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Abstract: This work deals with an optimal asset allocation problem for a defined contribution (DC)
pension plan during its accumulation phase. The contribution rate is assumed to be proportional
to the individual’s salary. The salary follows a Heston stochastic volatility model with jumps, and
there exists common shock dependence between the salary and the volatility. Since the time horizon
of pension management is quite long, the influence of inflation is considered in the given context.
The aim of the pension plan described in this paper is to reduce fluctuations in terminal wealth by
investing in the bond and the stock. Through the dynamic programming principle, the Hamilton–
Jacobi–Bellman equation is shown. The explicit expression of the investment decision is derived by
solving the Hamilton–Jacobi–Bellman equation. In the last part, a numerical analysis is shown to
illustrate the impacts of different parameters on the optimal investment policy.

Keywords: DC pension plan; stochastic volatility; Poisson process; common shock dependence;
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1. Introduction

A pension fund is an important financial instrument for individuals to reallocate in-
comes and sustain consumption after retirement. Generally, according to the determination
of benefits, there are two typical types of pension plans: defined benefit (DB) and defined
contribution (DC) pension plans. In DB plans, benefits are fixed in advance, while, in the
DC case, contributions are fixed by the trustee. There are two phases in a pension scheme:
the accumulation phase, which is the period from the entry time to the retirement time, and
the decumulation phase, which is the period from the retirement time to death.

Next, we review the literature relevant to our paper. In the accumulation phase of a DC
pension scheme, the contributor contributes part of his/her salary to the fund. Since the salary
is related to the profitability of the company, the works of Bodie et al. [1] and Dybvig and Liu [2]
assume that the salary process is spanned by the stock price. In addition, Guan and Liang [3]
and Li and Wang [4] describe the salary process using a Heston stochastic volatility model, i.e.,
the salary is correlated with the volatility of the stock. Furthermore, Zeng et al. [5] assume that
the salary process is related to stochastic volatility. Based on [3–5], we add an independent
random process to the stochastic salary process to be closer to the reality.

It is appropriate to insert a jump process in the stochastic salary due to a promotion and
job-hopping. Moreover, it is realistic to introduce jumps in volatility, which represent some
unexpected events, such as an economic crisis or policy adjustments by the government. In
our model, the contribution rate of the pension scheme is proportional to the salary of the
individual, the dynamics of which follows a Heston stochastic volatility model with jumps.
In addition, salary and variance are correlated by means of a common shock. In reality, a
common component may depict an event that has an impact on both salary and volatility.
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Common shock models are widely used in the area of actuarial science. For instance, in
Liang et al. [6], the insurance risk model is modulated by a compound Poisson process, and
the two-jump-number processes are correlated through a common shock. Liang et al. [7]
assume that jumps in both the risky asset and insurance risk process are correlated through
common shock dependence.

Since the period of a pension scheme is usually long, the inflation risk should be con-
sidered during the optimization phase. There are various studies focused on the stochastic
optimization problem for DC pension plans under the inflation risk. For example, ref. [8]
explores the optimal asset allocation problem with downside protection and stochastic
inflation risk. Yao et al. [9] solve an optimal portfolio decision problem under the inflation
risk and mean-variance criterion. Other relevant works on optimal control under inflation
risk can be found in [10,11]. The inflation risk is also involved in our model. Instead of
a pure diffusion process, we introduce a jump diffusion process to model the nominal
price level of a representative bundle of commodity goods in the market. In other words,
the dynamics of the price index given by Zhang et al. [12] and Zhang and Ewald [13] are
extended in our model, and a Poisson jump is included in the evolution of the index price.

Stochastic processes are commonly used to model the uncertainty in the financial
market. For further study of stochastic processes, we refer interested readers to [14–20]. In
our paper, we assume that the pension manager is allowed to invest in two types of assets:
the bond and the stock. The dynamics of the bond price follows a geometric Brownian
process. The stock price is driven by a drifted Brownian motion and a Poisson jump. The
similar asset model is widely used in various asset allocation problems. For example,
Merton [21] considers Poisson jumps in an optimal dynamic portfolio decision problem.
In a DC pension funding framework, Sun et al. [22] deal with the pre-commitment and
equilibrium investment strategies by incorporating jumps into the risky asset process. More
relevant works on jump diffusion asset allocation problems in pension management can be
found in [23–28].

The aim of pension management is to find the optimal investment and minimize the
expected distance between the terminal wealth and two given targets. To find the optimal
policy, the dynamic programming principle is used to derive the Hamilton–Jacobi–Bellman
(HJB) equation. From the classical optimal control theory, once a continuously differentiable
solution of the HJB equation is explicitly solved, the optimal value function and the optimal
policy can be derived. In our paper, by solving the HJB equation, we show the explicit
form of the optimal investment policy and the optimal value function. The dynamic
programming principle and HJB equation are applicable to various optimization problems.
However, the drawback is that if there is no explicit solution for the HJB equation, then
the dynamic programming principle fails to solve the problem. In our paper, there is a
continuously differentiable solution for the HJB equation, since there is only one specific
boundary condition in the HJB equation. If there are more than two boundary conditions
for the optimization problem, it will be more difficult to find the explicit expression for the
value function as well as the optimal policy. When there is no explicit solution for the HJB
equation, it is more appropriate to adopt the maximum principle, Martingale approach or
viscosity solution.

The rest of the paper is structured as follows. Section 2 describes the financial market
with the jump diffusion price index, as well as two tradable assets that are of interest for
pension management. This section also gives the pension model. Section 3 deals with a
stochastic optimal control problem in order to minimize the fluctuation in the final real
wealth over a finite horizon. The closed form of the investment strategy is given by solving
the HJB equation. Finally, Section 4 gives the sensitivity analysis and Section 5 establishes
the conclusions.

2. Model Assumptions and Notations

Consider a probability space (Ω, F ,P), with P as the real-world probability mea-
sure on Ω and F = FW ∨F N . The filtration FW =

{
FW

t
}

t≥0 is generated by a
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five-dimensional standard Brownian motion (Wr, WΠ, WS, WL, WV), i.e., FW
t = σ{(Wr(s),

WΠ(s), WS(s), WL(s), WV(s)); 0 ≤ s ≤ t}, t ≥ 0, which represents the risk sources of the
interest rate, inflation, stock price, salary and its volatility, respectively. Wr and WΠ are
correlated, which is captured by the coefficient ρΠr ∈ (−1, 1). WL and WV are also corre-
lated, which is captured by the coefficient ρLV ∈ (−1, 1). Let the filtration F N =

{
F N

t
}

t≥0
be generated by a five-dimensional Poisson process (NΠ, NS, NL, NV , Nc) with intensity
(λΠ, λS, λL, λV , λc), where λΠ, λS, λL, λV , λc ∈ R+, i.e., F N

t =
σ{NΠ(s), NS(s), NL(s), NV(s), Nc(s); 0 ≤ s ≤ t}, t ≥ 0, which represent the jumps in in-
flation, stock price, salary, volatility and common shocks between two jumps, respectively.
Suppose that Poisson processes are mutually independent. Moreover, Brownian motions
are independent of Poisson processes on (Ω, F ,P).

2.1. The Financial Market

Following the work of Eisenberg [29], we assume that the discount factor is a geometric
Brownian motion:

exp
[
r + mt + ζWr(t)

]
,

where r, m ∈ R+, and ζ ∈ R.
The financial market consists of two underlying instruments that are traded continu-

ously over time and perfectly divisible. Suppose that there are no transaction costs or taxes
in the given context. The bond S0(t) evolves according to the the following dynamics:

dS0(t)
S0(t)

= (m +
ζ2

2
)dt + ζdWr(t), (1)

with initial price S0(0) = er.
Besides the cash account, the trustee also has the opportunity to invest the fund into a

stock with the dynamics

dS(t)
S(t−) = µS(t)dt + σSS(t)dWS(t) + ηS(t)dNS(t), (2)

where µS(t) is the appreciation rate for the stock. σSS(t) is the volatility associated with the
diffusion component of the stock price. ηS(t) denotes the magnitude of a jump. We state
that ηS(t) > −1 to prevent the process from jumping to a value below zero. WS describes
the fluctuation, and NS describes the jump in the stock price. For simplicity, it is assumed
that WS and NS are independent stochastic processes.

2.2. The Pension Model

This paper considers the accumulation phase of a DC-type pension plan. Assume that
the entry time of a pensioner is the initial time 0, and his/her retirement time is the terminal
time in our model. We denote the pensioner’s death time as τ, which is a positive random
variable defined on the probability space (Ω, F ,P). The mortality rate λ(t) is defined as

λ(t) = lim
4t→0

P(t < τ < t +4t | τ > t)
4t

.

In a general pension plan, the pensioner pays contributions before the retirement time
T, where T ∈ R+. The level of the contribution rate is usually defined as a proportion
ξ(0 ≤ ξ ≤ 1) of the pensioner’s salary. In previous works, such as refs. [3–5], it is assumed
that the stochastic salary is driven by the Heston stochastic volatility model, i.e., the salary
process has stochastic volatility and the salary return variance is governed by a mean-
reverting process. To be more realistic, we add a Brownian motion WL in the salary process
to describe the fluctuation in the salary itself. In addition, we also assume that there are
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possible common Poisson jumps between the salary process and the stochastic variance.
The dynamics of the investor’s salary L(t) follow

dL(t)
L(t−) = µL(t)dt + σLS(t)dWS(t) +

√
V(t)dWL(t) + ηLL(t)dNL(t) + ηLc(t)dNc(t),

L(0) = L0,
(3)

while the stochastic volatility V(t) is governed by

dV(t) = κ(δ−V(t))dt + σV

√
V(t)dWV(t) + ηVV(t)dNV(t) + ηVc(t)dNc(t). (4)

Regarding the parameters in (3), µL(t) denotes the instantaneous expected rate of the
salary, and σLS(t) is the instantaneous volatility scale factor measuring how the risk source
of the stock price affects the salary. ηLL(t)(> −1) and ηLc(t)(> −1) denote the magnitude
of the jumps associated with Poisson processes NL(t) and Nc(t), respectively. NL describes
the jump in the salary itself, and Nc describes the possible common jumps between the
salary (given by Equation (3)) and the stochastic volatility V(t) (given by Equation (4)). As
introduced earlier, we state that the Brownian motion WL in Equation (3) and the Brownian
motion WV in Equation (4) are correlated with the coefficient ρLV ∈ (−1, 1).

Regarding the parameters in (4), κ denotes the mean-reversion rate, δ denotes the
long-run mean, and σV is the volatility coefficient. The assumption 2κδ > σ2

V is proposed
to guarantee the volatility process V(t) > 0. The Brownian motion WV describes the
fluctuation in the volatility, and the Poisson process NV describes the jump in the volatility.
We state that ηVV > −1 and ηVc > −1 to prevent the process V(t) from jumping to a
value below zero. It should be noted that all Poisson processes are mutually independent.
Moreover, Brownian motions are independent of Poisson processes.

3. The Optimal Portfolio

The aim of the stochastic control problem is to find the optimal investment decision.
The pension trustee continuously decides on the weights invested into the cash account
and the stock. We denote the nominal wealth at time t as X(t). Under the investment policy
chosen, it is easy to obtain the following stochastic differential equation, which describes
the evolution of the wealth:

dX(t) = X(t)(1− π(t))
dS0(t)
S0(t)

+ X(t−)π(t)
dS(t)
S(t−) + ξ(t)L(t)dt, (5)

with X(0) = X0 > 0. π(t) denotes the weight invested into the stock at time t. The
remainder, 1 − π(t), is the proportion invested into the cash account. Borrowing and
short-selling are permitted in the given context. A negative value of π(t) means that the
pension trustee takes a short position in the stock, while a negative value of 1−π(t) reflects
that the trustee borrows money from the bank to purchase the risky asset.

By substituting Equations (1) and (2) into Equation (5), we obtain that

dX(t) = X(t)
[
(m +

ζ2

2
) + π(t)(µS(t)− (m +

ζ2

2
))
]
dt + ξ(t)L(t)dt

+X(t)(1− π(t))ζ(t)dWr(t) + X(t)π(t)σSS(t)dWS(t) + X(t−)π(t−)ηS(t)dNS(t).

As mentioned in Section 1, the time horizon for the accumulation phase of a pension
fund (in our model, from time 0 to T) is usually long; hence, the influence of inflation is
considered in the given context.

The price index at time t is denoted by Π(t), which refers to the purchase power per
unit of money. The dynamics are driven by a jump diffusion process of the following type:

dΠ(t)
Π(t−) = µΠ(t)dt + σΠ(t)dWΠ(t) + ηΠ(t)dNΠ(t), (6)
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with initial value Π(0) = Π0 > 0. µΠ(t) is the instantaneous expected inflation rate. σΠ(t)
is the instantaneous volatility associated with the diffusion component, and ηΠ(t) denotes
the magnitude of a jump with the condition ηΠ > −1 to ensure that the price index remains
strictly positive. In Equation (6), WΠ and NΠ are independent stochastic processes.

Next, we define the corresponding real salary process as the following:

Definition 1. The real salary process is defined by

L(t) =
L
Π
(t).

Applying the quotient rule of Itô’s formula, L is given by

dL(t) = d
[ L

Π

]
(t)

= L(t)(µL(t)− µΠ(t) + σ2
Π(t))dt + L(t)σLS(t)dWS(t) + L(t)

√
V(t)dWL(t)

−L(t)σΠ(t)dWΠ(t) + L(t−)ηLL(t)dNL(t) + L(t−)ηLc(t)dNc(t)
+L(t−)(η2

Π(t)− ηΠ(t))dNΠ(t).

(7)

with initial value L(0) = L0/Π0 , L0.
Then, the real wealth process with the consideration of inflation follows

dX(t) = d
[X

Π

]
(t)

= X(t)
[
(m +

ζ2

2
) + π(t)(µS(t)− (m +

ζ2

2
) + ζσΠ(t)ρΠr(t))− µΠ(t) + σ2

Π(t)

−ζσΠ(t)ρΠr(t)
]
dt + ξ(t)L(t)dt + X(t)(1− π(t))ζdWr(t) + X(t)π(t)σSS(t)dWS(t)

−X(t)σΠ(t)dWΠ(t) + X(t−)π(t)ηS(t)dNS(t) + X(t−)(η2
Π(t)− ηΠ(t))dNΠ(t),

(8)

with initial condition X(0) = X0/Π0 , X0.
Next, we restrict the strategies in order to fulfil some technical conditions. We call a

strategy π(·) an admissible control process if it is Ft-measurable, Markovian and stationary
and satisfies the condition

E
{∫ ∞

0
π2(t)dt

}
< ∞. (9)

Denote AX0,L0
the set of all admissible controls, i.e., it is the set of all measurable pro-

cesses {π(t)}t≥0, which satisfies Equation (9). Next, we try to find the optimal investment
strategy for the DC pension plan manager under AX0,L0

.
Assume that the pension trustee has a preference to minimize the expected value of

the fluctuations in the terminal wealth until time τ ∧ T, where T is the terminal time of the
control problem. The objective is to minimize

J(t, X, L, V) = Et

[[
α1 + β1(X(T)− X∗1 )

]2 · 1{τ>T} +
[
α2 + β2(X(τ)− X∗2 )

]2 · 1{τ≤T}

∣∣∣τ > t
]

, (10)

with Et as the conditional expectation given the filtration {Ft}t≥0. X∗1 and X∗2 are two
positive constants representing the target funds of the plan at time T and τ, respectively.
The deviation between the actual fund and the target fund is called the discontinuity risk;
see Wang et al. [30].

In quadratic loss functions (10), any deviations between X and X∗1 (or X∗2 ) are penalized.
To be more specific, we assumed that α1, α2 > 0 and β1, β2 < 0 in Equation (10) to
characterize that under-funding is more penalized than over-funding. A similar setting can
be seen in Devolder, Janssen and Manca [31] and Zhang and Guo [32].

For a better understanding, we use a flowchart to describe the whole research process
in Figure 1.
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Figure 1. Research process.

According to

Et

[[
α1 + β1(X(T)− X∗1 )

]2 · 1{τ>T}

∣∣∣τ > t
]
= Et

[[
α1 + β1(X(T)− X∗1 )

]2e−
∫ T

t λ(u)du
]

,

and

Et

[[
α2 + β2(X(τ)− X∗2 )

]2 · 1{τ≤T}

∣∣∣τ > t
]
= Et

[∫ T

t

[
α2 + β2(X(s)− X∗2 )

]2
λ(s)e−

∫ s
t λ(u)duds

]
,

the objective function with an uncertain lifetime can be converted into the following
deterministic horizontal function:

J(t, X, L, V)

= Et

[∫ T

t

[
α2 + β2(X(s)− X∗2 )

]2
λ(s)e−

∫ s
t λ(u)duds +

[
α1 + β1(X(T)− X∗1 )

]2e−
∫ T

t λ(u)du
]

.

The dynamic programming approach is used to solve the stochastic optimization
problem. Define the value function as

ϕ(t, X, L, V) = min
{π}

{
J(t, (X, L, V); π) : subject to (8), (7), (4)

}
.

In stochastic optimal control theory, the HJB equation accomplishes the connection
between the value function and the optimal control; see, for instance, the books [33–37] and
the papers [38–40]. The HJB equation is

min
{π}

Ψ(π) = 0, (11)

where
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Ψ(π)

= ϕt + λ
[
α2 + β2(X− X∗2 )

]2 − λϕ + ϕXX
[
(m +

ζ2

2
) + π(µS − (m +

ζ2

2
) + ζσΠρΠr)

−µΠ + σ2
Π − ζσΠρΠr

]
+ ϕXξL +

1
2

ϕX XX2
[
(1− π)2ζ2 + π2σ2

SS + σ2
Π − 2(1− π)

·ζσΠρΠr

]
+ ϕLL(µL − µΠ + σ2

Π) +
1
2

ϕL LL2
(σ2

LS + V + σ2
Π) + ϕVκ(δ−V) +

1
2

ϕVVσ2
VV

+ϕX LX L
[
πσSSσLS + σ2

Π − (1− π)ζσΠρΠr

]
+ϕLV LVσVρLV+λS

[
ϕ(t, X(1+πηS), L, V)

−ϕ(t, X, L, V)
]
+ λL

[
ϕ(t, X, L(1 + ηLL), V)− ϕ(t, X, L, V)

]
+ λV

[
ϕ(t, X, L, V + ηVV)

−ϕ(t, X, L, V)
]
+ λC

[
ϕ(t, X, L(1 + ηLc), V + ηVc)− ϕ(t, X, L, V)

]
+λΠ

[
ϕ(t, X(1 + (η2

Π − ηΠ)), L(1 + (η2
Π − ηΠ)), V)− ϕ(t, X, L, V)

]
,

(12)

with terminal condition ϕ(T, X, L, V) =
[
α1 + β1(X(T) − X∗1 )

]2. ϕt, ϕX, ϕL, ϕV , ϕX X,
ϕL L, ϕVV , ϕX L and ϕLV denote the first- and second-order partial derivatives of the value
function ϕ with respect to t, X, L and V, respectively.

If there exists a twice continuously differentiable solution of Equation (12), strictly
convex, then the minimizer of the investment strategy is obtained by the optimal functional
π∗, which satisfies the following necessary conditions:

Ψ(π∗) = 0, (13)

dΨ
dπ

(π∗) = 0. (14)

We shall frequently use the following notations. Define

v1 = µS − (m +
ζ2

2
) + ζσΠρΠr + λSηS, (15)

v2 = ζσΠρΠr + σSSσLS, (16)

v3 = ζσΠρΠr − ζ2, (17)

v4 = ζ2 + σ2
SS + λSη2

S. (18)

By using the first-order condition and solving the HJB equation, the explicit form of
the optimal investment decision is given by the following theorem.

Theorem 1. (Main result) The optimal investment strategy on the stock is given by

π∗(t) = −2ϕ1(t)X + ϕ2(t) + ϕ5(t)L
2ϕ1(t)X

· v1

v4
− ϕ5(t)L

2ϕ1(t)X
· v2

v4
− v3

v4
.

The value function is

ϕ(t, X, L, V) = ϕ1(t)X2
+ ϕ2(t)X + ϕ3(t, V)L2

+ ϕ4(t)L + ϕ5(t)X L + ϕ6(t).

In the above equations,

ϕ1(t) = λβ2
2

∫ T

t
e
∫ s

t a1(u)duds + β2
1e
∫ T

t a1(s)ds, (19)
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ϕ2(t) = 2λ(α2β2 − β2
2X∗2 )

∫ T

t
e
∫ s

t a2(u)duds + 2β1(α1 − β1X∗1 )e
∫ T

t a2(s)ds, (20)

ϕ3(t, V) =
∫ T

t
ϕ̃31(t; τ)eϕ̃32(t;τ)Vdτ, (21)

ϕ4(t) =
∫ T

t
e
∫ s

0 [a4(u)+λcηLc ]du
[
ξϕ2(s)−

ϕ2(s)ϕ5(s)
2ϕ1(s)

· v1(v1 + v2)

v4

]
ds · e−

∫ t
0[a4(s)+λcηLc ]ds, (22)

ϕ5(t) = 2
∫ T

t
e
∫ s

0 [a5(u)+λcηLc ]duξϕ1(s)ds · e−
∫ t

0[a5(s)+λcηLc ]ds, (23)

ϕ6(t) =
∫ T

t
e
∫ s

t a1(u)du
[
λ(α2 − β2X∗2 )

2 −
ϕ2

2
4ϕ1
·

v2
1

v4

]
ds + (α1 − β1X∗1 )

2e
∫ T

t a1(s)ds, (24)

where a1, a2, ϕ̃31, ϕ̃32, a4 and a5 are given by Equation (A6), Equation (A7), Equation (A28),
Equation (A27), Equation (A8) and Equation (A9), respectively.

Proof. See Appendix A.

4. Sensitivity Analysis

In order to investigate the influence of the parameters on the optimal investment
decision, we provide a sensitivity analysis in this section. Unless otherwise stated, the
employed parameters of the model are based on the following annualized benchmark
values presented in Table 1. In what follows, we mainly explore the impacts of the volatility
σLS, the jump magnitude ηLL and the jump intensity λL, λc on optimal dividend policy π∗.

Table 1. Model parameters.

T X0 L0 X∗
1 X∗

2 α1 α2 β1 β2 λ ζ m ξ µΠ µS

35 1 1 100 100 0.1 0.1 −0.01 −0.01 0.01 0.05 0.01 0.02 0.2 0.1

µL σΠ σSS σLS σV ηΠ ηS ηLL ηVV ηLc ηVc λΠ λS λL λc

0.1 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Figure 2 gives a possible path simulation of the optimal investment decision π∗.
Denoting the optimal wealth process by X∗, a possible path simulation is given in Figure 3.
As we can see, the path simulation of the wealth of the pension fund is increasing as time
passes, which highly coincides with reality.

Figure 4 analyzes the relationship between the optimal investment decision π∗ and
the stock volatility σLS. First, we can see that the optimal investment decision π∗ is always
negative under the given parameters in Table 1, which means that the pension manager
prefers to be a short-seller and invests more money in less risky bonds. From Figure 4,
we can also see that when σLS increases, the optimal investment policy π∗ increases. This
can be explained by the fact that as σLS increases, the risk and return of the pension fund
simultaneously increase. To achieve the given target value X∗1 and X∗2 , the manager prefers
to take more risks as well as achieve more profits.
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Figure 2. A path of π∗.

Figure 3. A path of X∗.

Figure 4. Impact of σLS on π∗.

In Figure 5, as ηLL increases, the optimal investment policy π∗ also increases. This
phenomenon can be explained as follows. The parameter ηLL measures the jump magnitude
of the salary. When ηLL is positive and increasing, which means that there is a higher jump
in the pensioner’s salary surplus, or, in other words, the pensioner will input more money
into the pension fund and eventually the manager of the pension fund will increase the
investment amount for the risky stocks to achieve higher profits.
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Figure 5. Impact of ηLL on π∗.

Figures 6 and 7 show the impact of the Poisson intensity λL, λc on optimal policy π∗,
respectively. As we can see, as λL, λc increase, the optimal investment amount π∗ increases.
This can be explained as follows. λL, λc represent the intensity of a positive jump in salary
surplus. If λL (or λc) increases, then the pensioner will be more positive about the future
and will make more contributions to the pension fund. Eventually, the pension manager is
able to invest more money in the risky asset.

Figure 6. Impact of λL on π∗.

Figure 7. Impact of λc on π∗.
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Figure 6 depicts the impact of λL on the optimal policy under different parameters
ηLL = 0.30, 0.32, 0.34. Figure 7 depicts the impact of λL on the optimal policy under
different parameters ηLc = 0.30, 0.32, 0.34. Both figures show the same conclusion, i.e., that
the higher the salary jump magnitude, the more money should be invested in the stock
market. The impact of ηLc on π∗ is similar to that of ηLL since ηLc and ηLL both measure
the jump magnitude of the salary.

Figure 8 depicts the impact of the jump magnitude of the salary on the optimal
policy π∗ with different µL. As we can see, as µL increases, the investment policy π∗ also
increases. This can be explained as follows: if the average wage of society increases, then
the investment enthusiasm will increase. Figure 9 depicts the impact of ηLc with different
σLS. The increasing σLS leads to an increase in investment policy π∗. This shows that if the
volatility of the salary is high, then the optimal choice is to increase the investment in the
risky asset to reach the desired target as soon as possible, to avoid possible losses. From the
above analysis, from the perspective of the government, an increase in salary will increase
the investment in risky assets. On the other hand, to encourage the pension manager to
invest more money in a risk-less bond, the government should be reduce the intensity of
wage growth.

Figure 8. Impact of ηLc with different µL.

Figure 9. Impact of ηLc with different σLS.

5. Conclusions

This paper analyzes the optimal investment strategy for a DC-type pension scheme
during its accumulation phase, where the price of the risky asset follows a jump diffusion
process. The price index as well as the common shock between the salary and the variance
are involved. The aim of pension management is to minimize the fluctuations in terminal
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wealth, and the dynamic programming technique is used to derive the HJB equation. By
solving an explicit continuously differentiable solution for the HJB equation, we give a
classical expression for the optimal value function as well as the optimal policy. Sensitivity
analysis shows the impact of different parameters on the investment policy, from which we
conclude that several essential factors (the volatility of the salary process, the magnitude of
salary jumps, the intensity of salary jumps, the jump intensity of the volatility of the salary,
the expected rate of salary) control the investment in the risky and risk-less assets. We
suggest that the government should regulate income levels, wage increases and financial
market volatility to stabilize the pension market. If it is necessary to stimulate pension
managers to buy risk-less assets such as treasury bonds, then the optimal policy is to reduce
the magnitude of salary jumps and the intensity of salary jumps.

It is also important to study the optimization problem in a defined benefit pension
plan during the accumulation phase or decumulation phase. We will use the CIR model to
describe the interest rate and mortality rate in a further study.
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Appendix A

The proof of Theorem 1.
From the HJB Equation (11), we conjecture that the solution of (11) takes a quadratic

homogeneous form with ϕ ∈ C1,2 and ϕX X > 0, as the following:

ϕ(t, X, L, V) = ϕ1(t, V)X2
+ ϕ2(t, V)X + ϕ3(t, V)L2

+ ϕ4(t, V)L + ϕ5(t, V)X L + ϕ6(t, V), (A1)

where ϕ1(·, ·), ϕ2(·, ·), ϕ3(·, ·), ϕ4(·, ·), ϕ5(·, ·), and ϕ6(·, ·) are six suitable functions with
terminal conditions ϕ1(T, V) = β2

1, ϕ2(T, V) = 2β1(α1 − β1X∗1 ), ϕ3(T, V) = ϕ4(T, V) =
ϕ5(T, V) = 0 and ϕ6(T, V) = (α1 − β1X∗1 )

2.
Differentiating Equation (A1) with respect to t, X, L, V, we have

ϕt = ϕ1tX
2
+ ϕ2tX + ϕ3tL

2
+ ϕ4tL + ϕ5tX L + ϕ6t, ϕX = 2ϕ1X + ϕ2 + ϕ5 L,

ϕX X = 2ϕ1, ϕL = 2ϕ3L + ϕ4 + ϕ5 X, ϕL L = 2ϕ3, ϕX L = ϕ5,
ϕV = ϕ1V X2

+ ϕ2V X + ϕ3V L2
+ ϕ4V L + ϕ5V X L + ϕ6V ,

ϕVV = ϕ1VV X2
+ ϕ2VV X + ϕ3VV L2

+ ϕ4VV L + ϕ5VV X L + ϕ6VV ,

(A2)

where ϕ1t, ϕ1V and ϕ1VV denote the first- and second-order derivatives of ϕ1 with respect to
t and V, respectively. The derivatives of ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 are defined in the same way.

Substituting Equations (A1) and (A2) into Equations (11) and (12), and rearranging
the terms by the order of π, we obtain that
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min
{π}

ϕ1X2
v4π2 + (2ϕ1X + ϕ2 + ϕ5 L)Xv1π + ϕ5X Lv2π + 2ϕ1X2

v3π + ϕ1X2
(ζ2

−2ζσΠρΠr)− ϕ5X LζσΠρΠr + ϕ1tX
2
+ ϕ2tX + ϕ3tL

2
+ ϕ4tL + ϕ5tX L + ϕ6t + λβ2

2X2

+2λ(α2β2 − β2
2X∗2 )X + λ(α2 − β2X∗2 )

2 − λ(ϕ1X2
+ ϕ2X + ϕ3L2

+ ϕ4L + ϕ5X L + ϕ6)

+(2ϕ1X + ϕ2 + ϕ5 L)X
[
(m +

ζ2

2
)− µΠ + σ2

Π − ζσΠρΠr

]
+ (2ϕ1X + ϕ2 + ϕ5 L)Lξ

+ϕ1X2
σ2

Π + (2ϕ3L + ϕ4 + ϕ5X)L(µL − µΠ + σ2
Π) + ϕ3L2

(σ2
LS + V + σ2

Π) + (ϕ1V X2

+ϕ2V X + ϕ3V L2
+ ϕ4V L + ϕ5V X L + ϕ6V)κ(δ−V) +

1
2
(ϕ1VV X2

+ ϕ2VV X + ϕ3VV L2

+ϕ4VV L + ϕ5VV X L + ϕ6VV)σ
2
VV + ϕ5X Lσ2

Π + (2ϕ3V L + ϕ4V + ϕ5V X)LVσVρLV

+ϕ3L2
λLη2

L + (2ϕ3L2
+ ϕ4L + ϕ5 X L)λLηL + λV

[
(ϕ1(t, V + ηVV)− ϕ1(t, V))X2

+(ϕ2(t, V + ηVV)− ϕ2(t, V))X + (ϕ3(t, V + ηVV)− ϕ3(t, V))L2
+ (ϕ4(t, V + ηVV)

−ϕ4(t, V))L + (ϕ5(t, V + ηVV)− ϕ5(t, V))X L + (ϕ6(t, V + ηVV)− ϕ6(t, V))
]

+λc

[
(ϕ1(t, V + ηVc)− ϕ1(t, V))X2

+ (ϕ2(t, V + ηVc)− ϕ2(t, V))X + (ϕ3(t, V + ηVc)

−ϕ3(t, V))L2
+ ϕ3(t, V + ηVc)(η

2
Lc + 2ηLc)L2

+ (ϕ4(t, V + ηVc)− ϕ4(t, V))L

+ϕ4(t, V + ηVc)ηLcL + (ϕ5(t, V + ηVc)− ϕ5(t, V))X L + ϕ5(t, V + ηVc)ηLcX L

+(ϕ6(t, V + ηVc)− ϕ6(t, V))
]
+ λΠ

[
ϕ1(t, V)((η2

Π − ηΠ)2 + 2(η2
Π − ηΠ))X2

+ϕ2(t, V)(η2
Π − ηΠ)X + ϕ3(t, V)((η2

Π − ηΠ)2 + 2(η2
Π − ηΠ))L2

+ ϕ4(t, V)(η2
Π − ηΠ)L

+ϕ5(t, V)((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ))X L
]
= 0.

(A3)

where v1, v2, v3 and v4 are given by Equation (15), Equation (16), Equation (17) and
Equation (18), respectively. By Equations (13) and (14), we have

π∗(t, V) = −2ϕ1(t, V)X + ϕ2(t, V) + ϕ5(t, V)L
2ϕ1(t, V)X

· v1

v4
− ϕ5(t, V)L

2ϕ1(t, V)X
· v2

v4
− v3

v4
, (A4)

where π∗ denotes the optimal investment decision regarding the risky asset. Substituting
π∗ into Equation (A3), and rearranging the terms by the order of X2, L2 and X L, we obtain
the following bivariate polynomial function of X and L:



Mathematics 2023, 11, 2954 14 of 20

[
ϕ1t + a1(t)ϕ1 + κ(δ−V)ϕ1V +

1
2

σ2
VVϕ1VV + λV(ϕ1(t, V + ηVV)− ϕ1(t, V))

+λc(ϕ1(t, V + ηVc)− ϕ1(t, V)) + λβ2
2

]
X2

+

[
ϕ2t + a2(t)ϕ2 + κ(δ−V)ϕ2V +

1
2

σ2
VVϕ2VV + λV(ϕ2(t, V + ηVV)− ϕ2(t, V))

+λc(ϕ2(t, V + ηVc)− ϕ2(t, V)) + 2λ(α2β2 − β2
2X∗2 )

]
X

+

[
ϕ3t + (a3(t) + V)ϕ3 + (κ(δ−V) + 2σVρLVV)ϕ3V +

1
2

σ2
VVϕ3VV + λV(ϕ3(t, V + ηVV)

−ϕ3(t, V)) + λc(ϕ3(t, V + ηVc)− ϕ3(t, V)) + λc ϕ3(t, V + ηVc)(η
2
Lc + 2ηLc)−

ϕ2
5

4ϕ1

· (v1 + v2)
2

v4
+ ξϕ5

]
L2

+

[
ϕ4t + a4(t)ϕ4+(κ(δ−V)+σVρLVV)ϕ4V+

1
2

σ2
VVϕ4VV+λV(ϕ4(t, V + ηVV)− ϕ4(t, V))

+λc(ϕ4(t, V + ηVc)− ϕ4(t, V)) + λc ϕ4(t, V + ηVc)ηLc −
ϕ2 ϕ5

2ϕ1
· v1(v1 + v2)

v4
+ ξϕ2

]
L

+

[
ϕ5t + a5(t)ϕ5 + λcηLc ϕ5(t, V + ηVc) + (κ(δ−V) + σVρLVV)ϕ5V +

1
2

σ2
VVϕ5VV

+λV(ϕ5(t, V + ηVV)− ϕ5(t, V)) + λc(ϕ5(t, V + ηVc)− ϕ5(t, V)) + 2ξϕ1

]
XL

+

[
ϕ6t − λϕ6 + κ(δ−V)ϕ6V +

1
2

σ2
VVϕ6VV + λV(ϕ6(t, V + ηVV)− ϕ6(t, V))

+λc(ϕ6(t, V + ηVc)− ϕ6(t, V))−
ϕ2

2
4ϕ1
·

v2
1

v4
+ λ(α2 − β2X∗2 )

2
]
= 0,

(A5)

where

a1(t) = ζ2 − 4ζσΠρΠr − λ + 2((m +
ζ2

2
)− µΠ + σ2

Π) + σ2
Π + λΠ((η2

Π − ηΠ)2

+2(η2
Π − ηΠ))− (v1 + v3)

2

v4
,

(A6)

a2(t) = (m +
ζ2

2
)− µΠ + σ2

Π − ζσΠρΠr − λ + λΠ(η2
Π − ηΠ)− v1(v1 + v3)

v4
, (A7)

a3(t) = 2(µL − µΠ + σ2
Π) + σ2

LS + σ2
Π − λ + λLη2

L+2λLηL+λΠ((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ)),

a4(t) = µL − µΠ + σ2
Π − λ + λLηL + λΠ(η2

Π − ηΠ), (A8)

a5(t) = (m +
ζ2

2
)− 2µΠ + 3σ2

Π − 2ζσΠρΠr + µL + λLηL + λΠ((η2
Π − ηΠ)2 + 2(η2

Π − ηΠ))

−λ−
v2

1 + v1v2 + v1v3 + v2v3

v4
,

(A9)

Since Equation (A5) holds for every X and L, the following six PDEs hold with the
boundary conditions:
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ϕ1t + a1(t)ϕ1 + κ(δ−V)ϕ1V +

1
2

σ2
VVϕ1VV + λV(ϕ1(t, V + ηVV)− ϕ1(t, V))

+ λc(ϕ1(t, V + ηVc)− ϕ1(t, V)) + λβ2
2 = 0,

ϕ1(T, V) = β2
1,

(A10)


ϕ2t + a2(t)ϕ2 + κ(δ−V)ϕ2V +

1
2

σ2
VVϕ2VV + λV(ϕ2(t, V + ηVV)− ϕ2(t, V))

+ λc(ϕ2(t, V + ηVc)− ϕ2(t, V)) + 2λ(α2β2 − β2
2X∗2 ) = 0,

ϕ2(T, V) = 2β1(α1 − β1X∗1 ),



ϕ3t + (a3(t) + V)ϕ3 + (κ(δ−V) + 2σVρLVV)ϕ3V +
1
2

σ2
VVϕ3VV + λV(ϕ3(t, V + ηVV)

− ϕ3(t, V)) + λc(ϕ3(t, V + ηVc)− ϕ3(t, V)) + λc ϕ3(t, V + ηVc)(η
2
Lc + 2ηLc)−

ϕ2
5

4ϕ1

· (v1 + v2)
2

v4
+ ξϕ5 = 0,

ϕ3(T, V) = 0,

(A11)


ϕ4t + a4(t)ϕ4 + (κ(δ−V) + σVρLVV)ϕ4V +

1
2

σ2
VVϕ4VV + λV(ϕ4(t, V + ηVV)− ϕ4(t, V))

+ λc(ϕ4(t, V + ηVc)− ϕ4(t, V)) + λc ϕ4(t, V + ηVc)ηLc −
ϕ2 ϕ5

2ϕ1
· v1(v1 + v2)

v4
+ ξϕ2 = 0,

ϕ4(T, V) = 0,

(A12)


ϕ5t + a5(t)ϕ5 + λcηLc ϕ5(t, V + ηVc) + (κ(δ−V) + σVρLVV)ϕ5V +

1
2

σ2
VVϕ5VV

+ λV(ϕ5(t, V + ηVV)− ϕ5(t, V)) + λc(ϕ5(t, V + ηVc)− ϕ5(t, V)) + 2ξϕ1 = 0,

ϕ5(T, V) = 0,

(A13)


ϕ6t − λϕ6 + κ(δ−V)ϕ6V +

1
2

σ2
VVϕ6VV + λV(ϕ6(t, V + ηVV)− ϕ6(t, V))

+ λc(ϕ6(t, V + ηVc)− ϕ6(t, V))−
ϕ2

2
4ϕ1
·

v2
1

v4
+ λ(α2 − β2X∗2 )

2 = 0,

ϕ6(T, V) = (α1 − β1X∗1 )
2.

(A14)

Next, we solve the above equations, from Equation (A10) to Equation (A14), one by
one. First, we solve Equation (A10). Assume that ϕ̃1(t, V) is the solution of the following
system:

ϕ̃1t + a1(t)ϕ̃1 + κ(δ−V)ϕ̃1V +
1
2

σ2
VV ϕ̃1VV + λV(ϕ̃1(t, V + ηVV)− ϕ̃1(t, V))

+ λc(ϕ̃1(t, V + ηVc)− ϕ̃1(t, V)) = 0,

ϕ̃1(T, V) = β2
1,

(A15)

which has the following form

ϕ̃1(t, V) = eϕ̃11(t)+ϕ̃12(t)V , (A16)
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with terminal condition ϕ̃1(T, V) = β2
1. Thus,

ϕ̃1t = (ϕ̃′11 + ϕ̃′12V)ϕ̃1, ϕ̃1V = ϕ̃12 ϕ̃1, ϕ̃1VV = ϕ̃2
12 ϕ̃1,

ϕ̃1(t, V + ηVV)− ϕ̃1(t, V) =
[
eϕ̃12(t)ηVV − 1

]
ϕ̃1,

ϕ̃1(t, V + ηVc)− ϕ̃1(t, V) =
[
eϕ̃12(t)ηVc − 1

]
ϕ̃1,

(A17)

Substituting Equations (A16) and (A17) into Equation (A15), we obtain

ϕ̃′11 + ϕ̃′12V + a1(t) + κ(δ−V)ϕ̃12 +
1
2

σ2
VV ϕ̃2

12 + λV
[
eϕ̃12ηVV − 1

]
+ λc

[
eϕ̃12ηVc − 1

]
= 0. (A18)

Since Equation (A18) holds for every V, the following two equation systems hold:ϕ̃′12 − κϕ̃12 +
1
2

σ2
V ϕ̃2

12 = 0,

ϕ̃12(T) = 0,{
ϕ̃′11 + a1(t) + κδϕ̃12 + λV

[
eϕ̃12ηVV − 1

]
+ λc

[
eϕ̃12ηVc − 1

]
= 0,

ϕ̃11(T) = ln β2
1.

Solving the above two systems, we have ϕ̃11(t) = ln β2
1 +

∫ T
t a1(s)ds and ϕ̃12(t) = 0;

thus, ϕ̃1(t, V) is independent of the variable V, which can be written as

ϕ̃1(t) = β2
1e
∫ T

t a1(s)ds,

and the system (A15) can be rewritten as{
ϕ̃1t + a1(t)ϕ̃1 = 0,

ϕ̃1(T) = β2
1.

Now, we solve Equation (A10). Let T be a variable in ϕ̃1, i.e., ϕ̃1(t) = ϕ̃1(t, T) =
eϕ̃11(t,T), where ϕ̃11(t, s) = ln β2

1 +
∫ s

t a1(u)du. We conjecture that

ϕ1(t) = ϕ̃1(t, T) +
[ ∫ T

t
ϕ̃1(t, s)λβ2

2ds
]

β−2
1 , (A19)

thus

ϕ1t = ϕ̃1t +
[ ∫ T

t
ϕ̃1t(t, s)λβ2

2ds
]

β−2
1 − λβ2

2. (A20)

Substituting Equations (A19) and (A20) into the left-hand side of Equation (A10), we
have

ϕ̃1t +
[ ∫ T

t
ϕ̃1t(t, s)λβ2

2ds
]

β−2
1 − λβ2

2 + a1(t)
[

ϕ̃1(t, T) +
[ ∫ T

t
ϕ̃1(t, s)λβ2

2ds
]

β−2
1

]
+ λβ2

2

= ϕ̃1t + a1(t)ϕ̃1(t, T) +
[ ∫ T

t

[
ϕ̃1t(t, s) + a1(t)ϕ̃1(t, s)

]
λβ2

2ds
]

β−2
1

= 0.

Thus, ϕ1(t) given by Equation (A19) is the solution of system (A10), which is finally
given by Equation (19). Similarly, ϕ2(t) is given by Equation (20) and ϕ6(t) is given by
Equation (24).

Next, we solve Equation (A13). Since the coefficient of ϕ5 and the constant term 2ξϕ1
are both independent of V, we suppose that ϕ5(t, V) is independent of V and rewrite it as
ϕ5(t). Thus, Equation (A13) can be rewritten as

ϕ5t + (a5(t) + λcηLc)ϕ5 + 2ξϕ1 = 0,
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with terminal value ϕ5(T) = 0, and ϕ5(t) is given by Equation (23).
Next, we solve Equation (A12). Since ϕ1, ϕ2 and ϕ5 are all independent of V, and the

coefficient a4 is only dependent on time t, we assume that ϕ4 is also independent of V,
which satisfies the following system:ϕ4t + (a4(t) + λcηLc)ϕ4 −

ϕ2 ϕ5

2ϕ1
· v1(v1 + v2)

v4
+ ξϕ2 = 0,

ϕ4(T) = 0,

thus, ϕ4 is given by Equation (22).
Since ϕ1 and ϕ5 are both independent of V, set

f3(t) = −
ϕ2

5
4ϕ1
· (v1 + v2)

2

v4
+ ξϕ5.

Let ϕ̃3 = ϕ̃3(t, V; τ) be the solution of

ϕ̃3t(t, V; τ) + (a3(t) + V)ϕ̃3(t, V; τ) + (κ(δ−V) + 2σVρLVV)ϕ̃3V(t, V; τ)

+
1
2

σ2
VV ϕ̃3VV(t, V; τ) + λV(ϕ̃3(t, V + ηVV ; τ)− ϕ̃3(t, V; τ)) + λc(ϕ̃3(t, V + ηVc; τ)

− ϕ̃3(t, V; τ)) + λc ϕ̃3(t, V + ηVc; τ)(η2
Lc + 2ηLc) = 0,

ϕ̃3(τ, V; τ) = f3(τ),

(A21)

and we have the following proposition.

Proposition A1. The solution of Equation (A11) can be expressed as

ϕ3(t, V) =
∫ T

t
ϕ̃3(t, V; τ)dτ. (A22)

Proof. First, we have ϕ3(T, V) =
∫ T

T
ϕ̃3dτ = 0. Set τ = t in the second equation of

Equation (A21); thus, we have ϕ̃3(t, V; t) = f3(t). Differentiating Equation (A22) with
respect to t and V, respectively, we have

ϕ3t =
∫ T

t
ϕ̃3t(t, V; τ)dτ − ϕ̃3(t, V; t) =

∫ T

t
ϕ̃3t(t, V; τ)dτ − f3(t),

ϕ3V =
∫ T

t
ϕ̃3V(t, V; τ)dτ, ϕ3VV =

∫ T

t
ϕ̃3VV(t, V; τ)dτ.

Substituting ϕ3t, ϕ3V and ϕ3VV into Equation (A11)

∫ T

t
ϕ̃3t(t, V; τ)dτ − f3(t) + (a3(t) + V)

∫ T

t
ϕ̃3(t, V; τ)dτ + (κ(δ−V) + 2σVρLVV)

·
∫ T

t
ϕ̃3V(t, V; τ)dτ +

1
2

σ2
VV

∫ T

t
ϕ̃3VV(t, V; τ)dτ + λV

∫ T

t
ϕ̃3(t, V + ηVV ; τ)− ϕ̃3(t, V; τ)dτ

+λc

∫ T

t
ϕ̃3(t, V + ηVc; τ)− ϕ̃3(t, V; τ)dτ + λc

∫ T

t
ϕ̃3(t, V + ηVc; τ)dτ(η2

Lc + 2ηLc) + f3(t)

=
∫ T

t
0dτ = 0.

Now, we start solving Equation (A21). Suppose ϕ̃3 = ϕ̃3(t, V; τ) = ϕ̃31(t; τ)eϕ̃32(t;τ)V ,
with terminal value ϕ̃3(τ, V; τ) = ϕ̃31(τ)eϕ̃32(τ)V = f3(τ). Thus,
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ϕ̃3t =

[
ϕ̃
′
31

ϕ̃31
+ ϕ̃

′
32V

]
ϕ̃3, ϕ̃3V = ϕ̃32 ϕ̃3, ϕ̃3VV = ϕ̃2

32 ϕ̃3,

ϕ̃3(t, V + ηVV ; τ)− ϕ̃3 = (eϕ̃32ηVV − 1)ϕ̃3, ϕ̃3(t, V + ηVc; τ) = eϕ̃32ηVc ϕ̃3.
(A23)

Substituting Equation (A23) into Equation (A21) with the consideration of the terminal
value, we obtain the following two systems:ϕ̃

′
32 + 1 + (2σVρLV − κ)ϕ̃32 +

1
2

σ2
V ϕ̃2

32 = 0,

ϕ̃32(τ) = 0,
(A24)


ϕ̃
′
31

ϕ̃31
+ a3 + κδϕ̃32 + λV(eϕ̃32ηVV − 1) + λc(eϕ̃32ηVc − 1) + λceϕ̃32ηVc(η2

Lc + 2ηLc) = 0,

ϕ̃31(τ) = f3(τ).
(A25)

We solve system (A24) first. Rewrite the first equation as

ϕ̃
′
32 = −1

2
σ2

V ϕ̃2
32 − (2σVρLV − κ)ϕ̃32 − 1.

Let43 = (2σVρLV − κ)2− 2σ2
V be the discriminant of the following quadratic equation

−1
2

σ2
V ϕ̃2

32 − (2σVρLV − κ)ϕ̃32 − 1 = 0. (A26)

If43 > 0, then the two real roots h1,2 of Equation (A26) can be expressed as

h1,2 =
(2σVρLV − κ)−

√
43

σ2
V

.

Thus,

ϕ̃32(t) =
h1h2e−

√
43(τ−t) − h1h2

h1e−
√
43(τ−t) − h2

.

If43 = 0, then we have

ϕ̃32(t) =
2σVρLV − κ

σ2
V +

1
2

σ2
V(τ − t)(2σVρLV − κ)

− 2σVρLV − κ

σ2
V

. (A27)

If43 < 0, then

ϕ̃32(t) =

√
−43

σ4
V

tan

[
arctan

[
2σVρLV − κ√
−43

]
+

1
2

√
−43(τ − t)

]
− 2σVρLV − κ

σ2
V

.

The solution of system (A25) is

ϕ̃31(t) = e
∫ τ

t f31(s)ds · f3(τ),

where

f31(t) = a3 + κδϕ̃32 + λV(eϕ̃32ηVV − 1) + λc(eϕ̃32ηVc − 1) + λceϕ̃32ηVc(η2
Lc + 2ηLc), (A28)

thus, ϕ3(t, V) is given by Equation (21).
It is obvious that 2ϕ1(t) > 0. Inserting ϕ1, ϕ2 and ϕ5 into Equation (A4), the optimal

investment strategy is given by Theorem 1.
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