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Abstract: Inverse problems for line sources radiating inside a homogeneous magneto-dielectric
cylinder are investigated. The developed algorithms concern the determination of the location
and the current of each source. These algorithms are mostly analytical and are based on proper
exploitation of the moments obtained by integrating the product of the total field on the cylindrical
boundary with complex exponential functions. The information on the unknown parameters of
the problem is encoded in these moments, and hence all parameters can be recovered by means of
relatively simple explicit expressions. The cases of one and two sources are considered and analyzed.
Under certain conditions, the permittivity and permeability of the cylinder are also recovered. The
results from two types of numerical experiments are presented: (i) for a single source, the effect of
noise on the boundary data is studied, (ii) for two sources, the pertinent nonlinear system of equations
is solved numerically and the accuracy of the derived solution is discussed.
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1. Introduction

Identifying point sources or point dipoles inside an object using field measurements on
its boundary is a classic example of an inverse-source problem [1]. In this work, we consider
two-dimensional (2-D) inverse line-source problems in which we seek to determine the
locations and currents of one or two electric-current filaments located inside a homogeneous
and isotropic magneto-dielectric cylindrical medium. Electromagnetic inverse problems of
this type may find applications in biomedical diagnostics related to the operation principles
of microwave tomographic systems [2,3], and in microwave detection and positioning of
dielectric scatterers and pipes inside an enclosure [4] as well as in the detection of cavities
in tree trunks [5,6]. We use as measurements the values of the electric field on the boundary
of the medium. Then, we calculate the moments obtained by integrating the product of
the total field on the cylindrical boundary with complex exponential functions; these are
suitable normalized Fourier coefficients of the boundary data. The unknown parameters
of the problem can be determined explicitly by means of these moments. In the case of
a single internal source, the location coordinates and the current of the source as well as
(under certain conditions) the permittivity and permeability of the medium are determined
explicitly. For two internal sources, the medium’s characteristics are considered as known
and we determine the location coordinates and currents of both sources.

Moreover, we present numerical results for both problems referring to one or two
line sources. First, for a single source, we analyze the effect of noisy boundary data on the
determination of the unknown parameters. It is seen that the only parameter that is affected
by the noise in the measurements is the current of the source. Then, it is shown that the
relative error in the determination of the current increases with the noise level (as expected);
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however, it remains in acceptable levels and well below its upper bound. Next, for two
sources, we solve numerically the nonlinear system involving the associated unknown
parameters by using a nonlinear least-squares method. The parameters are computed
accurately provided that the initial values do not have large deviations from the true
ones; a detailed comparative analysis for all parameters is included. Furthermore, in the
low-frequency regime, we solve explicitly the pertinent system of equations. Performing
a related numerical investigation, we find that for k0a ≤ 0.01 (a is the radius of the cylinder
and k0 is the free-space wavenumber), the parameters of the two sources are computed
with negligible error.

Numerical schemes for treating 2-D inverse-source problems in electrostatics and mag-
netostatics were devised in [7–11]. Precisely, in [7], inverse problems were investigated for
locating point-wise or small-size conductivity defaults in planar domains from overdeter-
mined boundary measurements of solutions to Laplace’s equation. In [8], inverse problems
were analyzed concerning sources detection from boundary data in a 2-D medium with
piece-wise constant conductivity by using the best rational or harmonic approximations in
specific domains. Furthermore, in [9], a reciprocity-gap principle method was developed
for locating point sources in planar domains from overdetermined boundary measurements
of solutions of Poisson’s equation. In [10], steady-state electrostatic or thermal imaging
boundary-value problems for Laplace’s equation were considered and algorithms were
proposed for determining the compact support of inclusions by solving a simpler equiva-
lent point-source problem. In [11], inverse problems in the 2-D Helmholtz equation from
Cauchy data were considered concerning the determination of point-wise sources and
sources having compact support within a finite number of small subdomains.

On the other hand, regarding three-dimensional (3-D) inverse-source problems, find-
ing an electrostatic or an acoustic point source inside a homogeneous sphere by using
appropriate moments on the spherical boundary was investigated in [12]. Conventional
and reciprocal approaches based on forward-transfer matrices were employed in [13] to
obtain single-dipole solutions on spherical boundary-element model using simplex opti-
mization. In [14], inverse-source problems for the 3-D time-harmonic Maxwell’s equations
were studied by using boundary measurements of the radiated fields and formulating
a system of integro-differential equations. In [15], recovering acoustic monopoles was
investigated by means of point-wise acoustic-pressure measurements at a limited num-
ber of frequencies and formulation of associated sparse optimization problems for the
Helmholtz equation. Besides, determining characteristic sources in the modified and classi-
cal Helmholtz equations based on external boundary measurements and a minimization
scheme for an equivalent reciprocity functional was analyzed in [16]. In [17], three recon-
struction algorithms were proposed for the Helmholtz equation, using near-field Cauchy
data on the external boundary, to detect the number, location, size, and shape of hidden
sources. An algebraic algorithm to identify the number, locations and intensities of the
point sources from boundary measurements for the Helmholtz equation in an interior
domain was developed in [18]. An iterative method for numerical reconstruction of the
unknown source function in Poisson’s and Helmholtz equations by means of measure-
ments collected at the boundary was presented in [19]. In [20], linear integral transforms
in Hilbert spaces were introduced and inversion formulas for inverse-source problems in
the Helmholtz equation were provided. In the context of brain imaging, inverse problems
for point sources or dipoles inside spheres or ellipsoids were presented and discussed
in [21,22].

This paper is organized as follows. In Section 2, we formulate the direct scattering
problem due to a single internal line source and present its exact solution. In Section 3,
we solve the pertinent inverse line-source problem either when the cylinder has a known
refractive index or when the cylinder is electrically small. The case of two internal line
sources is analyzed in Section 4. Several numerical results for a single line source or for
two line sources are presented in Section 5. Particularly, the effect of noisy boundary data
on the determination of the unknown parameters of a single line source is analyzed in
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Section 5.1. Moreover, in Section 5.2, we consider the case of two line sources and examine
the sensitivity in the determination of the involved parameters with respect to the variations
of their respective initial values. The paper closes with conclusions in Section 6.

2. The Direct Problem and Its Exact Solution

An infinite along the z-axis circular magneto-dielectric cylinder of radius a, with
relative dielectric permittivity ε1 and magnetic permeability µ1 lies in free space with
permittivity ε0 and permeability µ0. The cylinder is excited by an internal z-directed
electric-current filament I, located at (ρ, φ) = (h, φ0), with h < a.

The sole z-component of the primary electric field Epr(ρ, φ) = Epr(ρ, φ)ẑ is given by
(under exp(−iωt) time dependence, with ω as the angular frequency and t as time)

Epr(ρ, φ) = A I H0

(
k1

√
ρ2 + h2 − 2ρh cos(φ− φ0)

)
,

where Hn denotes the n-th order cylindrical Hankel functions of the first-kind H(1)
n , while

k0 = ω
√

ε0µ0 and k1 = k0n1 are the external and internal wavenumbers, respectively, with
n1 =

√
ε1µ1 being the refractive index of the cylinder, and A = −(ωµ0µ1)/4.

The total electric field in the interior of the cylinder is expressed as

E1(ρ, φ) = Epr(ρ, φ) + Esec(ρ, φ), 0 < ρ < a, (ρ, φ) 6= (h, φ0),

where Esec is the generated secondary electric field.
Imposing the boundary conditions referring to the continuity of the tangential compo-

nents of the electric and magnetic fields on ρ = a, we obtain the following exact expressions
of the z-components of the total electric field outside the cylinder and the secondary electric
field inside the cylinder [23]

E0(ρ, φ) = A I
∞

∑
n=−∞

αn Hn(k0ρ)ein(φ−φ0), ρ > a,

Esec(ρ, φ) = A I
∞

∑
n=−∞

βn Jn(k1ρ)ein(φ−φ0), 0 < ρ < a,

where

αn =− 2i
aπ

Jn(k1h)
k1 J′n(k1a)Hn(k0a)− k0µ1H′n(k0a)Jn(k1a)

,

βn =− Jn(k1h)
k1H′n(k1a)Hn(k0a)− k0µ1H′n(k0a)Hn(k1a)
k1 J′n(k1a)Hn(k0a)− k0µ1H′n(k0a)Jn(k1a)

,

with Jn denoting the n-th order cylindrical Bessel functions.
Now, the electric field on the cylinder (i.e., for ρ = a) is given by

Ecyl(φ) = E0(a, φ) = Ãµ1 I
∞

∑
n=−∞

αn Hn(k0a)ein(φ−φ0),

where Ã = −ωµ0/4, which is a known quantity for known angular frequency and free-
space parameters.

This field Ecyl(φ) is the basic function that we will use to find the line source and the
internal parameters of the cylinder.

The above analysis refers to the excitation of the cylinder by a transverse magnetic
(TM) polarized field with respect to the z-axis. In case of excitation by an internal z-directed
magnetic-current filament IM, the generated fields have transverse electric (TE) polarization,
and the sole z-component of the magnetic field on ρ = a is found to be [24]
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Hcyl(φ) = −
ωε0ε1

4
IM

∞

∑
n=−∞

α̃n Hn(k0a)ein(φ−φ0),

where

α̃n = − 2i
aπ

Jn(k1h)
k1 J′n(k1a)Hn(k0a)− k0ε1H′n(k0a)Jn(k1a)

.

In the next sections, for simplicity, we examine only the case of TM polarization. The
corresponding results for TE polarization are recovered by replacing µ0 and µ1 with ε0 and
ε1, respectively, as well as I with IM.

3. Inverse Line-Source Problem

We consider an inverse line-source problem in which we seek to determine the co-
ordinates (h, φ0) and the current I of the line source. Regarding the cylinder’s material
parameters ε1 and µ1, we will initially consider them as unknowns and see in which cases
they can also be determined explicitly.

We define the normalized moments

Mn =
1

2πÃHn(k0a)

∫ π

−π
Ecyl(φ)e−inφdφ = µ1 Iαne−inφ0 , n ∈ Z, (1)

where the quantities ÃHn(k0a) used as normalization coefficients are known for known
cylinder’s radius a and free-space parameters.

First, we determine the angle φ0 of the line source (without any assumptions on the
parameters of the problem). Consider that α1 = |α1|eiδ. Then, from (1) for n = ±1, and
since µ1 > 0 and I > 0, we have that the complex number M1 has the argument δ− φ0 and
the complex number −M−1 has the argument δ + φ0. Hence, both δ and φ0 are determined.

3.1. Cylinder with Known Refractive Index

To make analytical progress, one option is to make some assumptions on the material
parameters of the cylinder. Suppose that the refractive index n1 is known, but ε1 and µ1 are
unknown. We proceed to determine h, I, ε1 and µ1. Since n1 =

√
ε1µ1, if we find µ1 then

we can also determine ε1.
From the recurrence relations of the cylindrical Bessel functions (Equation (9.1.27) of [25]),

we have

1
k1h

=
Jn−1(k1h) + Jn+1(k1h)

2n Jn(k1h)
=

Mn−1dn−1e−iφ0 + Mn+1dn+1eiφ0

2n Mndn
, n ≥ 1, (2)

where
dn = k1 J′n(k1a)Hn(k0a)− k0µ1H′n(k0a)Jn(k1a). (3)

Next, equating two of (2), yields

Mn−1dn−1e−iφ0 + Mn+1dn+1eiφ0

n Mndn
=

Mndne−iφ0 + Mn+2dn+2eiφ0

(n + 1)Mn+1dn+1
,

which takes the form

(n + 1)Mn+1dn+1

(
Mn−1dn−1 + Mn+1dn+1e2iφ0

)
=

nMndn

(
Mndn + Mn+2dn+2e2iφ0

)
.

Since dn is linear in µ1 (for known n1), the last is a quadratic equation for µ1, for each
n ≥ 1. This equation is written as

Anµ2
1 + Bnµ1 + Cn = 0, (4)
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where

An =(n + 1)M2
n+1e2iφ0

[
k0H′n+1(k0a)Jn+1(k1a)

]2

+(n + 1)Mn+1Mn−1

[
k2

0H′n−1(k0a)Jn−1(k1a)

H′n+1(k0a)Jn+1(k1a)
]
− nM2

n

[
k0H′n(k0a)Jn(k1a)

]2

−nMn Mn+2e2iφ0
[
k2

0H′n(k0a)Jn(k1a)H′n+2(k0a)Jn+2(k1a)
]
,

Bn =nM2
n

[
2k0k1 J′n(k1a)Hn(k0a)H′n(k0a)Jn(k1a)

]
+nMn Mn+2e2iφ0 k0k1

[
J′n(k1a)Hn(k0a)H′n+2(k0a)

Jn+2(k1a) + J′n+2(k1a)Hn+2(k0a)H′n(k0a)Jn(k1a)
]

−(n + 1)M2
n+1e2iφ0

[
2k0k1 J′n+1(k1a)Hn+1(k0a)

H′n+1(k0a)Jn+1(k1a)
]
− (n + 1)Mn+1Mn−1k0k1[

J′n−1(k1a)Hn−1(k0a)H′n+1(k0a)Jn+1(k1a)

+J′n+1(k1a)Hn+1(k0a)H′n−1(k0a)Jn−1(k1a)
]
,

Cn =(n + 1)M2
n+1e2iφ0

[
k1 J′n+1(k1a)Hn+1(k0a)

]2

+ (n + 1)Mn+1Mn−1k2
1 J′n−1(k1a)Hn−1(k0a)

J′n+1(k1a)Hn+1(k0a)− nM2
n

[
k1 J′n(k1a)Hn(k0a)

]2

−nMn Mn+2e2iφ0 k2
1 J′n(k1a)Hn(k0a)J′n+2(k1a)Hn+2(k0a).

The relative permeability µ1 solves (4), for each n ≥ 1. Having determined µ1, the
coordinate h of the source’s location is found using (2). Then, the relative permittivity ε1
follows from the definition of n1. The current I is finally obtained from the moments Mn
given by (1).

3.2. Electrically-Small Cylinder

If the refractive index n1 is unknown, then we can derive explicit expressions for the
problem’s parameters pertaining to an electrically-small cylinder, i.e., when we are in the
low-frequency regime [26]. Precisely, for k0a� 1 and k1a� 1, the coefficients αn have the
following leading-order low-frequency approximations, as k0a→ 0 and k1a→ 0,

α0 ∼
1

µ1
, αn ∼

(k0h)n

2n−1n!(1 + µ1)
, n ≥ 1. (5)

Combining the latter with (1), gives

4M2eiφ0

k0M1
=

4α2

k0α1
= h,

which determines h. Subsequently, the current I of the line source is obtained by

M0 = µ1 Iα0 = I.

Then, the relative permittivity µ1 is found by
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M1

Ik0he−iφ0 −M1
= µ1.

However, we cannot determine the refractive index n1, and therefore ε1, from the
leading-order approximations (5) of αn, because n1 (or alternatively the wavenumber k1)
does not appear. To this end, we could use a higher-order low-frequency approximation,
like, e.g.,

α0 ∼
1− 1

4 (k1h)2

(k1a)2
(
− 1

2 (k0a)2 + 2k0a− 3
2

)
+ µ1

(
1− 1

4 (k1a)2
) ,

by which we obtain an estimate for k1, and hence for n1 and ε1.

4. The Case of Two Internal Line Sources

Now, we consider that there are two line sources inside the magneto-dielectric cylinder
with unknown electric-current filaments I1 and I2, and unknown position vectors (ρ, φ) =
(h1, φ1) and (ρ, φ) = (h2, φ2), respectively. The cylinder’s material parameters ε1 and µ1
are supposed to be known.

By linear superposition and the definition (1) of the moments, we get

Mn = − 2i
aπ

µ1

dn

(
I1 Jn(k1h1)e−inφ1 + I2 Jn(k1h2)e−inφ2

)
, n ∈ Z, (6)

where dn, given by (3), is known for known parameters of the cylinder.
We can proceed analytically in the low-frequency regime, i.e., assuming that k0a� 1

and k1a� 1. Then, by (5), we obtain, as k0a→ 0 and k1a→ 0,

M0 ∼ I1 + I2, Mn ∼ γn

(
I1hn

1 e−inφ1 + I2hn
2 e−inφ2

)
, n ≥ 1, (7)

where

γn =
µ1kn

0
2n−1n!(1 + µ1)

.

If φ1 = φ2 = φ0 then we can determine φ0 from M1. From (7), we have

M1

γ1
∼ (I1h1 + I2h2)e−iφ0 .

Since I1h1 + I2h2 > 0, the complex number M1
γ1

has the argument −φ0.
Now, the other unknown parameters I1, I2, h1 and h2 are found by means of the

moments M0, M1, M2 and M3 as follows:

h1 =
M̃1M̃2 − M̃0M̃3 +

√(
M̃1M̃2 − M̃0M̃3

)2
+ 4
(

M̃2
1 − M̃0M̃2

)(
−M̃2

2 + M̃1M̃3
)

2
(

M̃2
1 − M̃0M̃2

) , (8)

h2 =
M̃1M̃2 − M̃0M̃3 −

√(
M̃1M̃2 − M̃0M̃3

)2
+ 4
(

M̃2
1 − M̃0M̃2

)(
−M̃2

2 + M̃1M̃3
)

2
(

M̃2
1 − M̃0M̃2

) , (9)

I1 =
M̃1 − h2M̃0

h1 − h2
, (10)

I2 = M̃0 − I1, (11)

where

M̃n =
Mneinφ0

γn
, n ≥ 1

are known quantities.
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5. Numerical Results and Discussion
5.1. Single Line Source

First, we consider the case of a single internal line source and present results of
numerical experiments when the boundary data are measured in the presence of increasing
levels of noise. Precisely, we consider that the measured electric field on ρ = a is given by

Eδ
cyl(φ) = NδEcyl(φ),

where Ecyl(φ) is the true field on ρ = a, and Nδ is the noise function, which has the form

Nδ = 1 + δ rand.

with δ being noise-level parameter, while the function rand gives uniformly distributed
random numbers in [−1, 1].

Now, from (1), we see that the noise is inherited from Ecyl directly to the moments Mn,
namely, it holds that the noisy moments are given by

Mδ
n = Nδ Mn.

Importantly, the only unknown parameter that is affected by the noise in the measure-
ments is the current I. This is because I is determined directly from the noisy moments Mδ

n
via (1). On the other hand, the other unknown parameters of the problem are determined by
means of ratios of the noisy moments, and thus, the contribution of the noise is eliminated.

Let the noisy estimate for the true current I be denoted by Iδ = Nδ I. Then, for the
relative error of the determination of I, holds

e(δ) ≡ |I − Iδ|
|I| 6 δ. (12)

We add noise to the electric-field boundary data with the noise level δ ranging from
2% to 20% with a step of 2%. The values of the current I obtained by implementing the
analytic algorithm of Section 3.1 in the presence of the aforementioned noisy data are
shown in Tables 1 and 2, corresponding to the cases of I = 2 and I = 5, respectively. For
each case, ten iterations for the random noise were simulated (for each constant value
of δ). We used Matlab R2017a for deriving the numerical results and performing the
subsequent visualizations.

Table 1. Determined noisy values Iδ for different noise levels δ. The true value of the line-source’s
current is I = 2. The other parameters of the problem are k0a = 2, k0h = 1, n1 = 2, µ1 = 3, φ0 = π/4.

δ% Number of Iterations for the Random Noise

1 2 3 4 5 6 7 8 9 10

2 2.0098 2.0070 1.9766 1.9841 1.9977 1.9784 2.0275 1.9756 1.9781 1.9737
4 1.9564 1.9897 1.9698 2.0677 1.9888 1.9496 2.0648 2.0768 1.9902 1.9378
6 1.9419 1.9781 2.0228 1.9429 2.0247 2.0507 1.9332 1.9082 1.9512 1.9565
8 1.9757 2.0025 1.8674 1.9240 2.0963 1.8494 2.1372 2.0737 1.9964 2.0251

10 1.8949 1.9835 2.1852 2.0187 2.0085 1.8926 1.9956 2.0496 2.0717 1.9582
12 1.9364 2.2342 1.7781 2.1849 2.1984 2.1422 1.8074 1.8857 1.9210 2.0863
14 1.7965 2.1239 1.7798 2.0861 1.9967 2.1563 2.1204 2.2261 2.2189 1.9071
16 2.1272 1.8066 1.6995 2.1562 2.0000 1.9872 2.2590 2.0703 2.0753 2.2300
18 2.2200 2.0552 1.7717 1.8128 2.2783 1.6606 1.9927 1.7609 2.3447 2.1531
20 2.0004 1.9769 1.6477 2.1456 1.6339 1.6572 2.0173 1.6774 2.2545 2.2540
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Table 2. As in Table 1, but for true value of the line-source’s current I = 5.

δ% Number of Iterations for the Random Noise

1 2 3 4 5 6 7 8 9 10

2 5.0319 5.0037 5.0946 5.0298 5.0601 4.9908 4.9865 5.0651 4.9167 4.9266
4 4.8694 4.9564 5.1326 5.1213 4.8242 4.9597 5.0108 4.9667 5.0627 5.0512
6 4.8752 4.9590 4.7093 5.2904 4.8003 4.7637 4.9234 4.8189 4.9938 4.9037
8 5.3613 5.3363 4.6421 5.1903 4.8153 4.9383 5.0383 5.3542 4.9342 5.3864

10 4.8015 5.2011 5.1663 5.0391 5.1981 5.1665 4.6781 4.6280 5.4991 4.6711
12 4.4391 5.0734 5.4582 5.2030 4.6285 4.8427 4.9529 5.5780 4.5877 5.4266
14 5.2027 4.8268 4.5673 4.8996 4.9748 4.4689 5.1253 4.6167 4.8385 5.1162
16 4.6029 4.6647 5.1873 4.6244 5.5190 5.7723 5.3684 4.7502 5.1345 4.3724
18 5.7314 5.6834 5.5720 4.5693 5.1698 4.1405 4.8655 4.6629 4.3907 4.4218
20 4.8458 4.1885 5.1970 4.9418 5.3919 5.3998 5.2771 4.0672 4.1376 4.6392

Moreover, the average values of the relative error e(δ) (corresponding to the ten
considered iterations) versus the noise level δ, as stemming from the data presented in
Tables 1 and 2, are depicted in Figures 1 and 2, respectively. Evidently, the relative error
increases with the noise level. However, it remains well below its upper bound specified
according to (12); the red line e(δ) = δ in Figures 1 and 2 corresponds to that bound. In
fact, the distance between the obtained error e(δ) and its upper bound δ generally increases
with increasing δ. Specifically, the error e(δ) reaches at most 10% for noise levels δ up to
20%, while e(δ) remains smaller than 5% for δ up to 10%.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Figure 1. Average values of the relative errors e(δ) versus the noise level δ for the ten considered
iterations of the random noise. The line e(δ) = δ specifying the upper bound of the relative errors,
according to (12), is also depicted. The true value of the line-source’s current is I = 2.
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Figure 2. As in Figure 1, but for true value of the line-source’s current I = 5.

5.2. Two Line Sources

Now, we suppose that the cylinder is excited by two internal sources. According to the
presentation of Section 4, for this problem there are six determinable parameters, namely
I1, I2, h1, h2, φ1 and φ2.

The procedure we follow is to formulate the system of (6), for n = 0, . . . , 5, and solve
it numerically to obtain the values of the above mentioned parameters. This system is
solved in Matlab with the lsqnonlin function, which is a nonlinear least-squares solver
using the trust-region-reflective algorithm. In such numerical algorithms, the choice of
the initial vector has significant influence in the derived solutions. We investigate this
systematically below.

First, we consider that the true parameters of the problem have the values k0h1 = 1,
k0h2 = 2, I1 = 1, I2 = 2, φ1 = π/3 and φ2 = π/5 (these values do not correspond to
the low-frequency regime). The cylinder’s radius is selected as k0a = 3 and its refractive
index as n1 = 2. We denote the chosen initial vector in the numerical algorithm as
(I0

1 , I0
2 , k0h0

1, k0h0
2, φ0

1, φ0
2) and the vector of the true values as (I1, I2, k0h1, k0h2, φ1, φ2) =

(1, 2, 1, 2, 1.04719, 0.62831). Then, we define the relative deviations of the initial from the
true values in the corresponding parameters as follows:

d̃(hp) =

∣∣∣∣∣hp − h0
p

hp

∣∣∣∣∣, d̃(Ip) =

∣∣∣∣∣ Ip − I0
p

Ip

∣∣∣∣∣, d̃(φp) =

∣∣∣∣∣φp − φ0
p

φp

∣∣∣∣∣, p = 1, 2.

Tables 3–8 depict the obtained values for the unknown parameters k0h1, k0h2, I1, I2, φ1
and φ2, respectively, when each time the corresponding deviation of the initial from the
true value d̃(h1), d̃(h2), d̃(I1), d̃(I2), d̃(φ1) and d̃(φ2) changes from 0 to 100%, while the
deviations of all the other parameters are kept constant at values from 35% to 50%. In other
words, in each Table, we change the deviation of the parameter that we determine from 0
to 100% and keep constant the deviations of all the other five parameters from 35% to 50%.

The conclusions from Tables 3–8 for the determination of each of the six unknown
parameters are the following:

1. The coordinate h1 of the first line source is determined quite accurately for all consid-
ered deviations. The maximum attained error in k0h1 is 4.8%.

2. The coordinate h2 of the second line source is determined accurately but only for
deviations d̃(h2) ≤ 60% in which cases the error is (except from a single case) at
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most 10%. Interestingly, the error is exactly zero for d̃(h2) ≤ 40% (again except from
a single case).

3. The current I1 of the first line source is determined very accurately. The error is exactly
zero for all d̃(I1) and independently of the deviations of all the other parameters.

4. The accuracy in the determination of the current I2 of the second line source is quite
good but still deteriorated with respect to the corresponding one of I1. The error for
I2 is exactly zero for the smaller deviations but reaches maximum levels of 25% for
the larger ones.

5. The angle φ1 of the first line source is determined with very small errors for all d̃(φ1)
(except from two cases) when the deviations of the other parameters are 35% and
40%. For the latter deviations being 45% and 50%, the error in φ1 begins to attain
large values.

6. For the determination of the angle φ2 of the second line source, similar conclusions
hold with respect to the previous ones for φ1. Still, φ2 seems to be affected more by
the deviation of the initial from the true values.

Table 3. Computed values for the coordinate k0h1 of the first line source when the deviation d̃(h1) of
the initial from the true value of h1 changes from 0 to 100% and the respective deviations of all the
other five parameters are kept constant from 35% to 50%.

d̃(h1) (100%) d̃(h2) = d̃(I1) = d̃(I2) = d̃(φ1) = d̃(φ2) (100%)

35 40 45 50

0 0.99795 0.95119 0.98824 0.95885
10 0.97213 0.98607 0.98776 0.99536
20 1.00000 1.00000 0.98818 0.98285
30 1.00000 1.00000 1.00000 0.98606
40 1.00000 1.00000 0.97328 0.98838
50 1.00000 0.99682 1.00000 0.97507
60 1.00000 0.98937 1.00000 0.98527
70 1.00000 0.99522 1.00000 0.98841
80 1.00000 0.97441 0.96578 0.97880
90 1.00000 0.97706 1.00000 1.00000

100 0.98818 0.95970 0.99148 0.98818

Table 4. Computed values for the coordinate k0h2 of the second line source. The deviations in the
parameters are as in Table 3.

d̃(h2) (100%) d̃(h1) = d̃(I1) = d̃(I2) = d̃(φ1) = d̃(φ2) (100%)

35 40 45 50

0 2.00000 2.00000 2.00000 2.00000
10 2.00000 2.00000 2.00000 2.00000
20 2.00000 2.00000 2.00000 2.19844
30 2.00000 2.00000 2.00000 2.00000
40 2.00000 2.00000 2.00000 2.00000
50 2.02018 2.00000 2.20629 2.19184
60 2.00000 2.21465 2.65083 2.21188
70 2.24947 2.19718 4.19287 4.19287
80 3.70525 4.19287 4.19287 4.19287
90 5.69325 5.69325 5.69325 5.69325

100 4.83589 4.83589 4.83589 4.83589



Mathematics 2023, 11, 2935 11 of 14

Table 5. Computed values for the current I1 of the first line source. The deviations in the parameters
are as in Table 3.

d̃(I1) (100%) d̃(h1) = d̃(h2) = d̃(I2) = d̃(φ1) = d̃(φ2) (100%)

35 40 45 50

0 1.00000 1.00000 1.21819 1.00000
10 1.00000 1.00000 1.19121 1.20396
20 1.00000 1.00000 1.13944 1.00000
30 1.00000 1.00000 1.13944 1.18869
40 1.00000 1.00000 1.18760 1.17616
50 1.00000 1.00000 1.20141 1.25820
60 1.00000 1.00000 1.20450 1.25896
70 1.00000 1.00000 1.01384 1.22971
80 1.00000 1.00000 1.00000 1.04399
90 1.00000 1.00000 1.00000 1.00000

100 1.00000 1.00000 1.22747 1.00000

Table 6. Computed values for the current I2 of the second line source. The deviations in the
parameters are as in Table 3.

d̃(I2) (100%) d̃(h1) = d̃(h2) = d̃(I1) = d̃(φ1) = d̃(φ2) (100%)

35 40 45 50

0 2.00000 2.00000 2.00000 2.00000
10 2.00000 2.00000 2.47261 2.00000
20 2.00000 2.00000 2.00199 2.48470
30 2.00000 2.00000 2.00000 2.50198
40 2.00000 2.00000 2.49458 2.50944
50 2.00000 2.00000 2.48646 2.51300
60 2.00000 2.00000 2.46606 2.51253
70 2.00000 2.47396 2.46606 2.50552
80 2.00000 2.46606 2.46606 2.51088
90 2.00000 2.46606 2.47580 2.47156

100 2.48992 2.46606 2.48524 2.47732

Table 7. Computed values for the angle φ1 of the first line source. The deviations in the parameters
are as in Table 3.

d̃(φ1) (100%) d̃(h1) = d̃(h2) = d̃(I1) = d̃(I2) = d̃(φ2) (100%)

35 40 45 50

0 1.04720 0.74056 0.60842 0.72143
10 1.04720 1.04705 1.03874 0.58387
20 1.04720 1.04720 0.55484 0.54910
30 1.04720 1.04720 0.57564 0.69884
40 1.04720 1.04720 1.04720 0.71457
50 1.04720 1.04720 0.64351 0.64562
60 1.04720 1.04720 1.04437 1.04242
70 1.04525 0.62998 1.04720 1.04720
80 1.04720 1.04720 1.04720 0.54910
90 1.04720 1.04720 1.04720 0.54910

100 1.04720 1.04720 1.04720 1.04720
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Table 8. Computed values for the angle φ2 of the second line source. The deviations in the parameters
are as in Table 3.

d̃(φ2) (100%) d̃(h1) = d̃(h2) = d̃(I1) = d̃(I2) = d̃(φ1) (100%)

35 40 45 50

0 0.62832 0.62832 0.62832 0.62832
10 0.62832 0.62832 0.62454 0.62832
20 0.62832 0.62832 0.62832 0.62832
30 0.62832 0.62832 0.62832 0.62832
40 0.62832 0.62832 0.62832 0.41308
50 0.62832 0.40347 0.62327 0.44134
60 0.62832 0.39645 0.62832 0.41863
70 0.62832 0.62832 0.62832 0.62832
80 0.62832 0.40532 0.45244 0.42789
90 0.62695 0.42719 0.39645 0.39953

100 0.35197 0.39645 0.44670 0.47905

As it has been shown above, some parameters of the problem are more and others are
less sensitive to the deviations of the initial from the true values. However, in most cases
even related deviations of up to 100% do in fact lead to acceptable results. For applications
in which there are no a priori estimates for the values of the initial vector, additional
investigations may be needed where one has to use and combine different methods of
numerical analysis (not only the lsqnonlin function, which we implemented here). This can
constitute an interesting future work direction.

Next, we examine the problem of determining the parameters of the two sources in the
low-frequency regime. To this end, we consider a cylinder with n1 = 2, µ1 = 4, and radius
decreasing from k0a = 1 to k0a = 0.0001. The values of the currents of the two sources are
I1 = 1 and I2 = 2, while the common angle of the sources is φ0 = π/3. For the radii of
the sources, we consider that h1 = a/10 and h2 = a/5. The values of k0h1, k0h2, I1, I2 and
φ0 are computed be means of (8)–(11). The results are depicted in Table 9. It is evident
that significantly accurate results are obtained for all five unknown parameters when
k0a = 0.01, 0.001, 0.0001 in which cases the low-frequency assumption is certainly valid.

Table 9. Computed values for k0h1, k0h2, I1, I2 and φ0 for k0a = 1, 0.1, 0.01, 0.001, 0.0001 when h1 = a/10
and h2 = a/5.

Parameters k0a

1 0.1 0.01 0.001 0.0001

k0h1 0.01049 0.01279 0.00101 0.00010 0.00001
k0h2 0.13279 0.02079 0.00200 0.00020 0.00002

I1 1.52156 1.47767 1.00829 1.00012 1.00000
I2 5.22175 1.54421 1.99192 1.99988 2.00000
φ0 0.64658 1.04246 1.04715 1.04719 1.04719

6. Conclusions

Two-dimensional inverse-source problems were considered corresponding to the
excitation of a magnetodielectric cylinder by one or two internal line sources. We devised
algorithms for the determination of the location coordinates and the currents of the sources.
These algorithms relied on the calculation of the complex Fourier coefficients of the electric
field on the cylindrical boundary. All the unknown parameters of the problem were
determined by suitable manipulations of these coefficients. For the single-source inverse
problem, the effect of noisy boundary data was investigated numerically. For the two-source
problem, the nonlinear system for the unknown coefficients was solved either numerically
or explicitly (the latter under the low-frequency assumption). The accuracy of the derived
results was discussed in detail.
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The algorithms presented in this work are mostly analytical in the sense that we try (in
the cases where this is possible) to obtain explicit expressions for the problem’s unknown
parameters without resulting to a numerical solution or a numerical optimization scheme,
e.g., to minimize some function as is a common approach in the existing literature. Further-
more, we point out that the developed algorithms are characterized by their simplicity and
they can be considered in most cases as exact provided that the electric field on the cylinder
is known exactly. In the case of inexact data, one needs to use some method to perform
error analysis. Detailed work in this direction for acoustic problems has been presented
in [27]. The origin of errors is from the measurements of the field on the cylinder and from
numerical integration on the cylinder with the latter being potentially reduced by more
accurate quadrature rules. The examined two-dimensional inverse problems are finite
dimensional [12], since we aim to determine a set of numbers, such as the locations and
currents of the line sources. For problems involving continuous distributions of sources,
the methods discussed in this work are not directly applicable. Then, one has to result to
other methods of a more numerical nature together with some optimization techniques,
e.g., to determine the compact support of a continuous current distribution radiating inside
a cylinder.

Interesting future work directions concern the extensions to finding line sources inside
a two-layered circular cylinder or a homogeneous cylinder of elliptical cross section. Finally,
referring to associated three-dimensional problems, determining the characteristics of
two point sources or two point dipoles inside a spherical magneto-dielectric medium by
extending the techniques of this work is also worth pursuing.
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