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Abstract

:

Heuristic optimization algorithms have been proved to be powerful in solving nonlinear and complex optimization problems; therefore, many effective optimization algorithms have been applied to solve optimization problems in real-world scenarios. This paper presents a modification of the recently proposed Gaining–Sharing Knowledge (GSK)-based algorithm and applies it to optimize resource scheduling in the Internet of Vehicles (IoV). The GSK algorithm simulates different phases of human life in gaining and sharing knowledge, which is mainly divided into the senior phase and the junior phase. The individual is initially in the junior phase in all dimensions and gradually moves into the senior phase as the individual interacts with the surrounding environment. The main idea used to improve the GSK algorithm is to divide the initial population into different groups, each searching independently and communicating according to two main strategies. Opposite-based learning is introduced to correct the direction of convergence and improve the speed of convergence. This paper proposes an improved algorithm, named parallel opposition-based Gaining–Sharing Knowledge-based algorithm (POGSK). The improved algorithm is tested with the original algorithm and several classical algorithms under the CEC2017 test suite. The results show that the improved algorithm significantly improves the performance of the original algorithm. When POGSK was applied to optimize resource scheduling in IoV, the results also showed that POGSK is more competitive.
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1. Introduction


Heuristic optimization algorithms have been studied and discovered over the past three decades and have been fully proven to solve a variety of complex, nonlinear optimization problems. These methods are both user-friendly and do not necessitate mathematical analysis of the optimization problem. Compared with the traditional methods, they have the advantages of flexibility, no gradient mechanism and avoiding being trapped in the local optimum [1]. These features drew a large number of researchers to participate in the design. Most heuristic algorithms are inspired by the author’s observation of animal and plant phenomena in nature. To solve optimization problems, algorithms are used to simulate growth and evolution. In real scenarios, heuristics are also widely used, such as path planning [2], wireless sensor network localization problem [3], wireless sensor network routing problem [4], airport gate assignment [5] and cloud computing workflow scheduling [6].



Heuristic algorithms can be divided into four categories [7]. The first category is algorithms based on swarm intelligence techniques. Much of the inspiration for such algorithms comes from observations of social animals. In a population, each individual exhibits a certain degree of independence while still interacting with the entire group. The main representative algorithms are particle swarm optimization (PSO) [8], the phasmatodea population evolution algorithm (PPE) [9], the Gannet optimization algorithm (GOA) [10], the grey wolf optimizer (GWO) [11], cat swarm optimization (CSO) [12], etc. The second category is algorithms based on evolutionary techniques. Such algorithms are inspired by developments in biology. The initial random population is gradually iterated to achieve the final optimization purpose through crossover, mutation, selection and other operations. The main representative algorithms are the genetic algorithm (GA) [13], the differential evolution algorithm (DE) [14], the quantum evolutionary algorithm (QEA) [15], etc. The third category is the algorithm based on physical phenomena. This kind of algorithm simulates the law of some natural phenomena. The main representative algorithms are the Archimedes optimization algorithm (AOA) [16], the simulated annealing algorithm (SAA) [17], the sine cosine algorithm (SCA) [18], etc. The fourth category of algorithms is those based on human-related technology. As an independent intelligent and rational individual, each person has unique physical and psychological behavior. The main representative algorithms are the Teaching–Learning-Based Optimization Algorithm (TLBO) [19], the Gaining–Sharing Knowledge-based algorithm (GSK) [7], etc.



The original GSK simulates the behavior of acquiring and sharing knowledge throughout a person’s life, culminating in the maturation of the individual [20]. The author divides human life into two distinct phases: the junior phase, which corresponds to childhood, and the senior phase, which corresponds to adulthood. The strategies for knowledge acquisition and sharing are different in these two phases. At the beginning of the algorithm, individuals tend to use a relatively naive method to acquire and share knowledge. However, not all disciplines (on all dimensions of the solution) use this naive method. In some disciplines, individuals will also use relatively advanced methods for knowledge acquisition and sharing. With the growth of individuals, the algorithm enters the middle stage and the learning of knowledge is more inclined to use the advanced method, while a few disciplines still use the naive method. Individuals go through two stages, alternating between naive or advanced strategies to update their knowledge in each discipline. Individuals eventually reach maturity, which is when they find their optimal position. Ali Wagdy Mohamed demonstrated its powerful optimization capabilities on the CEC2017 test suite when he presented the GSK algorithm. Although the GSK algorithm demonstrates excellent convergence in solving the optimization problem, there is room for improvement in avoiding locally optimal solutions and convergence speed. To further improve the performance of the GSK algorithm, we propose several approaches to be incorporated into the GSK algorithm, which are described next in turn. Experiments have been conducted to demonstrate that these approaches are effective in improving the performance of the GSK algorithm.



Parallel processing is concerned with producing the same results using multiple processors with the goal of reducing the running time [21]. Because physical parallel processing cannot be used in the optimization algorithm, we adopt an alternative approach. The main idea of the parallel mechanism is to divide the initial population into several different groups. Each group performs iterative updates independently and communicates regularly between groups. The parallel mechanism has been applied widely, including to the parallel particle swarm algorithm (Chu S C 2005) [21] and parallel genetic algorithms [22]. In addition, parallel strategy is also used in multi-objective optimization algorithms. Cai D proposed an evolutionary algorithm based on uniform and contraction for many-objective optimization [23], which uses a parallel mechanism to enhance the local search ability.



The communication strategies between groups can be varied for optimizing different algorithms. This paper presents a communication strategy using the Taguchi method. The main idea is to use a pre-designed orthogonal table for crossover experiments. Compared with the traditional experimental method, it can achieve almost the same effect while obviously reducing the number of experiments. The Taguchi method has the advantages of reducing the number of experiments, reducing the cost of experiments and improving the efficiency of experiments [24]. It has been successfully applied to improve the genetic algorithm (Jinn-Tsong Tsai 2004) [25], the Archimedes optimization algorithm (Shi-Jie Jiang 2022) [26], the cat swarm optimization algorithm (Tsai P W 2012) [24], etc. In addition, opposition-based learning (OBL) was also incorporated into GSK. The concept of OBL was proposed by Tizhoosh (2005) [27]. After that, some classical optimization algorithms started to introduce this idea. It has been successfully applied to improve grey wolf optimization (Souvik Dhargupta 2020) [28] (Dhargupta S 2020) [29], the differential evolution algorithm (Rahnamayan S 2008) [30] (Wu Deng2021) [31], particle swarm optimization (Wang H 2011) [32], the grasshopper optimization algorithm (Ahmed A. Ewees 2018) [33], etc.



In order to reach a convincing conclusion, the performance of any optimization or evolutionary algorithm can only be judged via extensive benchmark function tests [34]. Some diverse and difficult test problems are required for this purpose and the CEC2017 test suite [35] is a widely accepted test problem. In order to apply the optimization algorithm to the complex real-world optimization problem, it is necessary that the optimization algorithm can effectively solve the single objective optimization problem. CEC2017 test suite contains 30 single-objective real-parameter numerical optimization questions. Compared with CEC2013 and CEC2014, in CEC2017, several test problems with new characteristics are proposed, such as new basic problems, composing test problems by extracting features dimension-wise from several problems, graded level of linkages, rotated trap problems and so on. In this paper, the CEC2017 test suite is utilized to evaluate the proposed algorithm (POGSK), the original algorithm and several classical algorithms.



The IoV enables vehicles on the road to exchange information with roadside units (RSUs) [36]. Therefore, users can expect quick, comprehensive and convenient services, such as road condition information, traffic jam section information, traffic condition information, city entertainment information, etc. However, traditional resource-allocation strategies may not be able to provide satisfactory Quality of Service (QoS) due to several factors. These include resource constraints, network transmission delays and the deployment of RSUs. Scheduling problems can be solved using various methods, which can be roughly grouped into three categories: exact, approximate and heuristic [37]. The exact method is to calculate all the solutions of the whole search space to find the optimal solution, which is obviously only suitable for small-scale problems. The approximation method uses certain mathematical rules to find the optimal solution, which requires different analyses for different problems. However, in most cases, the mathematical analysis of the problem is difficult. Therefore, the heuristic approach is a decent option. The main objective of scheduling algorithms is to find the best resources in the cloud for the applications (tasks) of the end user. This improves the QoS parameters and resource utilization [38]. In order to solve this optimization problem, this paper proposes using the heuristic algorithm POGSK to complete resource scheduling.



The main contributions of this paper are as follows:



1. An improved Gaining–Sharing Knowledge-based algorithm (POGSK) is proposed, which uses parallel strategy and OBL strategy. The use of parallel strategy increases the diversity of the population so that the algorithm can effectively avoid local optimal solutions. The OBL strategy can correct the convergence direction and improve the convergence accuracy.



2. A new inter-group communication strategy is designed. Specifically, the Taguchi communication strategy and the population-merger communication strategy were used. This enables efficient exchange of information between subpopulations and avoids the weakening of algorithm performance caused by the reduction of the number of individuals in subpopulations.



3. POGSK is used in the resource-scheduling problems of the IoV to improve QoS, which can reflect the performance of the algorithm in real scenarios. Simulation results show that POGSK is more competitive than other algorithms.




2. Related Works


2.1. GSK Algorithm


GSK is a human-based heuristic algorithm that gradually updates knowledge (corresponding to the solution of the algorithm) by simulating the process of knowledge sharing and acquisition in human life. The algorithm mainly consists of two phases: the junior phase and the senior phase, for knowledge gaining and sharing in phases have different processes [7].



When individuals are young, they prefer to interact with individuals who are similar to themselves. Despite their immature ability to distinguish right from wrong, they are willing to communicate with unfamiliar people, which represents curiosity in the junior phase. People who are similar to themselves correspond to their relatives, friends and other small surrounding groups. People who are unfamiliar correspond to the stranger. The above scheme is the junior gaining–sharing scheme. In the junior phase, more dimensions are updated using this scheme than using the other (senior gaining–sharing) scheme.



After updating and iteration, individuals reach middle age gradually. As the capacity to distinguish between right and wrong gradually increases, individuals are more willing to divide the crowd into three different populations: the advantaged, the disadvantaged and the general population. Individuals improve themselves by interacting with these three groups. The above scheme is the senior gaining–sharing scheme. In the senior phase, more dimensions are updated using the senior scheme than using the junior scheme. In the following, we describe in detail the dimensions in which the two schemes are utilized and their respective processes.



Let   x i  , i = 1, 2, 3, …, N; N is population size,   x i   represents the individual members of the population.   x i   = (  x  i 1   ,   x  i 2   ,   x  i 3   , …,   x  i D   ), D is the size of the problem and   x  i j    represents the value of an individual in this dimension. Before the renewal of each generation, we need to determine which dimensions use the senior scheme and which dimensions use the junior scheme for each individual. Based on the concept of constant human growth, these dimensions are determined to use the following nonlinear increasing or decreasing empirical equation [7].


  D  ( j u n i o r p h a s e )  =  ( p r o b l e m s i z e )  ∗   ( 1 −  G  G E N   )  k   



(1)






  D ( s e n i o r p h a s e ) = ( p r o b l e m s i z e ) − D ( j u n i o r p h a s e )  



(2)




where K is knowledge rate of a real number, K > 0, G is generation number and GEN is the maximum number of generations.



The steps for the junior scheme are as follows:



1. The fitness of all individuals is calculated and the sequence that follows is generated by ranking the individual from high to low fitness: (  x  b e s t   ,   x 2  ,   x 3  , …,   x  n − 1   ,   x  w o r s e   ). Each individual chooses three individuals to communicate with according to step 2.



2. For each individual   x i   which is not the best and the worst, select   x  i − 1    and   x  i + 1   . For the best individual   x  b e s t   , select   x  b e s t + 1    and   x  b e s t + 2   . For the worst individual   x  w o r s e   , select   x  w o r s e − 1   ,   x  w o r s e − 2   . In addition, an individual   x r   is selected in a random way. These three individuals are sources of information. The pseudo-code for the above junior scheme is presented in Algorithm 1:



	Algorithm 1: Junior scheme pseudo-code
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Here,   k f   represents the knowledge factor (  k f   > 0).



The steps for the senior scheme are as follows:



1. The fitness of all people is calculated and the sequence that follows is generated by ranking the individual from high to low fitness: (  x  b e s t   ,   x 2  ,   x 3  , …,   x  n − 1   ,   x  w o r s e   ).



2. The population is divided into three parts: the first 100p% with better fitness, the last 100p% with poor fitness and the middle NP − (2 * 100p%), where p is the proportion of a population division. For example, if p = 0.1, NP = 100, the best group is the top 10 peoples with better fitness, the worst group is the bottom 10 peoples with poor fitness and the middle group is the middle 80 peoples. From these three groups,   x  p _ b e s t   ,   x  p _ w o r s e    and   x  p _ m i d d l e    are selected as sources of information. The pseudo-code for the above senior scheme is presented in Algorithm 2:



	Algorithm 2: senior scheme pseudo-code
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There are several important parameters in GSK, respectively knowledge rate K that controls the proportion of junior and senior schemes in the individual renewal scheme, knowledge factor   K f   that controls the total amount of knowledge currently learned by the individual from others, knowledge ratio   K r   that controls the ratio between the current and acquired experience. The pseudo-code is presented in Algorithm 3:



	Algorithm 3: GSK pseudo-code
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2.2. Taguchi Method and Parallel Mechanism


Every engineer wants to design a satisfactory product with minimum cost and minimum time. However, many factors can impact the quality of the product and it will take a long time to test one by one. The Taguchi method was developed by Dr. Genichi Taguchi in Japan after World War II [25]. When this method was used in practical production, it greatly promoted Japan’s economic recovery. The orthogonal matrix experiment is one of the important tools of the Taguchi method. Suppose a product has K influencing factors, each of which has Q levels. If the influence of each factor level on product quality is tested one by one,   K Q   experiments are required [24]. This will consume a lot of time and production costs are difficult to control. The orthogonal matrix experiment uses the pre-designed orthogonal matrix to conduct a small number of experiments on each factor, which can achieve almost the same effect while greatly reducing the number of experiments. Assume that there are seven factors affecting the product, each of which has two levels, then we can use the   L 8  (  2 7  ) shown in Equation (3). Each row in the table represents an experiment, where the values represent the current level of factor adoption. It can be observed that in each column, the number of occurrences is the same for both levels, which guarantees the fairness of the experiment.


   L 8   (  2 7  )  =     1   1   1   1   1   1   1     1   1   1   2   2   2   2     1   2   2   1   1   2   2     1   2   2   2   2   1   1     2   1   2   1   2   1   2     2   1   2   2   1   2   1     2   2   1   1   2   2   1     2   2   1   2   1   1   2      



(3)







This paper mainly uses two levels orthogonal matrix. For the 10-dimensional experiment uses   L 12  (  2 11  ). For the 30-dimensional experiment uses   L 32  (  2 31  ).



The parallel mechanism, also known as multi-population strategy, is a popular algorithm-optimization method for increasing population diversity. The main idea is to divide the initial population into several subpopulations. The subpopulations were searched independently after initialization and communicated with other subpopulations according to certain conditions. For parallel strategies, the inter-group communication strategy is critical. Because the number of individuals in the subpopulation is reduced, the algorithm easily falls into the local optimum via independent search. Excellent intergroup communication strategies can make subpopulations gain the ability to escape the local optimum and effective communication strategies enable populations to exchange a small amount of information while improving their search ability. Chai proposed the tribal annexation communication strategy and herd mentality communication strategy to improve the searching ability of the whale optimization algorithm [3]. Tsai used the Taguchi communication strategy to enhance the search capability of the cat swarm optimization algorithm [24]. The above scheme demonstrates the diversity of communication strategies for different algorithms. In this paper, a suitable communication strategy is proposed according to the characteristics of the GSK algorithm. Specifically, the Taguchi communication strategy and the population-merger communication strategy were used.




2.3. Opposition-Based Learning


OBL was proposed by Tizhoosh (2005) [27], which is fundamentally based on estimates and counter estimates. OBL can modify the convergence direction of the algorithm and improve the search accuracy of the algorithm. In order to get close to the optimal position quickly, we generally want the population to be near it. However, the initial populations are generated randomly and it may be far from the optimal position or even the exact opposite. As a result the algorithm converges so slowly that it does not converge to near the optimal solution under the specified conditions. The main idea of OBL is to find the opposite position of the random initial population, evaluate it and select the better position to replace the initial population. Furthermore, during the population updating process, the position of the current individual and its opposite are evaluated and the better individuals are left.



Definition 1

(Opposite Number [27]). Let x be a real number defined in the interval [a,b], then the Opposite Number   x  o p    of x is defined by the following equation:


   x  o p   = a + b − x  



(4)









Definition 2

(Opposite Point [27]). Let P (  x 1  ,   x 2  , …,   x n  ) be a point in an n-dimensional coordinate system with (  x 1  , …,   x n  ) being real numbers, where each of   x j   is defined in the interval [  a j  ,   b j  ]. Then, the Opposite Point   P  o p    (  x 1  o p   ,   x 2  o p   , …,   x n  o p   ) is defined by the following equation:


   x j  o p   =  a j  +  b j  −  x j   



(5)









In the actual search process, the search space usually changes dynamically, the Opposite Point   P i  o p    = ((  x  i 1   o p   ,   x  i 2   o p   , …,   x  i n   o p   )) of   P i   is defined by the following equation;   P i   belongs to the population P = (  P 1  ,   P 2  , …,   P n  ).


   a j  m i n   = m i n  (  P  i , j   )   i = 1 , 2 , … , n  



(6)






   b j  m a x   = m a x  (  P  i , j   )   i = 1 , 2 , … , n  



(7)






   x  i , j   o p   =  a j  m i n    +   b j  m a x   −  x  i , j    



(8)








2.4. Resource-Scheduling Problem of the IoV


With intelligent transportation and smart city development, the IoV has received more and more attention. Based on the information interaction between the on-board unit and the roadside unit, a successful architecture of the IoV is formed. In this process, due to roadside unit deployment, own resource limitation and network delay, it may not guarantee satisfactory QoS for users. In this case, the most likely bottleneck is the proper scheduling of resources [39]. Therefore, we need a scheduling algorithm to distribute the user workload into the RSUs. The algorithm must be based on resource capacity and solve the problem of over- and underutilization [6]. The algorithm should take into account the available resources and work to improve QoS. Based on practical considerations, the performance of the algorithm can be evaluated by resource utilization, load balancing, maximum completion time, execution cost, power consumption, reliability and other indicators.



To improve the computing capabilities of mobile devices, edge computing transfers computation-intensive applications from resource-constrained smart mobile devices to nearby edge servers with computational capabilities [40]. Bin Cao proposed a space–air–ground-integrated network (SAGIN)-IoV edge-cloud architecture based on software-defined networking (SDN) and network function virtualization (NFV) [36] that takes into consideration that the actual user needs to establish an optimization model. Yao proposed a big data-based heterogeneous Internet of Vehicles engineering cloud system resource allocation optimization algorithm [39]. Filip proposed a new model for scheduling microservices over heterogeneous cloud-edge environments [41]. This model aims to improve the resource utilization of edge computing equipment and reduce cost. Farid M proposed a new multi-objective scheduling algorithm with fuzzy resource utilization (FR-MOS) for scheduling scientific workflow based on the PSO method [6]. This algorithm’s primary objective is to minimize cost and makespan in consideration of reliability constraints, where the constraint coefficient is determined by cloud resource utilization.



Existing resource-scheduling algorithms generally account for a variety of usage scenarios. In our proposed case study, we recognize that it is practical to employ these existing methods. In this article, service delay, resource utilization, load balancing and security are considered simultaneously and an optimization model is constructed.





3. Proposed Algorithm and Its Application


3.1. Parallel Communication Strategy


Choosing a suitable communication strategy is critical in parallel strategy since it facilitates information exchange between two groups, thereby enhancing their search capabilities. In this paper, two primary communication strategies are used. The first primary communication strategy is controlled by the communication control factor R. If the random number generated in the communication is greater than R, all groups will be matched in pairs and the following Taguchi communication will be performed:



1. Select the optimal solution of the two groups and select the appropriate orthogonal table based on the number of levels and factors. For example, the experiment is two-level if it contains two candidates and is seven-factor if each candidate in the experiment contains seven influencing factors. Conduct the experiment according to the orthogonal table and calculate the fitness value for each new individual.



2. In each dimension, calculate the fitness sum of the two levels separately. For each dimension, select the level with better fitness as a candidate. Combine the candidates to produce an optimal individual.



When the random number is less than R, the optimal solutions within all groups are compared with the global optimal solution using the following steps:



1. If it is worse than the global optimal solution, the intra-group optimal solution is replaced by the global optimal solution.



2. If it is better than or equal to the global optimal solution, a random mutation operation is performed.



Every individual has the potential to excel in some dimensions. The Taguchi method can efficiently excavate these excellent dimensions and then combine them together. The communication process described above will be visualized through an example. The fitness function is assumed to be:


  f  ( x )  =  ∑  i = 1  n   x 2   



(9)







Suppose the search goal is to find the smallest fitness value. The two candidate individuals are shown in Table 1. The Taguchi orthogonal experiment is a two-level seven-factor experiment that employs the   L 8  (  2 7  ) orthogonal table shown in Equation (3). Table 2 depicts the specific operation process. The cumulative fitness value of the two candidate solutions in the table is calculated based on whether the solution is selected in the orthogonal table. In the first dimension of Table 2, the candidate solution   x 2   was used in experiments 5 to 8, the cumulative fitness value for the first dimension of   x 2   is the sum of the fitness values from 5 to 8 experiments.



In addition, this paper employs the population-merger communication strategy as the second primary communication strategy. In a swarm intelligence algorithm with parallel strategies, multiple subpopulations search independently and communicate with each other at intervals. The parallel strategy increases the diversity of the algorithms, but reduces the number of individuals in each subpopulation and some algorithms require more individual data for search. This conflict weakens the performance of the algorithm. After testing, the search performance of the original GSK algorithm was significantly reduced when the algorithm was divided into several subpopulations. In order to solve the above problem, the population-merger communication strategy was adopted. Specifically, each subpopulation searched independently in the early stage of the algorithm. Once a specific condition is met, the two adjacent subpopulations combine into one population. The newly formed population incorporates all the information from both subpopulations. Finally, before the end of the algorithm, all the individuals are merged into one population, which contains all the information of the original subpopulation. In the first stage of this paper, the initial GSK population was divided into four groups. In the second stage, the four groups were merged into two groups. In the third stage, the two groups are merged into one group. The condition of merger refers to the number of fitness functions.




3.2. Incorporate OBL into GSK


There are two primary steps involved in adding OBL to GSK. Using OBL, optimize the initial population as the first step. In the second step, the opposite population is generated to correct the convergence direction.



For the original algorithm (GSK), the initial population is randomly generated within a defined range. The initial individuals thus generated may be too far away from the global optimal position. The utilization of the OBL strategy enables the generation of a population closer to the optimal position, thereby facilitating more effective algorithm optimization. The steps in detail are as follows:



1. Initialize the population X = {  x 1  ,   x 2  , …,   x n  } randomly according to the defined range, n denotes the number of individuals in the population. Generate the opposing population   X  o p    = {  x 1  o p   ,   x 2  o p   , …,   x n  o p    } with the following formula:


   x  i , j   o p   =  a j  +  b j  −  x  i , j    i = 1 , 2 , … n ; j = 1 , 2 , … , D ;  



(10)




where   a j   represents the upper bound of the current dimension and   b j   represents the lower bound.



2. Select individuals with excellent fitness from {  x i  ,   x i  o p   } and combine them into NP, taking NP as the initial population.



In the process of population updating, by using similar methods to generate the opposite population and for evaluation, the current population can be guaranteed to be closer to the global optimal position. The probability of generating an opposing population can be controlled by adjusting the jump rate r. The steps in detail are as follows:



1. After each update of the population, a random number is generated to compare with the jump rate r. If the random number is less than r, the opposite population of the current population will be generated, the following formula shows the process:


   x  i , j   o p   = m a  x j  + m i  n j  −  x  i , j    i = 1 , 2 , … n ; j = 1 , 2 , … , D ;  



(11)




where   m a  x j    represents the maximum value of the j dimension in the current population and   m i  n j    represents the minimum value.



2. Current and opposing populations are combined, and the fitness is tested separately. Then, the fittest individuals are selected from {  x i  ,   x i  o p   }.



In this paper, several different approaches are considered for integration with GSK and Figure 1 illustrates the process. In POGSK, the initial population is divided into four subpopulations after OBL optimization and the four subpopulations independently conduct GSK and communicate with each generation according to the Taguchi method. After updating the current population, the OBL operation is performed. The pseudocode for POGSK is shown in Algorithm 4. Moreover, in order to demonstrate the POGSK process more visually, Figure 2 shows its main processes.



	Algorithm 4: POGSK pseudo-code
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3.3. Apply the POGSK to Solve the Resource-Scheduling Problem in IoV


In order to reasonably allocate the resources of RSUs in IoV and enhance the QoS, this paper proposes the following mathematical model. Assume that there are multiple vehicles on the road and a total of n tasks are submitted simultaneously and each task contains four attributes: (1) the size of the task; (2) deadlines for tasks; (3) type and quantity of resources required; (4) the transfer time of the submitted work. The n tasks are represented as follows [36]:


  T =  {  T i  }   ( i = 1 , 2 , . . , n )   



(12)







Suppose that there are m processing nodes in the current scenario. Each processing unit contains two attributes: (1) type and quantity of resources owned by the processing unit and (2) the processing capacity of the processing unit. The m processing nodes are represented as follows [36]:


  P =  {  P j  }   ( i = 1 , 2 , . . , m )   



(13)







	
Service delay



In order to provide users with faster services, service latency should be as short as possible. A processing node can handle multiple tasks simultaneously, with different processing capabilities for each node. Then, the processing time of a task on the processing node is [36]


  D O  P i j  =   S i   H j    



(14)




where   S i   represents the size of the task   T i   and   H j   represents the processing capability of the processing node   P j  . Then, the time required for a processing node to complete all the tasks assigned to it is


  P  T j  =  ∑  i = 1  n   D O  P i j   ∗ C  ( i , j )     



(15)




where C(i,j) is a binary value and indicates whether task   T i   is assigned to node   P j  , denoted as


  C  ( i , j )  =      0 , o t h e r w i s e .       1 ,  T i   i s  a s s i g n e d  t o   P j        



(16)







The sum of the processing delays of all nodes is


   F T  =  ∑  j = 1  m   P  T j    



(17)







	
Resource utilization



According to research, the energy consumption of the server in the idle state can account for more than 60% of the full load operation [42], which leads to a large amount of energy wasted on the idle server. So we want the roadside unit to be as resource-efficient as possible. The service request in the IoV requires the support of four kinds of computer resources, namely CPU, memory, disk and bandwidth. We need to pay attention to all four sources. Then, the total resource utilization is


   F U  =    ∑  i = 1  n    ∑  k = 1  4   C R ( i , j )      ∑  j = 1  m    ∑  k = 1  4   ( P  N j  ∗ P R  ( j , k )  )      



(18)




where CR(i,k) represents the number of    r e s o u r c e s  k   required by   T i  , PR(j,k) represents the number of    r e s o u r c e s  k   owned by   P j   and   P  N j    is a binary value indicating whether   P j   is turned on or not (k = 1,2,3,4 represents four resources).


  P  N j  =      0 , o t h e r w i s e .       1 ,  P j   i s  r u n n i n g       



(19)







	
Load balancing



The service request in the IoV has different demands on different resources; it is easy to cause the load of different types of resources to be unbalanced. A valuable load-balancing technique in cloud computing can enhance the accuracy and efficiency of cloud computing performance [43]. So we want the processing unit to be as load-balanced as possible. Then, the utilization of    r e s o u r c e  k   in   P j   is


   u j k  =    ∑  i = 1  n   ( C R ( i , j ) ∗ C ( i , j ) )    P R ( j , k )    



(20)




where C(i,j) is calculated using Equation (16). The mean of resource utilization of   P j   is


  M  U j  =    ∑  k = 1  4   u j k   4   



(21)







The variance of resource utilization of   P j   is


  V  U j  =    ∑  k = 1  4   (  u j k  − M  U j  )   4   



(22)







The average resource utilization variance for all processing units is


   F N  =    ∑  j = 1  m   ( V  U j k  ∗ P  N j  )   z   



(23)




where   P  N j    is calculated by Equation (19) and z represents the number of processing units opened.



	
Security



In the IoV, tasks must be completed on schedule to ensure safety, as service requests are made at high speeds. In real scenarios, the network latency and security of the task is important [6,44]. Task deadlines will be sent with task submissions and we want as many tasks as possible to be completed on time. Then, the actual time required to complete the task is


  p  s i  = D O  P i j  + T L  ( i , j )   



(24)




where   D O  P i j    is calculated with Equation (14) and TL(i,j) represents the transmission buffer time from   T i   to   P j  . Then, whether the task is completed on time is expressed as a binary value:


   S i  =      0 , c  s i  < p  s i  .       1 , c  s i  ≥ p  s i        



(25)




where   c  s i    indicates the deadtime of   T i  , which is uploaded when the task is submitted. Then, we express the degree of security as the successful execution rate of the task.


   F S  =    ∑  i = 1  n   S i   n   



(26)










Considering the above four objectives, we propose the following fitness function:


  f i t n e s s = a ∗  F T  +  b  F U   + c ∗  F N  +  d  F S    



(27)







For processing unit   P j  , the number of various resources required by all the tasks running on it is not permitted to exceed the number of resources owned by the unit. The workflow is shown in Figure 3. The constraint conditions are:


      ∑  i = 1  n   ( C ( i , j ) ∗ C R ( j , k ) )  < P R  ( j , k )        j = 1 , 2 , … , m ;  k = 1 , 2 , 3 , 4     



(28)









4. Results


4.1. Simulation Results on CEC2017


Single objective optimization algorithms are the basis of the complex optimization algorithm. It is considered effective to test with some classical mathematical functions. CEC2017 contains 30 benchmark functions to test the optimization ability of the algorithm. The F2 function was abandoned because of the dimension-setting problem. F1 and F3 are Unimodal Functions, F4–F10 are Simple Multimodal Functions, F11–F20 are Hybrid Functions, F21–F30 are Composition Functions. Set error = (   f i  −  f i ∗   ) as the objective function, where   f i   is the actual value of the ith test function and   f i ∗   is the minimum value of the ith test function. The optimization goal is to make the error as small as possible. Values of error and standard deviations less than   10  − 8    are considered as zero [35].



In this paper, POGSK is compared with the original algorithm GSK, PSO, DE and GWO. The Taguchi strategy in POGSK results in additional fitness function calls in each population generation. So for the sake of fairness, in this paper, the termination condition of the algorithm is set to the maximum number of function evaluations (NEFS) which is set to 10,000*problem_size. For example, the NEFS in a test with 30 variables is 300,000 times. The population size is set to 100 and the range of all test function solutions is set to [−100, 100]. Conduct 31 independent experiments each time to avoid special circumstances. The best results are marked in bold for all problems. The basic parameter settings of each algorithm are shown in Table 3.



Table 4 shows experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions of 10 variables under CEC2017. Table 5 shows the experimental results of POGSK, GWO and PSO. Compared with the original algorithm GSK, POGSK obtains excellent results in 26 test functions, five of which reach the minimum value of the test function. In contrast to DE, POGSK obtains excellent results on 23 functions. In contrast to GWO, POGSK obtains excellent results on 25 functions. In contrast to PSO, POGSK obtains excellent results on 25 functions. In addition, it is worth noting that POGSK obtained 9 times better results on functions 21–30. This shows that it has excellent search ability on Composition Functions.



Table 6 shows the experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions of 30 variables under CEC2017. Table 7 shows the experimental results of POGSK, GWO and PSO. Compared with the original algorithm GSK, POGSK obtains excellent results in 20 test functions, five of which reach the minimum value of the test function. In contrast to DE, POGSK obtains excellent results on 26 functions. Compared with GWO, POGSK obtains excellent results on 28 functions. In contrast to PSO, POGSK obtains excellent results on 25 functions. Furthermore, it is worth noting that POGSK obtained 7 times better results on functions 21–30. This again validates its excellent search ability on combinatorial functions.



To demonstrate the algorithm performance of each CEC2017 test problem for multiple numbers of objective function evaluation allowances, we conducted further experiments setting the algorithm termination conditions to 0.1*maximum NFES, 0.3*maximum NFES and 0.5*maximum NFES. Continue using the basic parameters of each algorithm shown in Table 3 without change. Table 8 shows experimental results of POGSK, GSK and PSO over 31 independent runs on 10 variables for multiple numbers of objective function evaluation. Table 9 shows experimental results of POGSK, GWO and DE. For presentation purposes, only the mean fitness values for 31 independent runs of the algorithm are shown in Table 8 and Table 9. It can be observed that in comparison with the 1*max NFES termination condition, POGSK still shows a strong optimization performance when NFES is reduced. It is worth noting that POGSK shows a slight decrease in optimization performance compared to the PSO algorithm. In particular, when NFES = 0.1*Max NFES, POGSK outperforms PSO for only 18 functions. We believe this performance is reasonable because the optimization capability of the POGSK algorithm is not fully utilized when NFES is reduced.



To better visualize the performance of POGSK, the convergence curves of the nine benchmark functions on 10 variables are shown in Figure 4 and the convergence curves of the nine benchmark functions on 30 variables are shown in Figure 5. The convergence curves of POGSK on functions 1–10 of 10 variables are not shown much because unimodal functions and simple multimodal functions are too simple to distinguish the search capability in the case of a few variables. We can see that in the middle and late stages of the algorithm, POGSK shows its powerful search ability to effectively avoid local optima. This reflects the fact that the addition of the OBL strategy and parallel strategy significantly enhances the search capability of the original algorithm. Through the above experimental comparison, it can be determined that POGSK has better capability in the CEC2017 test suite compared with GSK, PSO, DE and GWO.




4.2. Simulation Results on Resource-Scheduling Problems


In this paper, we used the fitness function proposed in Section 3.3 to test the optimized performance of POGSK in real scenarios. We consider the construction of an edge processing system consisting of ten processing units. The size of the tasks to be processed is a random distribution in the interval (0, 5] ×   10 6   instructions. The maximum evaluation times were set as 300,000 times and the population size as 100. In order to avoid exceeding the constraint, the constraint test is carried out when the solution of the algorithm enters the fitness function. Specific constraint testing steps are as follows:



1. Each individual is represented as   X i   = {  x  i , 1   ,   x  i , 2   , …,   x  i , m   }, the assignment list {  k 1  ,   k 2  , …,   k m  } is obtained by rounding each dimension of the individual.   K i   = b indicates that task i is assigned to node b. All nodes are traversed to find idle nodes and all nodes whose resource utilization is lower than 50%. The idle queues F and low resource utilization queues L are established, respectively. The node is traversed and the over-allocated node is found. Queue   E j   is established for the tasks on this node.



2. The tasks in queue   E j   are redistributed to the nodes in queue L or to F if L is empty. After each redistribution, the current node is checked to see if it is over-allocated. If not, the current operation is stopped and the process returns to step 3 until all nodes have been traversed. Based on the above results, the individuals need to be adjusted. For example,   x  i , 3    = 2.1 and   k 3   = 2. After the constraint test,   k 3   is adjusted to 6, then   x  i , 3    is updated randomly in the range [5.6, 6.4].



In this paper, we randomly generated 11 independent scenarios which submitted 30 tasks to the processing unit simultaneously. The best results are marked in bold for all scenarios. Table 10 shows other experimental parameters. These experimental parameters control the scene setting in the experiment. Each experiment was independently run 20 times. Table 11 shows the experimental performance of POGSK with GSK, GWO and PSO. You can see that out of the 11 experiments, POGSK won nine times. POGSK achieved excellent results in 9 scenarios compared to GSK. Compared with PSO, POGSK achieved excellent results in 9 scenarios. Compared with GWO, excellent results were obtained in 11 scenarios. This is due to the use of the parallel strategy and the OBL strategy. The Taguchi communication strategy allows the original GSK to effectively avoid falling into a local optimum. The population-merging communication strategy allows POGSK to not weaken algorithm performance due to the reduction in the number of individuals in the subpopulation. The use of the OBL strategy corrects the direction of convergence of the algorithm and increases the speed of convergence.



Figure 6 shows the fitness function value as the number of test function call changes. We can still see that POGSK performs well in avoiding local optimality. It shows that POGSK also performs well in constrained realistic optimization problems.





5. Conclusions


In this paper, the POGSK algorithm is proposed to solve the resource-scheduling problem in the IoV. Based on the original algorithm, POGSK uses OBL and parallel strategy. The information exchange of subpopulations uses the Taguchi strategy and the population-merger strategy. By testing with the original algorithm and some classical algorithms on CEC2017, it is shown that the new algorithm has stronger searching ability. Then, we applied POGSK to the resource-scheduling problem and carried out the simulation test, which also showed better results.



In the future, we can continue to improve the inter-group communication strategy and enhance the search capability of the algorithm. We can also study the application of POGSK in multi-objective problems, engineering optimization problems and binary optimization problems. We believe the new algorithm can also achieve better results.
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Figure 1. The approaches of POGSK. 
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Figure 2. The flowchart of POGSK. 
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Figure 3. Scheduling model. 
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Figure 4. Convergence curves of 9 functions on 10 variables. 
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Figure 5. Convergence curves of 9 functions on 30 variables. 
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Figure 6. Convergence curves of four situations. 
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Table 1. The position of the candidate individuals.






Table 1. The position of the candidate individuals.





	
Position

	
Dimension

	




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
Fitness Value






	
   x 1   

	
0

	
1

	
1

	
0

	
0

	
1

	
0

	
3




	
   x 2   

	
1

	
0

	
0

	
1

	
1

	
0

	
1

	
4
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Table 2. The Taguchi method is used to produce better individuals.
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Experiment Number

	
Dimension

	




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
Fitness Value






	
1

	
0

	
1

	
1

	
0

	
0

	
1

	
0

	
3




	
2

	
0

	
1

	
1

	
1

	
1

	
0

	
1

	
5




	
3

	
0

	
0

	
0

	
0

	
0

	
0

	
1

	
1




	
4

	
0

	
0

	
0

	
1

	
1

	
1

	
0

	
3




	
5

	
1

	
1

	
0

	
0

	
1

	
1

	
1

	
5




	
6

	
1

	
1

	
0

	
1

	
0

	
0

	
0

	
3




	
7

	
1

	
0

	
1

	
0

	
1

	
0

	
0

	
3




	
8

	
1

	
0

	
1

	
1

	
0

	
1

	
1

	
5




	
  x 1   cumulative fitness value

	
12

	
16

	
16

	
12

	
12

	
16

	
12

	
-




	
  x 2   cumulative fitness value

	
16

	
12

	
12

	
16

	
16

	
12

	
16

	
-




	
Selected dimension source

	
   x 1   

	
   x 2   

	
   x 2   

	
   x 1   

	
   x 1   

	
   x 2   

	
   x 1   

	
-




	
Position of the new individual

	
0

	
0

	
0

	
0

	
0

	
0

	
0

	
0
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Table 3. Parameter settings of each algorithm.
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	Algorithms
	Parameters Settings





	POGSK
	G = 4, R = 0.5, L = 1, r = 0.1,   K f   = 0.5,   K r   = 0.9, K = 1



	GSK
	  K f   = 0.5,   K r   = 0.9, K = 1



	PSO
	  V  m a x    = 6,   V  m i n    = −6, wMax = 0.9, wMin = 0.2, c1 = c2 = 2



	DE
	  b e t  a  m i n     = 0.2,   b e t  a  m a x     = 0.8, pCR = 0.2



	GWO
	  d →   = 2 (linearly decreased over iterations)
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Table 4. Experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions of 10 variables under CEC2017.
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Function

	
POGSK

	
GSK

	
DE




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
1

	
0

	
0

	
0

	
0

	
1243.046

	
917.0439




	
3

	
0

	
0

	
0

	
0

	
1521.115

	
622.8467




	
4

	
0

	
0

	
0

	
0

	
6.037244

	
0.307901




	
5

	
17.48551

	
4.653999

	
20.50791

	
3.041351

	
9.710514

	
1.981759




	
6

	
0

	
0

	
0

	
0

	
0

	
0




	
7

	
29.31611

	
4.914915

	
30.33268

	
3.706216

	
20.85221

	
1.880978




	
8

	
17.00134

	
4.4744

	
19.45566

	
3.871004

	
9.794002

	
1.752965




	
9

	
0

	
0

	
0

	
0

	
0

	
0




	
10

	
930.7502

	
187.4053

	
1022.488

	
101.7212

	
492.0772

	
107.547




	
11

	
0.288859

	
0.459088

	
0

	
0

	
3.254768

	
0.650172




	
12

	
102.7016

	
87.50214

	
80.9387

	
62.50609

	
162,272.8

	
84,043.21




	
13

	
4.39938

	
2.902828

	
6.489874

	
1.622716

	
1247.31

	
1044.067




	
14

	
0.87396

	
0.883004

	
5.982104

	
2.986793

	
26.23902

	
20.65982




	
15

	
0.15139

	
0.27689

	
0.313974

	
0.29665

	
28.17154

	
24.51716




	
16

	
0.99709

	
2.036369

	
2.917096

	
4.299084

	
3.314234

	
1.910263




	
17

	
1.82295

	
3.702029

	
9.250251

	
6.796455

	
1.89604

	
0.899154




	
18

	
1.67142

	
4.206737

	
1.673515

	
5.02943

	
967.1823

	
585.524




	
19

	
0.0497

	
0.056623

	
0.104905

	
0.114554

	
27.60279

	
33.09174




	
20

	
0.446523

	
0.312835

	
0.414759

	
0.211807

	
0

	
0




	
21

	
176.3012

	
57.57345

	
193.0073

	
51.14463

	
161.4336

	
36.74808




	
22

	
95.8506

	
16.53658

	
100.3894

	
0.814027

	
97.40993

	
9.366758




	
23

	
306.122

	
2.840924

	
317.7665

	
3.307184

	
312.0515

	
2.093624




	
24

	
306.697

	
81.28064

	
341.4343

	
21.0113

	
316.2438

	
39.04365




	
25

	
399.464

	
8.161678

	
427.1743

	
21.27511

	
410.4391

	
9.406591




	
26

	
296.774

	
17.96053

	
300

	
2.99E−13

	
300.5042

	
52.62727




	
27

	
389.217

	
0.239349

	
389.5044

	
0.052422

	
389.5575

	
0.2579




	
28

	
300

	
2.67E−13

	
303.1151

	
17.34415

	
430.3714

	
69.26502




	
29

	
243.926

	
5.174707

	
248.3445

	
5.043812

	
263.9279

	
8.011281




	
30

	
445.736

	
38.26841

	
7363.998

	
38,494.24

	
13,511.91

	
7149.584




	
Win

	
-

	
-

	
26

	
15

	
23

	
18




	
Lose

	
-

	
-

	
3

	
14

	
6

	
11
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Table 5. Experimental results of POGSK, PSO and GWO over 31 independent runs on 29 test functions of 10 variables under CEC2017.






Table 5. Experimental results of POGSK, PSO and GWO over 31 independent runs on 29 test functions of 10 variables under CEC2017.





	
Function

	
POGSK

	
GWO

	
PSO




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
1

	
0

	
0

	
4,497,091

	
11,601,735

	
1159.397

	
1605.775




	
3

	
0

	
0

	
259.1001

	
389.8524

	
0

	
0




	
4

	
0

	
0

	
9.201156

	
5.959095

	
3.91603

	
12.5333




	
5

	
17.48551

	
4.653999

	
13.25237

	
7.436721

	
28.50068

	
9.743601




	
6

	
0

	
0

	
0.464612

	
0.881753

	
4.077067

	
3.713828




	
7

	
29.31611

	
4.914915

	
26.10298

	
8.270842

	
21.02474

	
6.645744




	
8

	
17.00134

	
4.4744

	
11.49256

	
4.369928

	
15.46999

	
6.8877




	
9

	
0

	
0

	
3.344128

	
8.094291

	
0

	
0




	
10

	
930.7502

	
187.4053

	
455.7428

	
250.51

	
793.989

	
304.649




	
11

	
0.288859

	
0.459088

	
19.59614

	
25.7201

	
23.76794

	
11.81411




	
12

	
102.7016

	
87.50214

	
480,552.9

	
684,130.6

	
12,243.2

	
11,168.19




	
13

	
4.39938

	
2.902828

	
8697.586

	
4995.097

	
7018.655

	
5919.406




	
14

	
0.87396

	
0.883004

	
1108.531

	
1650.036

	
78.09055

	
101.3466




	
15

	
0.15139

	
0.27689

	
1291.43

	
1574.817

	
238.5524

	
322.1582




	
16

	
0.99709

	
2.036369

	
77.88443

	
69.76017

	
212.4675

	
118.4518




	
17

	
1.82295

	
3.702029

	
44.01848

	
19.88944

	
43.69786

	
25.65489




	
18

	
1.67142

	
4.206737

	
28,538.6

	
14,703.86

	
8380.526

	
5920.313




	
19

	
0.0497

	
0.056623

	
4300.029

	
5439.223

	
619.0984

	
767.2034




	
20

	
0.446523

	
0.312835

	
51.83766

	
39.56463

	
63.11953

	
46.19121




	
21

	
176.3012

	
57.57345

	
208.0848

	
19.82006

	
173.3363

	
63.70194




	
22

	
95.8506

	
16.53658

	
103.3866

	
17.3914

	
102.3462

	
0.964004




	
23

	
306.122

	
2.840924

	
315.7259

	
7.263185

	
361.6049

	
72.55207




	
24

	
306.697

	
81.28064

	
337.3761

	
43.27372

	
348.4116

	
106.5231




	
25

	
399.464

	
8.161678

	
439.6042

	
13.4442

	
425.0482

	
23.00597




	
26

	
296.774

	
17.96053

	
355.5426

	
169.6211

	
367.0571

	
174.7731




	
27

	
389.217

	
0.239349

	
397.2865

	
17.07097

	
432.788

	
42.47196




	
28

	
300

	
2.67E−13

	
537.1552

	
99.1675

	
377.7298

	
48.39093




	
29

	
243.926

	
5.174707

	
275.9368

	
34.50598

	
308.0478

	
38.2051




	
30

	
445.736

	
38.26841

	
601,218.1

	
684,207.6

	
4893.086

	
3573.952




	
Win

	
-

	
-

	
25

	
26

	
25

	
28




	
Lose

	
-

	
-

	
4

	
3

	
4

	
1
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Table 6. Experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions of 30 variables under CEC2017.






Table 6. Experimental results of POGSK, GSK and DE over 31 independent runs on 29 test functions of 30 variables under CEC2017.





	
Function

	
POGSK

	
GSK

	
DE




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
1

	
0

	
0

	
0

	
0

	
565.1619

	
467.5469




	
2

	
0.1710225

	
0.951944

	
1.27E−07

	
3.59E−07

	
78,485.43

	
11,969.56




	
3

	
2.3896

	
2.00382

	
8.0680906

	
15.72576

	
88.87305

	
1.39142




	
4

	
32.70072

	
9.603168

	
157.06186

	
10.58822

	
129.9884

	
9.275313




	
5

	
4.78E−05

	
7.06E−05

	
6.48E−07

	
1.44E−06

	
0

	
0




	
6

	
110.9293

	
59.25905

	
184.5384

	
10.80525

	
163.7576

	
10.61515




	
7

	
31.70902

	
9.949111

	
157.84376

	
8.553038

	
130.7675

	
8.930799




	
8

	
1.3961111

	
0.964445

	
0

	
0

	
0

	
0




	
9

	
6640.146

	
352.1547

	
6773.1382

	
280.2139

	
5270.445

	
300.3687




	
10

	
15.3527

	
8.172784

	
32.010214

	
37.36949

	
110.2576

	
10.49883




	
11

	
7473.1514

	
4191.488

	
5872.033

	
3954.488

	
4,064,732

	
1,326,017




	
12

	
68.10246

	
33.29562

	
97.603211

	
38.84956

	
146,977.1

	
70,134.12




	
13

	
47.58591

	
13.26488

	
56.580342

	
4.594124

	
59,985.92

	
29,927.38




	
14

	
32.795131

	
16.27245

	
16.78781

	
10.92508

	
20,442.66

	
11,240.16




	
15

	
225.2992

	
208.1208

	
795.64371

	
166.3631

	
588.2006

	
138.6957




	
16

	
47.13605

	
16.82453

	
198.98593

	
92.83664

	
162.9097

	
38.25502




	
17

	
104.56587

	
64.00951

	
36.67658

	
8.700766

	
424,098.9

	
151,960.3




	
18

	
22.242391

	
8.28202

	
10.97738

	
4.416147

	
19,255.23

	
9427.15




	
19

	
62.56111

	
50.53387

	
68.739206

	
65.88684

	
173.8984

	
49.83044




	
20

	
234.2304

	
20.45764

	
349.17774

	
8.751155

	
332.6374

	
8.650852




	
21

	
100.07935

	
0.441787

	
100

	
4.52E−13

	
1202.919

	
888.6275




	
22

	
374.781

	
6.959946

	
463.52232

	
59.16068

	
480.7536

	
7.607155




	
23

	
444.1957

	
6.710317

	
567.06927

	
29.46917

	
582.855

	
8.472587




	
24

	
385.91772

	
1.780967

	
386.92029

	
0.19508

	
387.3266

	
0.082705




	
25

	
685.0133

	
500.7473

	
1035.9259

	
330.0292

	
2326.135

	
82.41891




	
26

	
496.61134

	
7.400898

	
492.5301

	
7.147451

	
509.6858

	
2.319662




	
27

	
303.3373

	
18.54975

	
321.05968

	
43.75981

	
427.0414

	
13.69322




	
28

	
460.2316

	
41.83653

	
563.47372

	
111.3137

	
729.1611

	
76.50307




	
29

	
2045.674

	
80.2348

	
2080.6714

	
121.1253

	
20,973.93

	
6734.785




	
Win

	
-

	
-

	
20

	
12

	
26

	
15




	
Lose

	
-

	
-

	
9

	
17

	
3

	
14
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Table 7. Experimental results of POGSK, GWO and PSO over 31 independent runs on 29 test functions of 30 variables under CEC2017.






Table 7. Experimental results of POGSK, GWO and PSO over 31 independent runs on 29 test functions of 30 variables under CEC2017.





	
Function

	
POGSK

	
GWO

	
PSO




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
1

	
0

	
0

	
1.065E+09

	
9.63E+08

	
2399.513

	
3445.498




	
3

	
0.1710225

	
0.951944

	
28,199.902

	
10,867.38

	
0.059275

	
0.066189




	
4

	
2.3896

	
2.00382

	
160.71215

	
47.20044

	
60.0721

	
28.92923




	
5

	
32.70072

	
9.603168

	
78.084404

	
18.62267

	
152.9662

	
25.34413




	
6

	
4.78E−05

	
7.06E−05

	
4.5010838

	
2.508565

	
31.18878

	
7.532825




	
7

	
110.9293

	
59.25905

	
136.85245

	
23.06388

	
117.7735

	
23.32769




	
8

	
31.70902

	
9.949111

	
73.037706

	
18.75822

	
115.3826

	
25.07128




	
9

	
1.3961111

	
0.964445

	
524.43328

	
280.1444

	
2084.344

	
424.3998




	
10

	
6640.146

	
352.1547

	
2822.749

	
522.9234

	
3384.133

	
730.3928




	
11

	
15.3527

	
8.172784

	
296.75347

	
137.9677

	
90.02398

	
17.27491




	
12

	
7473.1514

	
4191.488

	
28,314,824

	
40,351,462

	
49,597.69

	
29,308.71




	
13

	
68.10246

	
33.29562

	
5,377,176.9

	
23,990,313

	
11,223.13

	
12,434.89




	
14

	
47.58591

	
13.26488

	
109,516.46

	
312,614.9

	
7271.957

	
5769.247




	
15

	
32.795131

	
16.27245

	
309,301.92

	
786,455

	
6660.235

	
7995.343




	
16

	
225.2992

	
208.1208

	
673.1389

	
239.9596

	
1021.81

	
208.1095




	
17

	
47.13605

	
16.82453

	
224.34632

	
107.809

	
518.3412

	
162.6259




	
18

	
104.56587

	
64.00951

	
449,259.69

	
471,076.9

	
113,207.1

	
84,886.55




	
19

	
22.242391

	
8.28202

	
680,051.23

	
1,796,562

	
10,046.08

	
14,864.67




	
20

	
62.56111

	
50.53387

	
316.20714

	
113.958

	
425.1631

	
129.9895




	
21

	
234.2304

	
20.45764

	
269.79579

	
15.67731

	
324.6484

	
26.97333




	
22

	
100.07935

	
0.441787

	
2207.2882

	
1473.069

	
1253.874

	
1862.064




	
23

	
374.781

	
6.959946

	
430.27783

	
38.0415

	
708.1221

	
116.4942




	
24

	
444.1957

	
6.710317

	
514.80412

	
50.32647

	
778.1768

	
72.14411




	
25

	
385.91772

	
1.780967

	
455.40908

	
24.09939

	
379.621

	
6.204345




	
26

	
685.0133

	
500.7473

	
1924.7685

	
304.0471

	
3503.61

	
1534.257




	
27

	
496.61134

	
7.400898

	
533.23588

	
12.11012

	
494.1057

	
71.15496




	
28

	
303.3373

	
18.54975

	
562.25313

	
62.77035

	
371.5156

	
61.83288




	
29

	
460.2316

	
41.83653

	
781.81747

	
149.2681

	
917.2247

	
292.7391




	
30

	
2045.674

	
80.2348

	
4,740,432.9

	
4,505,133

	
3024.257

	
4562.477




	
Win

	
-

	
-

	
28

	
26

	
25

	
26




	
Lose

	
-

	
-

	
1

	
3

	
4

	
3
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Table 8. Experimental results of POGSK, GSK and PSO over 31 independent runs on 10 variables for multiple numbers of objective function evaluation.
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Function

	
POGSK

	
GSK

	
PSO




	
0.1*Max

	
0.3*Max

	
0.5*Max

	
0.1*Max

	
0.3*Max

	
0.5*Max

	
0.1*Max

	
0.3*Max

	
0.5*Max






	
1

	
65,168.64

	
0.008729

	
9.00E−08

	
198,621.8

	
0.148295

	
1.24E−07

	
1507.631

	
1841.959

	
1481.528




	
3

	
1072.874

	
0.020955

	
1.37E−09

	
1258.366

	
0.150523

	
3.43E−08

	
3.622942

	
1.32E−06

	
0




	
4

	
4.46869

	
0.156832

	
0.000642

	
4.782125

	
0.0252

	
1.26E−05

	
6.788089

	
9.600704

	
4.619372




	
5

	
35.91597

	
28.17189

	
22.91988

	
35.00533

	
29.01222

	
23.6099

	
31.58184

	
30.49059

	
29.62402




	
6

	
0.67712

	
0.000231

	
3.46E−07

	
1.131835

	
0.001475

	
9.12E−06

	
9.346549

	
4.068655

	
5.220518




	
7

	
46.40205

	
36.92188

	
34.41898

	
50.00724

	
37.96985

	
34.8906

	
28.87082

	
24.42772

	
23.73282




	
8

	
34.3193

	
26.88238

	
22.69993

	
36.83458

	
28.55074

	
26.63988

	
17.84513

	
15.91932

	
14.53922




	
9

	
0.335181

	
0

	
0

	
1.190911

	
0

	
0

	
17.39665

	
6.587552

	
6.853679




	
10

	
1532.095

	
1315.312

	
1128.588

	
1525.435

	
1311.749

	
1192.912

	
837.2588

	
806.28

	
762.448




	
11

	
11.17021

	
5.209862

	
1.532807

	
12.14115

	
5.79704

	
3.51912

	
26.16613

	
28.79452

	
25.05342




	
12

	
91,453.6

	
486.7377

	
199.4322

	
164,573.9

	
617.8236

	
179.6806

	
30,604.58

	
11,899.81

	
16,792.79




	
13

	
47.41327

	
12.20971

	
8.403044

	
60.55603

	
11.71106

	
9.488802

	
6398.473

	
9347.321

	
6564.624




	
14

	
27.46006

	
19.86859

	
11.84031

	
28.9843

	
18.29269

	
15.361

	
1203.128

	
558.986

	
266.1244




	
15

	
9.511309

	
2.529362

	
0.612543

	
10.67048

	
2.489827

	
0.667059

	
2532.754

	
1061.556

	
548.5125




	
16

	
83.47293

	
19.34939

	
4.684275

	
91.10372

	
36.5609

	
13.88171

	
216.4358

	
208.4391

	
229.0174




	
17

	
71.5188

	
30.70673

	
18.47544

	
85.25013

	
44.12263

	
29.57548

	
49.02151

	
50.02125

	
45.54325




	
18

	
74.44131

	
14.67361

	
5.338491

	
162.1569

	
15.29351

	
4.686504

	
13,029.71

	
8474.698

	
8372.767




	
19

	
6.425225

	
1.749615

	
0.682905

	
7.216083

	
1.944351

	
0.892702

	
3491.462

	
2753.934

	
2199.245




	
20

	
68.77453

	
11.38535

	
1.397734

	
81.44863

	
21.28738

	
3.679158

	
97.71285

	
83.91263

	
75.89307




	
21

	
188.5297

	
184.346

	
189.9476

	
209.0319

	
202.3022

	
178.1039

	
171.7462

	
178.0085

	
189.2755




	
22

	
103.8606

	
100.5495

	
100.2226

	
105.9777

	
102.3459

	
101.2098

	
131.0425

	
96.96854

	
135.8181




	
23

	
335.3295

	
325.8999

	
317.8954

	
335.7887

	
327.2087

	
323.999

	
377.3523

	
369.7106

	
371.4575




	
24

	
357.042

	
341.9053

	
316.7562

	
361.736

	
347.599

	
348.096

	
330.8915

	
320.122

	
347.5205




	
25

	
403.4286

	
409.5803

	
404.0327

	
420.6563

	
426.9033

	
422.8455

	
415.486

	
420.797

	
423.8288




	
26

	
302.3367

	
296.7742

	
296.7742

	
301.0423

	
300

	
300

	
395.6739

	
392.4169

	
469.6308




	
27

	
391.4686

	
389.2144

	
389.2638

	
391.1973

	
389.4444

	
389.4419

	
446.6022

	
436.6223

	
439.4359




	
28

	
383.6587

	
300.0077

	
303.8159

	
432.3408

	
312.2833

	
300

	
405.3951

	
389.2501

	
350.7108




	
29

	
310.7228

	
273.0201

	
257.9113

	
311.5873

	
277.9013

	
266.0836

	
319.5175

	
320.2717

	
321.4858




	
30

	
11,6124.7

	
735.7863

	
508.8163

	
169,420.9

	
26,998.33

	
474.5937

	
73,193.34

	
14,707.45

	
9126.257




	
win

	
-

	
-

	
-

	
25

	
24

	
23

	
18

	
22

	
24




	
lose

	
-

	
-

	
-

	
4

	
5

	
6

	
11

	
7

	
5
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Table 9. Experimental results of POGSK, GWO and DE over 31 independent runs on 10 variables for multiple numbers of objective function evaluation.
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Function

	
POGSK

	
GWO

	
DE




	
0.1*Max

	
0.3*Max

	
0.5*Max

	
0.1*Max

	
0.3*Max

	
0.5*Max

	
0.1*Max

	
0.3*Max

	
0.5*Max






	
1

	
65,168.64

	
0.008729

	
9.00E−08

	
2,346,406

	
1417856

	
9.565626

	
16,135,020

	
20,544.91

	
4898.193




	
3

	
1072.874

	
0.020955

	
1.37E−09

	
2051.369

	
948.2263

	
0.752611

	
14,530.99

	
8845.123

	
5727.654




	
4

	
4.46869

	
0.156832

	
0.000642

	
22.33487

	
11.35453

	
29.34763

	
12.85429

	
6.929505

	
6.505718




	
5

	
35.91597

	
28.17189

	
22.91988

	
18.45571

	
12.63573

	
13.74093

	
30.60479

	
18.81837

	
14.40469




	
6

	
0.67712

	
0.000231

	
3.46E−07

	
1.228019

	
0.823463

	
3.763687

	
1.810073

	
0.001324

	
6.07E−07




	
7

	
46.40205

	
36.92188

	
34.41898

	
37.21266

	
29.32247

	
506.0761

	
44.70667

	
30.20338

	
25.16062




	
8

	
34.3193

	
26.88238

	
22.69993

	
15.91906

	
15.30446

	
21.20127

	
31.77074

	
20.53481

	
14.54278




	
9

	
0.335181

	
0

	
0

	
6.672216

	
8.604824

	
522,798.1

	
41.7464

	
0.017794

	
2.17E−07




	
10

	
1532.095

	
1315.312

	
1128.588

	
677.9308

	
573.4273

	
11,452.42

	
1210.891

	
851.5756

	
702.4145




	
11

	
11.17021

	
5.209862

	
1.532807

	
30.60828

	
31.73361

	
1246.452

	
47.17272

	
8.057127

	
5.097437




	
12

	
91,453.6

	
486.7377

	
199.4322

	
1,407,448

	
643,050.9

	
2140.969

	
6,603,038

	
1,351,308

	
594,344.9




	
13

	
47.41327

	
12.20971

	
8.403044

	
11065.19

	
12,549.47

	
90.00417

	
16,654.35

	
4276.951

	
1909.666




	
14

	
27.46006

	
19.86859

	
11.84031

	
2450.4

	
1269.145

	
52.02613

	
961.5601

	
184.9314

	
110.3554




	
15

	
9.511309

	
2.529362

	
0.612543

	
5154.414

	
3513.667

	
25,350.52

	
1426.507

	
236.2673

	
121.9112




	
16

	
83.47293

	
19.34939

	
4.684275

	
118.3694

	
120.0137

	
4220.433

	
96.57352

	
22.84995

	
9.823819




	
17

	
71.5188

	
30.70673

	
18.47544

	
68.63565

	
61.1111

	
60.51609

	
53.16403

	
29.56227

	
14.18701




	
18

	
74.44131

	
14.67361

	
5.338491

	
24,579.32

	
25,987.05

	
201.3137

	
41,806.47

	
6779.277

	
2723.725




	
19

	
6.425225

	
1.749615

	
0.682905

	
9683.89

	
7409.389

	
106.6633

	
2030.003

	
296.4361

	
199.3466




	
20

	
68.77453

	
11.38535

	
1.397734

	
88.42235

	
71.2303

	
317.6138

	
37.92879

	
4.11068

	
0.002431




	
21

	
188.5297

	
184.346

	
189.9476

	
211.797

	
205.8708

	
342.6138

	
209.201

	
179.1673

	
172.5472




	
22

	
103.8606

	
100.5495

	
100.2226

	
111.9155

	
108.5442

	
436.9162

	
126.1442

	
102.526

	
101.7367




	
23

	
335.3295

	
325.8999

	
317.8954

	
323.4811

	
317.4113

	
369.5282

	
332.2919

	
319.7871

	
316.0538




	
24

	
357.042

	
341.9053

	
316.7562

	
354.3611

	
335.1408

	
398.7922

	
361.1658

	
352.334

	
343.8135




	
25

	
403.4286

	
409.5803

	
404.0327

	
439.5899

	
433.9101

	
552.888

	
450.7069

	
431.3259

	
420.7792




	
26

	
302.3367

	
296.7742

	
296.7742

	
370.8195

	
374.8314

	
275.9333

	
541.4581

	
399.4515

	
350.68




	
27

	
391.4686

	
389.2144

	
389.2638

	
396.9011

	
394.4558

	
852,804.2

	
397.4228

	
391.6064

	
390.2805




	
28

	
383.6587

	
300.0077

	
303.8159

	
551.6053

	
539.1753

	
3358.777

	
549.7038

	
511.7699

	
488.9492




	
29

	
310.7228

	
273.0201

	
257.9113

	
299.4216

	
291.2249

	
3191.632

	
345.5497

	
296.2041

	
280.3842




	
30

	
116,124.7

	
735.7863

	
508.8163

	
491,702

	
795,289.2

	
255,507.2

	
285,465.2

	
70,612.38

	
32,384.37




	
win

	
-

	
-

	
-

	
21

	
23

	
26

	
22

	
21

	
21




	
lose

	
-

	
-

	
-

	
8

	
6

	
3

	
7

	
8

	
8
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Table 10. Experimental parameter settings.






Table 10. Experimental parameter settings.





	Symbols
	Descriptions
	Values





	   S i   
	Size of the ith task
	(0, 5] ×   10 6   instr



	   H j   
	Processing capacity of the jth processing unit
	[0.5, 2] ×   10 6   instr/ms



	CR(i,k)
	The number of    r e s o u r c e s  k   required by   T i  
	[0, 5]



	PR(i,k)
	The number of    r e s o u r c e s  k   owned by   P j  
	[5, 25]



	TL(i,j)
	The transmission buffer time from   T i   to   P j  
	[0, 3] ms



	    c s  i   
	Deadtime of   T i  
	  S i   + [0, 3] ms
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Table 11. A total of 30 tasks were assigned to 10 processing unit experiments.






Table 11. A total of 30 tasks were assigned to 10 processing unit experiments.





	
Scenario

	
POGSK

	
GSK

	
PSO

	
GWO




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
1

	
5.718209

	
0.144952

	
5.855939

	
0.135115

	
6.053149

	
0.248256

	
8.991358

	
0.330173




	
2

	
6.329143

	
0.340846

	
6.485126

	
0.241881

	
6.265463

	
0.270268

	
9.997938

	
0.317971




	
3

	
5.981696

	
0.163071

	
6.003088

	
0.158414

	
6.339609

	
0.287226

	
9.344461

	
0.246512




	
4

	
5.212316

	
0.204313

	
5.36799

	
0.227842

	
5.917752

	
0.393545

	
8.974101

	
0.311377




	
5

	
5.245472

	
0.162959

	
5.326294

	
0.247776

	
5.428665

	
0.832814

	
9.157856

	
0.251572




	
6

	
5.624188

	
0.115448

	
5.789302

	
0.231226

	
6.21364

	
0.559447

	
9.555559

	
0.421648




	
7

	
6.661226

	
0.325418

	
6.793765

	
0.249867

	
6.975366

	
0.409818

	
10.00448

	
0.244958




	
8

	
5.158754

	
0.278578

	
4.992622

	
0.156462

	
5.53684

	
0.151473

	
8.233507

	
0.457459




	
9

	
5.567888

	
0.096427

	
5.70977

	
0.105788

	
5.874641

	
0.139983

	
8.946471

	
0.32081




	
10

	
5.828361

	
0.208058

	
5.929272

	
0.293122

	
6.330107

	
0.47567

	
9.343315

	
0.307779




	
11

	
5.677546

	
0.008842

	
5.558177

	
0.175736

	
5.274045

	
0.673208

	
9.222462

	
0.412783




	
Win

	
-

	
-

	
9

	
6

	
9

	
9

	
11

	
9




	
Lose

	
-

	
-

	
2

	
5

	
2

	
2

	
0

	
2
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