the hidden layer,
and the output layer, as well as the initial weights and thresholds of each neuron.

Step 2: Forward propagation.
Step 3: Calculation of the error value between the output data and the expected data.
Step 4: Update of the weights and thresholds.
Step 5: Check whether the error value meets the set value. If not, return to Step 4 and

update the weights and thresholds until the set error value is reached or the maxi-
mum training times are reached.

5.2.2. MCLAOA Optimizes BPNN

During the training process of BPNN, the initial weights and thresholds are randomly
generated, which will affect the prediction performance of the model. Therefore, this paper

Mathematics 2023, 11, 2891 20 of 28

adopts the proposed MCLAOA to optimize the weights and thresholds in BPNN, called
MCLAOA-BPNN. The flowchart of the proposed MCLAOA-BPNN cluster fault prediction
method is shown in Figure 9, where the red dashed box is the proposed MCLAOA, and the
blue dashed box is the MCLAOA-BPNN fault prediction model proposed in this chapter.
The specific implementation process is as follows:

Step 1: Analyze the cluster system, determine the fault prediction indicators that affect the
cluster system based on the network structure of the cluster system, and construct
feature vectors.

Step 2: Initialize the weights and thresholds of BPNN, the parameters of MCLAOA, and
read the initial index data of the cluster system as the initial sample data.

Step 3: Pre-process the sample data.
Step 4: Use the MCLAOA to optimize the weights and thresholds of the BPNN and con-

struct the MCLAOA-BPNN fault prediction model.
Step 5: Check whether the termination condition is met. If the termination condition is

met, the optimal weights and thresholds are output. Otherwise, skip to Step 4.
Step 6: The optimized weights and thresholds are used as the weights and thresholds of

the MCLAOA-BPNN model.
5.2.2 MCLAOA optimizes BPNN

Start

Identifying the influential factors for cluster

failure prediction

Initialize the population size, related parameters

of MCLAOA

Training BPNN

End

Data preprocessing

Obtain optimized initial weights and thresholds

Use the initial population position of MCLAOA

as the initial weight and threshold of BPNN

Training BPNN

Calculate the error value as the fitness value

Using MCLAOA's mathematical model to

update weights and thresholds

Termination

criteria

Yes No

Proposed MCLAOA

Termination

criteria

No

Yes

Cluster fault prediction using MCLAOA-BPNN

model

MCLAOA-BPNN model

Fig. 8 The flowchart of the MCLAOA-BPNN cluster fault prediction

During the training process of BPNN, the initial weights and thresholds are randomly generated,

which will affect the prediction performance of the model. Therefore, this paper adopts the proposed

MCLAOA to optimize the weights and thresholds in BPNN, called MCLAOA-BPNN. The

flowchart of the proposed MCLAOA-BPNN cluster fault prediction method is shown in Fig. 8,

where the red dashed box is the proposed MCLAOA, and the blue dashed box is the MCLAOA-

BPNN fault prediction model proposed in this chapter. The specific implementation process is as

follows:

Step 1: Analyze the cluster system, determine the fault prediction indicators that affect the

cluster system based on the network structure of the cluster system, and construct feature vectors.

Step 2: Initialize the weights and thresholds of BPNN, the parameters of MCLAOA, and read

the initial index data of the cluster system as the initial sample data.

Step 3: Pre-process the sample data.

Step 4: Use MCLAOA to optimize the weights and thresholds of the BPNN and construct the

MCLAOA-BPNN fault prediction model.

Step 5: Check whether the termination condition is met. If the termination condition is met,

the optimal weights and thresholds are output. Otherwise, skip to Step 4.

Step 6: The optimized weights and thresholds are used as the weights and thresholds of the

MCLAOA-BPNN model.

Figure 9. The flowchart of the MCLAOA-BPNN cluster fault prediction.

5.3. Experimental Results and Analysis

The high-availability cluster system constructed in this paper has a total of 42 nodes,
including 2 central nodes and 40 computing nodes, i.e., m× n = 40. The operating system
is Ubuntu 16.04. For the proposed MCLAOA-BPNN fault prediction model, all experiments
were performed on MATLAB 2017b, and they were run on a PC with Intel Core i7-10700
2.90 GHz and 16 GB RAM.

We used six main factors that affect cluster performance as sample data, including CPU
consumption, memory usage, operating system processes load, net traffic, I/O operations,
and number of processes. To simulate faulty behavior, we injected node failures, program
errors, network faults, and performance anomalies to obtain fault data. In the data collection
process, we collected sample data from 50 moments, normalized the sample data, and

Mathematics 2023, 11, 2891 21 of 28

used 40 moments as training data and 10 moments as testing data. All data were collected
from our own and benchmark (https://ieee-dataport.org/open-access/big-data-machine-
learning-benchmark-spark, accessed on 6 June 2019) [59].

5.3.1. Evaluation Criteria

To better evaluate the results of the data, we employed mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percentage error (MAPE) as evaluation
metrics for the model [60]. The MAE can provide a measure of the overall accuracy of the
predictions. The RMSE gives more weight to larger errors. The MAPE provides a relative
measure of the prediction accuracy. The MAE and the MAPE are mainly used to measure
the degree of difference between predicted values and true values, where the smaller the
value, the higher the prediction accuracy of the model. The RMSE represents the degree of
fluctuation in the difference, where the smaller the value, the more stable the prediction
results. The formulas for calculating the MAE, the RMSE, and the MAPE are as follows:

MAE = 1
N

N
∑

i=1

∣∣yi − y′i
∣∣,

RMSE =

√
1
N

N
∑

i=1
(yi − y′i)

2,

MAPE = 1
N

N
∑

i=1

∣∣∣ yi−y′i
yi

∣∣∣,
where N denotes the number of observations, y′i represents the predicted value and yi is
the true value.

5.3.2. Compared Algorithms and Parametric Setup

To evaluate the performance of the proposed MCLAOA-BPNN model, we compared
it with the basic BPNN model and swarm-optimized BPNN models (such as the PSO [42],
the AOA [16], the CAOA [18], and the sine cosine algorithm (SCA) [61]). In all experiments,
the parameter settings were as follows: all population sizes were 50, the number of iterations
was 500, and other parameters were set to default values. Additionally, based on the
influencing factors, the input layer of the cluster fault prediction model in this paper was
set to 6 and the output layer was set to 1. However, the number of hidden layers was not
specified, but it is crucial for prediction accuracy. Therefore, we trained the MCLAOA-
BPNN cluster fault prediction model with a range of hidden layer numbers (5–12), and
the average value of 10 test results for MAE is shown in Table 8, with the best results
marked in bold type. It can be seen from Table 8 that the model’s hidden layer was set to 7.
Therefore, the final architecture is determined to be a three-layer MCLAOA-BPNN with a
configuration of 6-7-1. Furthermore, Figure 10 demonstrates that the proposed model has
converged after six epochs, where one epoch refers to the number of training iterations,
representing one forward propagation and one backward propagation of the BPNN.

Table 8. Network training MAE for different numbers of hidden layer nodes.

Nodes 5 6 7 8 9 10 11 12

MAE 1.00E-03 1.01E-03 6.14E-04 2.46E-03 2.21E-03 1.88E-03 1.01E-03 1.51E-03
Note: The best results of each function were marked in bold type.

5.3.3. Comparison with other BPNN Models

To verify that the proposed model is highly competitive, we compared MCLAOA-
BPNN with other fault prediction models, including the BPNN [62], the PSO-BPNN [42],
the AOA-BPNN [16], the CAOA-BPNN [18], and the SCA-BPNN [61]. The errors between
the predicted values and true values of different prediction models on different sample data
are shown in Figure 11. It can be seen from Figure 11 that the prediction accuracy of BPNN
has been improved by swarm-optimized BPNN. The proposed MCLAOA-BPNN shows
significant performance, especially compared to the AOA-BPNN and the CAOA-BPNN.

https://ieee-dataport.org/open-access/big-data-machine-learning-benchmark-spark
https://ieee-dataport.org/open-access/big-data-machine-learning-benchmark-spark

Mathematics 2023, 11, 2891 22 of 28

Figure 10. Number of training samples.

Figure 11. Comparison of predicted absolute error curves of each model.

In order to clearly observe results, MAE, RMSE, and MAPE were employed, as
shown in Table 9. From Table 9, it can be seen that compared with the AOA-BPNN and
the CAOA-BPNN, the proposed MCLAOA-BPNN improves 1.526/1.236, 1.783/1.283, and
0.8762/0.6111 in terms of MAE, RMSR, and MAPE. Compared with the basic BPNN and
the other swarm-optimized BPNN, the proposed MCLAOA-BPNN’s prediction accuracy
also ranks first. These results demonstrate that our model can better perform cluster
fault prediction.

Mathematics 2023, 11, 2891 23 of 28

Table 9. Predictive results evaluation.

Models MAE RMSE MAPE

BPNN 4.31E-03 5.08E-03 2.3614
PSO-BPNN 2.72E-03 2.82E-03 1.3876
SCA-BPNN 1.49E-03 1.68E-03 0.7221

CAOA-BPNN 1.85E-03 1.94E-03 0.9187
AOA-BPNN 2.14E-03 2.44E-03 1.1838

MCLAOA-BPNN 6.14E-04 6.57E-04 0.3076
Note: The best results of each function were marked in bold type.

6. Conclusions

In the fault prediction of control cluster systems, the improper setting of initial weights
and thresholds in a traditional BPNN can lead to low accuracy. To address this issue, this pa-
per proposes a new swarm intelligence algorithm called MCLAOA and utilizes MCLAOA
to optimize the initial weights and thresholds of BPNN, constructing the MCLAOA-
BPNN control cluster fault prediction model. To validate the effectiveness of the proposed
MCLAOA, 23 benchmark functions, CEC2020 benchmark problems, and two engineering
examples were employed. Furthermore, we compared the proposed MCLAOA-BPNN with
other swarm-intelligence-based BPNN models to demonstrate its high prediction accuracy.

The following points present the specific experimental results.

• It can be observed from Table 5 that the p-values of the Wilcoxon rank-sum test for the
compare algorithms are less than 0.05 in most functions. This indicates that the ave
and std obtained by all algorithms in Table 1 have statistical significance.

• From the last two rows of Table 1, it can be observed that the Friedman rank test of
MCLAOA is 2.1034, ranking first. According to the statistical results of the 23 bench-
mark functions in Table 4, it can be observed that the MCLAOA has improved conver-
gence performance in 16 and 13 functions compared to the basic AOA and LSHADE,
respectively.

• The convergence curve and box plots prove that MCLAOA has a faster convergence
speed and better robustness.

• Scalability analysis confirms that the MCLAOA has strong and stable performance.
• From Tables A2 and A3, it can be observed that the MCLAOA exhibits significant advan-

tages on the CEC2020 benchmark problems and demonstrates statistical significance.
• According to the experimental results of MAE, RMSE, and MAPE, compared with the

basic BPNN/AOA-BPNN, the MCLAOA-BPNN improved by 3.696/1.526, 4.423/1.783,
2.0538/0.8762. Furthermore, the MCLAOA-BPNN outperforms other swarm-intelligence-
based BPNN models.

The main limitations of the proposed MCLAOA are as follows: To ensure convergence
speed, the MS strategy is only applied in the exploration phase of AOA. Once the algorithm
falls into a local optimum during the exploitation phase, it lacks the ability to escape from
it. As a result, it exhibits poor performance in handling more complex practical application
scenarios such as image processing, engineering design, and other issues. Furthermore,
a large number of iterations can increase the computational cost of the fault prediction
model. In the future, we plan to introduce mutation operators to enhance the algorithm’s
ability to escape local optima. We will also design a convergence monitoring technique
to determine whether the desired value has been achieved, whether the expected value
is reached, and if so, whether it can terminate iterations and reduce unnecessary losses.
Moreover, the proposed MCLAOA can be extended to handle structural optimization,
feature selection, etc.

Author Contributions: Conceptualization, T.X. and Z.G.; Methodology, T.X. and Y.Z.; Software, T.X.
and Z.G.; Validation, Z.G.; Writing—original draft, T.X.; Writing—review and editing, Z.G. and Y.Z.;
Visualization, Y.Z.; Funding acquisition, Y.Z. All authors have read and agreed to the published
version of the manuscript.

Mathematics 2023, 11, 2891 24 of 28

Funding: This work is supported by the National Natural Science Foundation of China (No.62072235).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

The following symbols are used in this manuscript:

t Current iteration number
T Maximum iteration number
Max Maximum value of the accelerated function
Min Minimum value of the accelerated function
∂ A small integer
UBj Upper bound value of the jth dimension
LBj Lower bound value of the jth dimension
η Control parameter
α Sensitive parameter
Sj Step factor
Np Population size
p Subpopulation size
q Number of individuals in each subpopulation
arg f Inverse function of fitness evaluation
TF Teacher factor
D Dimension
m Number of compute-units
n Number of PCs in each compute-unit
N Number of observations

Appendix A

Table A1. CEC2020 benchmark problems.

Type No. Description fmin

Unimodal functions CF1 Shifted and Rotated Bent Cigar Function (CEC 2017 F1) 100

Basic functions
CF2 Shifted and Rotated Schwefel’s Function (CEC 2014 F11) 1100
CF3 Shifted and Rotated Lunacek bi-Rastrigin Function (CEC 2017 F7) 700
CF4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017 F19) 1900

Hybrid functions
CF5 Hybrid Function 1 (N = 3) (CEC 2014 F17) 1700
CF6 Hybrid Function 2 (N = 4) (CEC 2017 F16) 1600
CF7 Hybrid Function 3 (N = 5) (CEC 2014 F21) 2100

Composition functions
CF8 Composition Function 1 (N = 3) (CEC 2017 F22) 2200
CF9 Composition Function 2 (N = 4) (CEC 2017 F24) 2400
CF10 Composition Function 3 (N = 5) (CEC 2017 F25) 2500

Table A2. Numerical results of MCLAOA with other algorithms using CEC2020 benchmark problem.

Function Criteria MCLAOA AOA CAOA RSA WOA GOA SMA TLGOA

CF1

ave 4.7251E+08 6.5860E+09 3.9179E+08 1.8028E+10 2.3351E+05 2.2205E+09 8.5186E+03 5.8672E+06
std 5.2285E+08 2.4988E+09 5.0399E+08 2.7575E+09 5.7869E+05 1.7592E+09 4.0192E+03 1.2834E+07
best 1.3534E+07 1.2835E+09 1.2241E+03 4.5193E+09 1.3832E+04 1.4507E+04 289.6965 1.3823E+06

CF2

ave 1.3909E+03 1.7983E+03 1.8092E+03 2.3823E+03 2.1676E+03 2.1102E+03 1.5779E+03 1.9750E+03
std 130.6380 183.0234 154.0381 194.0336 287.2063 393.2515 226.7420 283.4210
best 1.2222E+03 1.4506E+03 1.4609E+03 1.9660E+03 1.6097E+03 1.2672E+03 1.2337E+03 1.5287E+03

Mathematics 2023, 11, 2891 25 of 28

Table A2. Cont.

Function Criteria MCLAOA AOA CAOA RSA WOA GOA SMA TLGOA

CF3

ave 764.4841 804.0515 795.0880 802.4801 779.2079 8.8384E+02 721.4592 726.2413
std 17.0783 6.9201 11.4560 13.2465 26.5078 67.9737 5.3659 8.0244
best 730.7717 794.3927 765.6510 765.6002 741.4918 8.1811E+02 711.5759 711.7954

CF4

ave 6.6057E+03 9.5217E+03 1.6702E+04 5.5289E+05 2.3003E+04 8.5273E+06 2.6294E+03 1.9512E+03
std 4.0780E+03 7.6283E+03 1.2394E+04 7.6822E+05 4.3024E+04 1.6047E+07 1.5176E+03 50.5600
best 2.3001E+03 2.0331E+03 1.9303E+03 9.4937E+03 2.1231E+03 3.1979E+05 1.9041E+03 1.9075E+03

CF5

ave 4.2807E+03 4.9853E+04 4.2818E+03 4.5244E+05 1.3354E+05 3.2091E+04 9.4876E+03 3.2977E+03
std 2.2491E+03 2.8177E+04 1.0096E+03 1.3636E+05 2.1080E+05 5.5254E+04 6.7329E+03 5.6970E+03
best 2.2322E+03 1.1207E+04 3.1850E+03 4.4142E+04 5.1664E+03 2.7526E+03 1.9067E+03 1.8024E+03

CF6

ave 1.8286E+03 1.9828E+03 1.9183E+03 2.0728E+03 1.8357E+03 3.0539E+03 1.6663E+03 1.8319E+03
std 124.5011 138.4976 144.2710 93.7524 117.3325 331.0472 69.1540 132.5534
best 1.6122E+03 1.7364E+03 1.6192E+03 1.9127E+03 1.6397E+03 2.4461E+03 1.6065E+03 1.6400E+03

CF7

ave 4.1952E+03 5.6449E+03 6.2259E+03 1.7514E+05 3.2918E+04 6.9666E+03 2.8949E+03 2.7665E+03
std 1.7962E+03 2.3694E+03 2.6621E+03 1.7081E+05 3.2594E+04 7.5302E+03 1.7753E+03 410.4163
best 2.1461E+03 2.3547E+03 2.3133E+03 7.8506E+03 4.2554E+03 2.4166E+03 2.1203E+03 2.1776E+03

CF8

ave 2.3265E+03 2.9057E+03 2.5958E+03 2.9702E+03 2.3315E+03 5.7708E+03 2.3266E+03 2.3581E+03
std 38.6359 315.3173 117.4490 240.2314 15.3485 1.9670E+03 166.5267 237.6234
best 2.3060E+03 2.2885E+03 2.3035E+03 2.5197E+03 2.2393E+03 2.4165E+03 2.2000E+03 2.3045E+03

CF9

ave 2.7189E+03 2.7927E+03 2.7211E+03 2.8507E+03 2.7519E+03 3.0282E+03 2.7475E+03 2.7426E+03
std 103.1237 88.3431 137.8636 44.4965 77.6254 52.7887 47.5504 102.2214
best 2.5337E+03 2.5774E+03 2.5000E+03 2.7494E+03 2.5045E+03 2.9284E+03 2.5000E+03 2.4563E+03

CF10

ave 2.9229E+03 3.2008E+03 2.9648E+03 2.9232E+03 2.9583E+03 2.9573E+03 2.9688E+03 2.9410E+03
std 49.2665 145.6641 35.1046 23.0547 31.1292 62.4765 55.9072 29.2071
best 2.8138E+03 2.9688E+03 2.8996E+03 3.0303E+03 2.9011E+03 2.8886E+03 2.8979E+03 2.8986E+03

Friedman rank test 2.3000 5.6000 4.3000 7.4000 4.7000 6.6000 2.6000 2.5000
rank 1 6 4 8 5 7 3 2

Note: The best results of each function were marked in bold type in terms of ave.

Table A3. p-values of the Wilcoxon rank-sum test over CEC2020 benchmark problem.

Function MCLAOA AOA CAOA RSA WOA GOA SMA TLGOA

CF1 3.0199E-11 3.0199E-11 5.9706E-05 3.0199E-11 3.0199E-11 3.0199E-11 N/A 3.0199E-11
CF2 N/A 6.7220E-10 1.7769E-10 3.0199E-11 4.0772E-11 1.1737E-09 4.7138E-04 2.6099E-10
CF3 3.3384E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 3.0199E-11 N/A 0.0170
CF4 3.0199E-11 4.9752E-11 1.4643E-10 3.0199E-11 3.0199E-11 3.0199E-11 0.8534 N/A
CF5 6.5277E-08 7.3891E-11 1.0702E-09 3.0199E-11 1.4643E-10 5.5727E-10 8.8829E-06 N/A
CF6 5.0912E-06 9.9186E-11 3.8249E-09 3.0199E-11 9.5139E-06 3.0199E-11 N/A 1.7294E-07
CF7 0.0163 4.1127E-07 5.5999E-07 3.0199E-11 3.0199E-11 7.0881E-08 0.0032 N/A
CF8 N/A 5.5727E-10 8.8910E-10 3.0199E-11 0.1453 3.3384E-11 6.1210E-10 0.3871
CF9 N/A 5.8737E-04 0.4463 2.2273E-09 0.7958 3.0199E-11 0.0657 0.7845
CF10 N/A 7.3891E-11 2.2539E-04 3.3384E-11 1.1058E-04 0.0905 2.6806E-04 0.0281

Note: N/A represents the best algorithm in terms of optimization performance among all the algorithms for the
corresponding function.

References
1. Saxena, D.; Gupta, I.; Singh, A.K.; Lee, C.N. A fault tolerant elastic resource management framework toward high availability of

cloud services. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3048–3061. [CrossRef]
2. Somasekaram, P.; Calinescu, R.; Buyya, R. High-availability clusters: A taxonomy, survey, and future directions. J. Syst. Softw.

2022, 187, 111208. [CrossRef]
3. Reisizadeh, A.; Prakash, S.; Pedarsani, R.; Avestimehr, A.S. Coded computation over heterogeneous clusters. IEEE Trans. Inf.

Theory 2019, 65, 4227–4242. [CrossRef]
4. Wael, K.; Jingwei, H. Cluster resource scheduling in cloud computing: Literature review and research challenges. J. Supercomput.

2022, 78, 6898–6943.

http://doi.org/10.1109/TNSM.2022.3170379
http://dx.doi.org/10.1016/j.jss.2021.111208
http://dx.doi.org/10.1109/TIT.2019.2904055

Mathematics 2023, 11, 2891 26 of 28

5. Arunarani, A.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2019, 91, 407–415. [CrossRef]

6. Jena, U.K.; Das, P.K.; Kabat, M.R. Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment—
ScienceDirect. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2332–2342.

7. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing Algorithms in Cloud Computing: A Survey. J. Netw. Comput. Appl.
2017, 88, 50–71. [CrossRef]

8. Luo, Q.; Hu, S.; Li, C.; Li, G.; Shi, W. Resource Scheduling in Edge Computing: A Survey. IEEE Commun. Surv. Tutorials 2021,
23, 2131–2165. [CrossRef]

9. Amin, A.A.; Hasan, K.M. A review of Fault Tolerant Control Systems: Advancements and applications. Measurement 2019,
143, 58–68. [CrossRef]

10. Abbaspour, A.; Mokhtari, S.; Sargolzaei, A.; Yen, K.K. A Survey on Active Fault-Tolerant Control Systems. Electronics 2020,
9, 1513. [CrossRef]

11. Pinto, J.; Jain, P.; Kumar, T. Hadoop Distributed Computing Clusters for Fault Prediction. In Proceedings of the 2016 International
Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016; pp. 1–6.

12. Mukwevho, M.A.; Celik, T. Toward a Smart Cloud: A Review of Fault-Tolerance Methods in Cloud Systems. IEEE Trans. Serv.
Comput. 2021, 14, 589–605. [CrossRef]

13. Das, D.; Schiewe, M.; Brighton, E.; Fuller, M.; Cerny, T.; Bures, M.; Frajtak, K.; Shin, D.; Tisnovsky, P. Failure Prediction by Utilizing
Log Analysis: A Systematic Mapping Study; Association for Computing Machinery: New York, NY, USA, 2020.

14. Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T. Performance of a novel chaotic firefly algorithm
with enhanced exploration for tackling global optimization problems: Application for dropout regularization. Mathematics 2021,
9, 2705. [CrossRef]

15. Malakar, S.; Ghosh, M.; Bhowmik, S.; Sarkar, R.; Nasipuri, M. A GA based hierarchical feature selection approach for handwritten
word recognition. Neural Comput. Appl. 2020, 32, 2533–2552. [CrossRef]

16. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

17. Yıldız, B.S.; Patel, V.; Pholdee, N.; Sait, S.M.; Bureerat, S.; Yıldız, A.R. Conceptual comparison of the ecogeography-based
algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design. Mater. Test.
2021, 63, 336–340. [CrossRef]

18. Li, X.D.; Wang, J.S.; Hao, W.K.; Zhang, M.; Wang, M. Chaotic arithmetic optimization algorithm. Appl. Intell. 2022, 52, 16718–16757.
[CrossRef]

19. Çelik, E. IEGQO-AOA: Information-Exchanged Gaussian Arithmetic Optimization Algorithm with Quasi-opposition learning.
Knowl. Based Syst. 2023, 260, 110169. [CrossRef]

20. Abualigah, L.; Ewees, A.A.; Al-qaness, M.A.; Elaziz, M.A.; Yousri, D.; Ibrahim, R.A.; Altalhi, M. Boosting arithmetic optimization
algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural Comput.
Appl. 2022, 34, 8823–8852. [CrossRef]

21. Mohamed, A.A.; Abdellatif, A.D.; Alburaikan, A.; Khalifa, H.A.E.W.; Elaziz, M.A.; Abualigah, L.; AbdelMouty, A.M. A novel
hybrid arithmetic optimization algorithm and salp swarm algorithm for data placement in cloud computing. Soft Comput. 2023,
27, 5769–5780. [CrossRef]

22. Rajagopal, R.; Karthick, R.; Meenalochini, P.; Kalaichelvi, T. Deep Convolutional Spiking Neural Network optimized with
Arithmetic optimization algorithm for lung disease detection using chest X-ray images. Biomed. Signal Process. Control. 2023,
79, 104197. [CrossRef]

23. Gölcük, İ.; Ozsoydan, F.B.; Durmaz, E.D. An improved arithmetic optimization algorithm for training feedforward neural
networks under dynamic environments. Knowl. Based Syst. 2023, 263, 110274. [CrossRef]

24. Shirazi, M.I.; Khatir, S.; Benaissa, B.; Mirjalili, S.; Wahab, M.A. Damage assessment in laminated composite plates using modal
Strain Energy and YUKI-ANN algorithm. Compos. Struct. 2023, 303, 116272. [CrossRef]

25. Kaveh, A.; Hamedani, K.B. Improved arithmetic optimization algorithm and its application to discrete structural optimization.
Structures 2022, 35, 748–764. [CrossRef]

26. Salimi, H. Stochastic fractal search: A powerful metaheuristic algorithm. Knowl. Based Syst. 2015, 75, 1–18. [CrossRef]
27. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
28. Guha, D.; Roy, P.; Banerjee, S. Quasi-oppositional symbiotic organism search algorithm applied to load frequency control. Swarm

Evol. Comput. 2017, 33, 46–67. [CrossRef]
29. Truong, K.H.; Nallagownden, P.; Baharudin, Z.; Vo, D.N. A quasi-oppositional-chaotic symbiotic organisms search algorithm for

global optimization problems. Appl. Soft Comput. 2019, 77, 567–583. [CrossRef]
30. Mahajan, S.; Abualigah, L.; Pandit, A.K.; Altalhi, M. Hybrid Aquila optimizer with arithmetic optimization algorithm for global

optimization tasks. Soft Comput. 2022, 26, 4863–4881. [CrossRef]
31. Lalama, Z.; Boulfekhar, S.; Semechedine, F. Localization optimization in wsns using meta-heuristics optimization algorithms:

A survey. Wirel. Pers. Commun. 2022, 122, 1197–1220. [CrossRef]

http://dx.doi.org/10.1016/j.future.2018.09.014
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1016/j.measurement.2019.04.083
http://dx.doi.org/10.3390/electronics9091513
http://dx.doi.org/10.1109/TSC.2018.2816644
http://dx.doi.org/10.3390/math9212705
http://dx.doi.org/10.1007/s00521-018-3937-8
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1515/mt-2020-0049
http://dx.doi.org/10.1007/s10489-021-03037-3
http://dx.doi.org/10.1016/j.knosys.2022.110169
http://dx.doi.org/10.1007/s00521-022-06906-1
http://dx.doi.org/10.1007/s00500-022-07805-2
http://dx.doi.org/10.1016/j.bspc.2022.104197
http://dx.doi.org/10.1016/j.knosys.2023.110274
http://dx.doi.org/10.1016/j.compstruct.2022.116272
http://dx.doi.org/10.1016/j.istruc.2021.11.012
http://dx.doi.org/10.1016/j.knosys.2014.07.025
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1016/j.swevo.2016.10.001
http://dx.doi.org/10.1016/j.asoc.2019.01.043
http://dx.doi.org/10.1007/s00500-022-06873-8
http://dx.doi.org/10.1007/s11277-021-08945-8

Mathematics 2023, 11, 2891 27 of 28

32. Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022,
29, 2531–2561. [CrossRef]

33. Rahman, M.A.; Sokkalingam, R.; Othman, M.; Biswas, K.; Abdullah, L.; Abdul Kadir, E. Nature-inspired metaheuristic techniques
for combinatorial optimization problems: Overview and recent advances. Mathematics 2021, 9, 2633. [CrossRef]

34. Dhal, K.G.; Sasmal, B.; Das, A.; Ray, S.; Rai, R. A Comprehensive Survey on Arithmetic Optimization Algorithm. Arch. Comput.
Methods Eng. 2023, 30, 3379–3404. [CrossRef] [PubMed]

35. Zhang, H.; Gao, Z.; Zhang, J.; Liu, J.; Nie, Z.; Zhang, J. Hybridizing extended ant lion optimizer with sine cosine algorithm
approach for abrupt motion tracking. EURASIP J. Image Video Process. 2020, 2020, 4. [CrossRef]

36. Gao, Z.; Zhuang, Y.; Chen, C.; Wang, Q. Hybrid modified marine predators algorithm with teaching-learning-based optimization
for global optimization and abrupt motion tracking. Multimed. Tools Appl. 2023, 82, 19793–19828. [CrossRef]

37. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization of
multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

38. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]

39. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

40. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
41. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]
42. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.
43. Tanabe, R.; Fukunaga, A.S. Improving the Search Performance of SHADE Using Linear Population Size Reduction. In Proceed-

ings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1658–1665.
44. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
45. Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based

Syst. 2020, 191, 105190. [CrossRef]
46. Naruei, I.; Keynia, F. Wild horse optimizer: A new meta-heuristic algorithm for solving engineering optimization problems.

Eng. Comput. 2022, 38, 3025–3056. [CrossRef]
47. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Expert Syst. Appl. 2011, 1, 3–18. [CrossRef]
48. Yue, C.T.; Price, K.V.; Suganthan, P.N.; Liang, J.J.; Ali, M.Z.; Qu, B.Y.; Awad, N.H.; Biswas.; P.P. Problem Definitions and Evaluation

Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization.
In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020.

49. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization.
Future Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

50. Zhang, H.; Gao, Z.; Ma, X.; Zhang, J.; Zhang, J. Hybridizing teaching-learning-based optimization with adaptive grasshopper
optimization algorithm for abrupt motion tracking. IEEE Access 2019, 7, 168575–168592. [CrossRef]

51. Zheng, R.; Jia, H.; Abualigah, L.; Liu, Q.; Wang, S. An improved arithmetic optimization algorithm with forced switching
mechanism for global optimization problems. Math. Biosci. Eng 2022, 19, 473–512. [CrossRef]

52. Yang, Y.; Gao, Y.; Tan, S.; Zhao, S.; Wu, J.; Gao, S.; Zhang, T.; Tian, Y.C.; Wang, Y.G. An opposition learning and spiral modelling
based arithmetic optimization algorithm for global continuous optimization problems. Eng. Appl. Artif. Intell. 2022, 113, 104981.
[CrossRef]

53. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.
Expert Syst. Appl. 2020, 152, 113377. [CrossRef]

54. Catal, C. Software fault prediction: A literature review and current trends. Expert Syst. Appl. 2011, 38, 4626–4636. [CrossRef]
55. Ahmed, Q.; Raza, S.A.; Al-Anazi, D.M. Reliability-based fault analysis models with industrial applications: A systematic literature

review. Qual. Reliab. Eng. Int. 2021, 37, 1307–1333. [CrossRef]
56. Agrawal, A. Concepts for distributed systems design. Proc. IEEE 1986, 74, 236. [CrossRef]
57. Shafiq, M.; Alghamedy, F.H.; Jamal, N.; Kamal, T.; Daradkeh, Y.I.; Shabaz, M. Scientific programming using optimized machine

learning techniques for software fault prediction to improve software quality. IET Software 2023, 1–11. [CrossRef]
58. Tameswar, K. Towards Optimized K Means Clustering Using Nature-Inspired Algorithms for Software Bug Prediction. Available

online: https://ssrn.com/abstract=4358066 (accessed on 14 February 2023).
59. Jairson, R.; Germano, V. Big Data Machine Learning Benchmark on Spark. IEEE Dataport 2019. [CrossRef]
60. Al-Musaylh, M.S.; Deo, R.C.; Li, Y.; Adamowski, J.F. Two-phase particle swarm optimized-support vector regression hybrid

model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand
forecasting. Appl. Energy 2018, 217, 422–439. [CrossRef]

http://dx.doi.org/10.1007/s11831-021-09694-4
http://dx.doi.org/10.3390/math9202633
http://dx.doi.org/10.1007/s11831-023-09902-3
http://www.ncbi.nlm.nih.gov/pubmed/37260909
http://dx.doi.org/10.1186/s13640-020-0491-y
http://dx.doi.org/10.1007/s11042-022-13819-7
http://dx.doi.org/10.1109/TEVC.2005.857610
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.eswa.2021.116158
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.knosys.2019.105190
http://dx.doi.org/10.1007/s00366-021-01438-z
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.future.2020.03.055
http://dx.doi.org/10.1109/ACCESS.2019.2954500
http://dx.doi.org/10.3934/mbe.2022023
http://dx.doi.org/10.1016/j.engappai.2022.104981
http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1016/j.eswa.2010.10.024
http://dx.doi.org/10.1002/qre.2797
http://dx.doi.org/10.1109/PROC.1986.13450
http://dx.doi.org/10.1049/sfw2.12091
https://ssrn.com/abstract=4358066
http://dx.doi.org/10.21227/t8bg-yc46
http://dx.doi.org/10.1016/j.apenergy.2018.02.140

Mathematics 2023, 11, 2891 28 of 28

61. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
62. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1038/323533a0

	Introduction
	Arithmetic Optimization Algorithm (AOA)
	Math Optimizer Accelerated (MOA)
	Exploration Phase
	Exploitation Phase

	Proposed Method
	Multi-Subpopulation (MS) Strategy
	Comprehensive Learning (CL) Strategy
	Improved AOA with MS and CL (MCLAOA)
	Computational Complexity

	Results and Analysis
	Results Comparisons Using 23 Benchmark Functions
	Unimodal Functions and Exploitation
	Multimodal Functions and Exploration
	Convergence Behavior Analysis

	Statistical Analysis
	Scalability Analysis
	Results Comparisons Using CEC2020 Benchmark Problems
	Engineering Design Problem
	Three-Bar Truss Design Problem
	Pressure Vessel Design Problem

	Application of MCLAOA-BPNN for Cluster Fault Prediction
	Control Cluster System
	Cluster Fault Prediction Based on MCLAOA-BPNN
	BP Neural Network
	MCLAOA Optimizes BPNN

	Experimental Results and Analysis
	Evaluation Criteria
	Compared Algorithms and Parametric Setup
	Comparison with other BPNN Models

	Conclusions
	
	References

