Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis
Abstract
:1. Introduction
- We propose using an efficient functional data-based dynamic programming method as a machine learning pipeline pre-processing step to remove timing misalignment in moving sensor data.
- We modify learning rules in conventional deep learning models to handle functional data and propose a novel split encoder variational autoencoder that combines functional data classifications and clustering for prognostic management in transport systems.
- We evaluate the proposed technique using synthetic and real-world sensor data by a domain adaptation method and validate its efficacy using different performance metrics.
2. Related Work
- Dimensionality reduction: FDA can reduce the dimensionality of time series data by representing the data as functions with a limited number of parameters. This is particularly useful for machine learning tasks, as it reduces computational complexity and can help prevent overfitting.
- Alignment and warping: One common challenge when clustering time series data from moving sensors is that the data can have different time scales or be misaligned due to the varying speeds of the sensors. FDA offers a functional alignment technique that can help align the time series data before clustering, leading to more accurate results.
- Functional similarity: FDA allows for the comparison and clustering of time series based on their functional properties, such as shape or overall trend, rather than just pointwise similarities. This can lead to more meaningful clusters, as it focuses on the underlying structure of the time series rather than just their pointwise values.
3. FS-VAE Deep Learning Network
3.1. Time Warping to Compensation Phase Variations
3.2. Explicit Functional Data Formulation
3.3. Latent Subspaces Domain Adaptation
4. Model Training
5. Results
5.1. Pre-Processing of Target Domain Data
5.2. Labeled Synthetic Dataset Preparation
5.3. Decoder Selection and Evaluation
5.4. Classification Accuracy with Synthetic Dataset
5.5. Accuracy Dependence on Segment Size
5.6. Latent Subspaces Alignment
5.7. Clustering in Private Latent Subspace and Prognostic Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Illustrating Convergence in the SRVF Method Using Two Functions
References
- Fraga-Lamas, P.; Fernández-Caramés, T.M.; Castedo, L. Towards the Internet of Smart Trains: A Review on Industrial IoT-Connected Railways. Sensors 2017, 17, 1457. [Google Scholar] [CrossRef] [Green Version]
- Pol, A.A.; Berger, V.; Germain, C.; Cerminara, G.; Pierini, M. Anomaly Detection with Conditional Variational Autoencoders. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 1651–1657. [Google Scholar]
- Ortega, F.; González-Prieto, Á.; Bobadilla, J.; Gutiérrez, A. Collaborative Filtering to Predict Sensor Array Values in Large IoT Networks. Sensors 2020, 20, 4628. [Google Scholar] [CrossRef]
- Tu, D.Q.; Kayes, A.S.M.; Rahayu, W.; Nguyen, K. IoT streaming data integration from multiple sources. Computing 2020, 102, 2299–2329. [Google Scholar] [CrossRef]
- Jan, B.; Farman, H.; Khan, M.; Talha, M.; Din, I.U. Designing a Smart Transportation System: An Internet of Things and Big Data Approach. IEEE Wirel. Commun. 2019, 26, 73–79. [Google Scholar] [CrossRef]
- Lin, X.-X.; Lin, P.; Yeh, E.-H. Anomaly Detection/Prediction for the Internet of Things: State of the Art and the Future. IEEE Netw. 2021, 35, 212–218. [Google Scholar] [CrossRef]
- Xie, R.; Jan, N.M.; Hao, K.; Chen, L.; Huang, B. Supervised Variational Autoencoders for Soft Sensor Modeling with Missing Data. IEEE Trans. Ind. Inform. 2020, 16, 2820–2828. [Google Scholar] [CrossRef]
- Lee, S.; Kwak, M.K.T.; Tsui, K.-L.; Kim, S.B. Process Monitoring Using Variational Autoencoder for High-dimensional Nonlinear Processes. Eng. Appl. Artif. Intell. 2019, 83, 13–27. [Google Scholar] [CrossRef]
- Mansour, Y.; Mohri, M.; Rostamizadeh, A. Domain adaptation with multiple sources. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2008; Volume 21. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176. [Google Scholar]
- Horvath, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer: New York, NY, USA, 2012. [Google Scholar]
- Aneiros, G.; Horová, I.; Hušková, M.; Vieu, P. On functional data analysis and related topics. J. Multivar. Anal. 2022, 189, 104861. [Google Scholar] [CrossRef]
- Marron, J.S.; Ramsay, J.O.; Sangalli, L.M.; Srivastava, A. Functional data analysis of amplitude and phase variation. In Statistical Science; Institute of Mathematical Statistics: Beachwood, OH, USA, 2015; pp. 468–484. [Google Scholar]
- Kurtek, S.; Srivastava, A.; Wu, W. Signal estimation under random time-warpings and nonlinear signal alignment. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2011; Volume 24. [Google Scholar]
- Dabou, R.T.; Kamwa, I.; Chung, C.Y.; Mugombozi, C.F. Time series-analysis based engineering of high-dimensional wide-area stability indices for machine learning. IEEE Access 2021, 9, 104927–104939. [Google Scholar] [CrossRef]
- Santhosh, K.K.; Dogra, D.P.; Roy, P.P.; Mitra, A. Vehicular trajectory classification and traffic anomaly detection in videos using a hybrid CNN-VAE Architecture. IEEE Trans. Intell. Transp. Syst. 2021, 23, 11891–11902. [Google Scholar] [CrossRef]
- Shieh, C.S.; Nguyen, T.T.; Horng, M.F. Detection of Unknown DDoS Attack Using Convolutional Neural Networks Featuring Geometrical Metric. Mathematics 2023, 11, 2145. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, D.; Xie, C.; Wang, Z. Outlier Detection of Crowdsourcing Trajectory Data Based on Spatial and Temporal Characterization. Mathematics 2023, 11, 620. [Google Scholar] [CrossRef]
- Bhaskar, N.; Suchetha, M.; Philip, N.Y. Time series classification-based correlational neural network with bidirectional LSTM for automated detection of kidney disease. IEEE Sens. J. 2020, 21, 4811–4818. [Google Scholar] [CrossRef]
- Tomasi, G.; Van Den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. J. Chemom. Soc. 2004, 18, 231–241. [Google Scholar] [CrossRef]
- Hadad, N.; Wolf, L.; Shahar, M. A two-step disentanglement method. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 772–780. [Google Scholar]
- Bruch, S.; Wang, X.; Bendersky, M.; Najork, M. An analysis of the softmax cross entropy loss for learning-to-rank with binary relevance. In Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, Santa Clara, CA, USA, 2–5 October 2019; pp. 75–78. [Google Scholar]
- Rossi, F.; Conan-Guez, B. Functional multi-layer perceptron: A non-linear tool for functional data analysis. Neural Netw. 2005, 18, 45–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Mueller, J.; Wang, J.L. Deep learning for functional data analysis with adaptive basis layers. In Proceedings of the International Conference on Machine Learning, PMLR 2021, Virtual, 18–24 July 2021; pp. 11898–11908. [Google Scholar]
- Amari, S. Backpropagation and stochastic gradient descent method. Neurocomputing 1993, 5, 185–196. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2019; Volume 32. [Google Scholar]
- Buzzoni, M.; D’Elia, G.; Cocconcelli, M. A tool for validating and benchmarking signal processing techniques applied to machine diagnosis. Mech. Syst. Signal Process. 2020, 139, 106618. [Google Scholar] [CrossRef]
- Feng, F.; Wang, X.; Li, R. Cross-modal retrieval with correspondence autoencoder. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 7–16. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, PMLR 2015, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Chadha, G.S.; Islam, I.; Schwung, A.; Ding, S.X. Deep convolutional clustering-based time series anomaly detection. Sensors 2021, 21, 5488. [Google Scholar] [CrossRef]
- Shaw, C.T.; King, G.P. Using cluster analysis to classify time series. Phys. D Nonlinear Phenom. 1992, 58, 288–298. [Google Scholar] [CrossRef]
- Japkowicz, N.; Shah, M. Evaluating Learning Algorithms: A Classification Perspective; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Fujiwara, T.; Sakamoto, N.; Nonaka, J.; Ma, K.L. A Visual Analytics Approach for Hardware System Monitoring with Streaming Functional Data Analysis. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2338–2349. [Google Scholar]
- Zhou, R.R.; Serban, N.; Gebraeel, N. Degradation modeling applied to residual lifetime prediction using functional data analysis. Ann. Appl. Stat. 2011, 5, 1586–1610. [Google Scholar] [CrossRef]
Component | Type | Architecture |
---|---|---|
Encoder 1 | Feedforward | Input: 40, Hidden Layers: 15, |
Output: 6 | ||
Encoder 2 | Convolution | Input: 40, Conv Layers: [8, 16], |
Fully Connected: 6, | ||
Output: 5 |
Component | Type | Architecture |
---|---|---|
Decoder (Option A) | Feedforward | Input: 11, Hidden |
Layers: [15, 25], | ||
Output: 40 | ||
Decoder (Option B) | Convolution | Input: 11, Fully Connected: 16, |
Deconv Layer: [8, 4], | ||
Output: 40 |
Layer | Size |
---|---|
Input | 6 |
Hidden Layer 1 | 6 |
Hidden Layer 2 | 6 |
Output (Softmax) | 6 |
Method | Metric | |||||
---|---|---|---|---|---|---|
Accuracy | F1 Score | AUC Score | Precision | Recall | Specificity | |
Vectorial Data | ||||||
Decision Trees | 0.72 | 0.69 | 0.75 | 0.70 | 0.68 | 0.76 |
k-NN | 0.68 | 0.66 | 0.71 | 0.67 | 0.65 | 0.73 |
Naive Bayes | 0.69 | 0.67 | 0.72 | 0.68 | 0.66 | 0.74 |
SVM | 0.78 | 0.76 | 0.82 | 0.77 | 0.74 | 0.82 |
Random Forests | 0.79 | 0.77 | 0.83 | 0.78 | 0.75 | 0.84 |
MLP | 0.75 | 0.76 | 0.79 | 0.77 | 0.76 | 0.86 |
Functional Data | ||||||
Decision Trees | 0.77 | 0.75 | 0.80 | 0.76 | 0.74 | 0.81 |
k-NN | 0.82 | 0.80 | 0.86 | 0.81 | 0.79 | 0.87 |
Naive Bayes | 0.84 | 0.82 | 0.88 | 0.83 | 0.81 | 0.89 |
SVM | 0.78 | 0.76 | 0.78 | 0.77 | 0.75 | 0.82 |
Random Forests | 0.86 | 0.84 | 0.90 | 0.85 | 0.83 | 0.91 |
MLP | 0.82 | 0.80 | 0.84 | 0.81 | 0.79 | 0.86 |
FS-VAE | 0.93 | 0.91 | 0.96 | 0.93 | 0.89 | 0.98 |
Metric | Method | |
---|---|---|
Without Batch Normalization | With Batch Normalization | |
Accuracy | 0.60 | 0.85 |
Precision | 0.55 | 0.82 |
Recall | 0.65 | 0.88 |
F1 Score | 0.60 | 0.85 |
Mean Absolute Error | 0.45 | 0.20 |
Root Mean Squared Error | 0.60 | 0.35 |
Method | Metric | |||
---|---|---|---|---|
Accuracy | Normalized Mutual Information | Purity | Relative Speedup | |
Synthetic | ||||
CVAE | 0.79 | 0.60 | 0.75 | 1.50 |
PCA | 0.75 | 0.58 | 0.70 | 1.60 |
FS-VAE | 0.95 | 0.85 | 0.90 | 1.00 |
Real-world * | ||||
CVAE | 0.68 | 0.55 | 0.68 | 1.50 |
PCA | 0.65 | 0.50 | 0.62 | 1.60 |
FS-VAE | 0.82 | 0.65 | 0.80 | 1.00 |
Real-world | ||||
CVAE | 0.72 | 0.58 | 0.71 | 1.50 |
PCA | 0.70 | 0.62 | 0.68 | 1.60 |
FS-VAE | 0.89 | 0.77 | 0.85 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Fung, C.-H.; Wong, H.-T.; Chan, T.-L.; Hu, H. Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis. Mathematics 2023, 11, 2910. https://doi.org/10.3390/math11132910
Li T, Fung C-H, Wong H-T, Chan T-L, Hu H. Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis. Mathematics. 2023; 11(13):2910. https://doi.org/10.3390/math11132910
Chicago/Turabian StyleLi, Tan, Che-Heng Fung, Him-Ting Wong, Tak-Lam Chan, and Haibo Hu. 2023. "Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis" Mathematics 11, no. 13: 2910. https://doi.org/10.3390/math11132910
APA StyleLi, T., Fung, C. -H., Wong, H. -T., Chan, T. -L., & Hu, H. (2023). Functional Subspace Variational Autoencoder for Domain-Adaptive Fault Diagnosis. Mathematics, 11(13), 2910. https://doi.org/10.3390/math11132910