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Abstract: Space and labor are the two internal resources within a warehouse or cross-dock center
which seek attention. Meaningful efforts in optimizing these two resources can reduce the operational
cost or time of the goods delivery. The timely allocation of resources to order picking not only reduces
the makespan and operational time but can also evade delay. In decentralized settings, where all
the information is not properly shared between the players of the supply chain, miscommunication
results in delays in product delivery. In this study, efforts were made to determine the pallet quantity
of different product types in an order quantify when there is a gap in information shared and, based
on that, the allocation of material handling devices or pickers was conducted. Each handling device is
bounded by a workload to eliminate the option of idle resources and ensure it is utilized properly. A
mixed integer linear programming model was formulated for this study and was solved using Lingo.
Numerical experiments were performed under varying resource numbers and pallet quantities to
investigate the circumstances where the number of pallet types and allocation of machines have the
highest benefit. The results confirm that a change in the pallet quantity of the products increases the
total picking time. However, an increase in the number of handling devices minimizes the level of
over-utilization of a particular machine.

Keywords: resource scheduling; order picking; logistics; warehouse management; picking time

MSC: 90B05; 90B06

1. Introduction

The efficiency of a supply chain is dependent on how well a warehouse and its
operations are being managed. Cargo handling is an important parameter of warehouse
management. Loading and unloading at a warehouse or logistics facility, transportation,
warehousing management, sorting, assortment, and picking are the six main areas of cargo
handling which are more challenging to visualize. These duties have a significant impact on
logistical productivity and quality. As cargo handling is an essential component of logistics,
losses incurred in this area directly raise the cost of logistics. In logistics, the received cargo
is checked against the receiving cargo list where the quantity and quality of the products
are properly inspected and, upon acceptance, are shifted to the warehouse. Later, the stored
goods distribution processing and packaging are performed. Innovation in science and
technologies has brought a makeover in material handling machinery. “Material handling”
refers generally to the equipment that facilitates more effective cargo handling. It can also
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refer to any machine that accelerates automated handling or makes it simple to transport
items around. In general, there are four categories of material handling equipment. Storage
and handling equipment, bulk handling equipment, industrial trucks, and automated
systems. It is the industrial trucks, comprising of hand trucks, side loaders, pallet trucks,
forklifts, conveyors, and industrial robots which are maximally used in warehouses and
distribution centers and help in cutting down labor costs and loading times.

Most of the research related to warehouse picking has highlighted order picking as
the most expensive and labor-intensive operation for a warehouse [1] or cross-dock center.
It is the process that includes picking and segregating the individual products from a
fulfillment facility based on the customer’s demand while verifying the item numbers and
quantities listed on a picking list for shipping instructions [2]. It contributes to about 55%
of the operational cost of any distribution center. Hence, while selecting a picking method,
facility managers and business owners must be cautious because it can make or break the
efficiency of warehouse operations. There are two picking techniques followed in order
picking (shown in Figure 1). Firstly, single picking, where products are gathered one at a
time for each shipping location, and secondly total picking, where products are gathered in
advance and categorized by shipping location.
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KEYENCE America).

The size of the facility, the availability of funds and labor, the quantity and frequency
of customer orders, and the number of SKUs in stock are just a few of the variables that
might affect the picking strategy chosen by a warehouse. Furthermore, warehouse space
and labor are the two internal resources that, when optimized, can increase the profitability
of the business. It is also critical to decrease the number of idle resources and enhance
resource utilization in order to cut the cost of labor when picking orders.

It is well understood from past research that order picking can be easy with a proper
choice of material handling equipment and workload balancing of the pickers, which
reduces the chances of product damage or productivity fall of a company [3]. In this
direction, various order picking problems were analyzed and classified by Gils et al. [4]. The
majority of the order picking tasks in a distribution center involve sorting and organizing
items based on destinations and client requests. In general, the actions involve lifting,
moving, picking, putting, packing, and other tasks. Picking is classified into box picking
and client picking based on the product’s shape, the type of process, the type of picking
system, and other factors. Pre-picking and automatic picking are used in the picking process
in some businesses. Pre-picking is the process of checking client orders and organizing
products by box, pallet, or auto picking unit before the auto picking system classification.
The method of categorizing pre-picked products based on the units of client, order, and
vehicle is known as auto picking (or semi-auto picking) [5]. Jamili et al. [2], in their study,
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strived to divide the pickers so that the effort for the businesses is matched, particularly
with complimentary demand patterns.

The optimization process in the warehouse may be broken down into two phases:
first, it is important to analyze the current warehouse state, and then, it is important to
provide proposals for improvement [6,7]. An extensive study of the literature has revealed
that there has been a good amount of research on resource and vehicle scheduling in
warehouse management and cross-dock centers focusing on minimizing the processing
time [8], handling cost [9], makespan, or lead time [10] or on optimizing the internal
resources like labor, space, and dock doors. Minimal research on scheduling of trucks
within a cross-dock center was also modelled as a two machine flow shop scheduling
problem [11]. Some of the work related to resource management evaluated the effect of
collaborative resource management on the overall cost and utilization levels of internal
resources. CPLEX 12.6 solver, GUROBI optimizer version 9.0, were some of the types of
optimization software which were used in resource scheduling in past research, focusing
on both the number of instances that can be proved optimal and the solution quality over
time [12]. Researchers investigated different optimization possibilities for the warehouse
system in their papers [13–17] including the use of mathematical models and genetic
algorithms, lean management tools (UML, VSM, Genba Shkumi philosophy), and the
Multidimensional Scaling Algorithm. In addition to the aforementioned models, the
Floyd–Warshall algorithm was merged, integrated, and improved with the ant colony
optimization metaheuristic by the authors [16–19] for the optimization of warehouses.
Some authors also performed optimizations using the MATLAB program. Additionally,
modern technologies like artificial intelligence [20], virtual reality, robotics, and augmented
reality are applied to enhance warehouse operations. In order to enhance warehousing
operations, warehouse automation systems are being used more frequently [21–23]. Even
though a considerable amount of good research has been performed in scheduling and the
assignment of resources, it is a complex subject area and the alteration of variables and
parameters always offers a new scope of research.

2. Literature Review

The literature review of this article was placed in accordance with the keywords.

2.1. Resource Scheduling

It has often been encountered that the major portion of the operational cost within a
cross dock is driven by two main operational decisions. Firstly, assigning vehicles to dock
doors, and secondly, scheduling containers at the cross dock. The scheduling of resources
inside a terminal is a challenging issue in and of itself for a given truck timetable. It needs
meaningful effort in order to make appropriate use of limited resources such as labor and
machines [8]. These tasks were modeled as a machine scheduling issue by Li et al. [24]
and A’lvarez-Pe’rez et al. [25], who also provided various meta-heuristics for its resolution.
Li et al. [24], in their model, did not consider the traveling time of the container from
the inbound to the outbound area. They conceptualized the cross-docking problem as a
machine scheduling problem embedded with earliness and tardiness penalties. Fonseca
et al. [11], in their work, presented intriguing ways to solve the cross-docking flow shop
scheduling problem. They inspected time indexed formulation and a hybrid Lagrangian
metaheuristic framework for solving the scheduling problems. A’lvarez-Pe’rez et al. [25], in
their study, examined a scheduling issue that enabled a warehouse to serve as a cross dock
where the cargo transit storage time was kept to a minimum using just-in-time scheduling.
Since precise resource scheduling determines the actual time difference between each
inbound and outbound job, truck scheduling is highly correlated with this issue. Monemi
and Gelareh [26] studied truck scheduling and door assignment problems considering
the resource constraint. They discussed two cases in their study. In the first case, the
experts were confident in the processing time estimates for each truck and only suggested a
different combination of resources, whereas in the second case, a small number of resource
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deployment scenarios for serving trucks were suggested by the authors, each of which was
paired with a different combination of resources and a different processing time.

2.2. Order Picking

Order picking is an expensive process [1] due to its dependency on pickers. The
order-picking procedure is given the most attention as one of the major research areas
in the storage system management segment [27]. In order to increase the effectiveness
of warehouse order-picking operations, Lee et al. [28] performed research that offered a
systematic and integrated technique that extends the correlated storage assignment strategy.
Correlated storage assignments can significantly lower travel expenses but because of the
imbalanced traffic flow, they may cause traffic congestion. In order to reduce the trip time
and picking delays, the research suggested the correlated and traffic-balanced storage
assignment (C and TBSA), which was modeled in two stages: clustering and assignment.
To cut the cost of labor when picking orders, it is also critical to decrease the number of
idle pickers and enhance picker utilization. A new line of research was conducted in this
area with the goal of balancing the workload of pickers. In the context of order picking,
Vanheusden et al. [29] initiated the operational workload balance challenge with their focus
on equally distributing the orders throughout the day to prevent workload peaks and
then hiring the necessary number of pickers to maintain a balanced schedule. They came
up with the suggestion that utilizing a balanced timetable can improve order selection
efficiency. Scholz et al. [30] studied the joint order batching, assignment, sequencing, and
routing problem in minimizing order tardiness. How the related tours should be built
and how the customer orders should be batched (grouped) were considered in the initial
decision making. The pickers were then given batches and their sequences to reduce
the total lateness of the orders. Gils et al. [4] also worked on the same line of research
concentrating on batching, routing, and picker scheduling in order to minimize the order
pick time. The authors additionally confirmed that resolving the combined issue yielded
average performance gains of 16.9% for the actual spare parts warehouse used in their
case study. In response to the arrival of urgent orders and disruption events, Dauod and
Won [31], in their study, provided a dynamic-order picking (DOP) system where batches
and picker paths are continuously updated. To enable a seamless replanning function, they
took picker conflicts in constrained aisles into account in the suggested structure.

Jamili et al. [2] focused on picking orders before their due time in a collaborative
warehouse where sharing of resources between multiple users was considered. They also
proposed that sharing pickers had much more of an effect on the overall tardiness than
sharing dock doors. It was also noted that the optimum collaboration advantage for both
resources occurs at the medium level of use. They also asserted that their obtained result
showed an improvement of 61% of the base case instances in a collaborative environment
compared to a non-collaborative environment. Zhang et al. [32] introduced new technol-
ogy in order picking, introducing autonomous picking robots that can work in a shared
workspace alongside human pickers. This technology made it possible for humans and
robots to work together and independently, increasing the flexibility of system design.
Castier and Martínez-Toro [33] presented work that focuses on small enterprises that might
not be able to afford the building of specially built storage facilities or utilize advanced
picking tactics. It proposes a method to arrange the storage, picking sequences, and picking
paths in warehouses. Srinivas and Yu [34] worked on a collaborative human robot order
picking system, distributing (among humans and robots) the retrieval work and handling
of item transportation to the depot, respectively. The numerical experiments confirmed that
the suggested solution methodology performed better than other strategies. Additionally,
their findings indicated that the composition of the human–robot team, AMR speed, AMR
capacity, and warehouse layout all have an effect on the picking efficiency.
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2.3. Logistics

Logistics act as a physical link between the various entities of a supply chain enabling
the smooth flow of materials between them [35]. Some major operations such as freight
transportation and warehousing are included in logistics activities. Over the years, it has
refurbished its approach with the introduction of the newest strategies like cross docking,
collaboration on transportation, etc. Cross docks’ optimization problems in the context of
physical internet or PI were introduced by Chargui et al. [36]. They talked about how this
present concept of cross docking has revised the traditional cross-docking methods and
changed the way cross-docking platforms were typically designed, managed, and opti-
mized. The different cross-docking optimization problems emerging from the PI paradigm
were then discussed at the strategic, tactical, and operational decision levels in order to
highlight the unique characteristics that set the PI cross docks apart from the “conven-
tional” cross-docking platforms. These practical approaches have definitely improved the
operational efficiency, cost-effectiveness, and environmental concerns [37]. Collaborative
urban transportation was studied deeply in recent publications with their major goal being
to reduce the detrimental effects of freight transportation in urban settings, such as conges-
tion, pollutants, and space consumption [38]. The optimization and modelling approach
of logistic networks in maintaining an efficient supply chain management was studied
by Mahjoub et al. [39] Apart from modeling the dynamics of vehicles and timetables at
various locations of suppliers, warehouses, and consumers, they also extended the scope
of their research to the loading, unloading, and delivery times of goods from suppliers to
customers while accounting for their pertinent characteristics (e.g., number, nature, and
destination). Reverse logistic models in supply chain management have also been the
subject of research in recent years focusing on minimizing the total cost, carbon emission,
waste reduction [40,41], etc.

2.4. Warehouse Management

Any company that keeps products in a warehouse recognizes that good management
makes the difference between efficiently and precisely filling requests from consumers
while keeping costs low against receiving complaints about erroneous or late shipments
and higher operating costs. In order to guarantee customer satisfaction in terms of cost,
quality, and timeliness, logistics is becoming more and more important. Rebelo et al. [42],
in their article, demonstrated how warehouses may be a source of a competitive advantage
and how a critical eye on the currently available space can result in capacity improvements
with little up-front cost. This was performed by using a business as a model and imple-
menting improvement suggestions. By considering a volume approach in their study, the
authors showed that the warehouse space capacity can be increased by 9.77% while reduc-
ing the cost and damage to the products. Internal logistics planning and control, as well as
warehouse management, are becoming more crucial. Today, a variety of techniques have
been created for internal logistics planning, control, and warehouse management [20,43,44].
Internal logistics is crucial for adding value and maximizing revenues through the au-
tomation of internal logistics processes. A set travel time serves as an important gauge of
logistical operations.

Burganova et al. [45], in their article, discussed ways to increase warehousing and
logistics using currently accessible techniques while requiring the least amount of money
and reducing the travel time. They reorganized the warehouse using lean techniques
like the Kanban and Milk run and applied the presented design to the newly constructed
hall. The end result is enhanced procedures and quicker material transfer times at the
workplace; the finished product is delivered to the market faster and customers are satisfied.
Voronova [46] studied complex warehouse logistics and the objectives of his research
were developing strategies to increase the effectiveness of employing enough warehouses,
streamlining the search and inventory procedures, and automating internal logistics. Based
on the results of the research and the analysis of the warehouse real estate market, he
concluded that improvement in the warehousing process is important and makes an impact



Mathematics 2023, 11, 2956 6 of 17

on the maintenance cost. Collaboration on the internal resources in the warehouses is
another popular initiative in warehouse management [2]. Perera et al. [47] provided a
comparative examination of optimization methods for allocating warehouse space that
was suggested in recent research. In their research, they proposed a linear programming
model and a goal programming model to optimize warehouse space capacity by efficient
palletizing. The enormous amount of information that needs to be processed, the sizeable
number of potential solutions, and the degree of decision integration required in the
modern warehousing context made it clear that there are currently significant challenges in
applying these models.

2.5. Picking Time

One of the techniques to improve labor management is through analyzing picking
time statistics and which, when utilized intelligently, can optimize the design and operation
of machines. Anjom et al. [48], in their model, studied the effect of the picker speed, time of
day, and picker cart used on the picking time. Hanson et al. [49], in their paper, presented
a detailed analysis of how the physical workload and picking time of the orders vary
depending on the size of the container, in particular large containers. They proposed
that tilting the pallet to an angle of 45◦ toward the picker reduces the average picking
time considerably. Grosse et al. [50] put out a framework for incorporating perceptual,
mental, emotional, and physical components of human dynamics into order picking. They
emphasize that the picking time and pickers’ well-being are impacted by the placement of
components in relation to height and depth. Engels et al. [51] proposed an exact equation for
the LaPlace–Stieltjes transform of order picking time distribution. Loske et al. [52] discussed
that it is the storage system that impacts the order-picking time. They experimented
with a parametric log-logistic accelerated failure time model and established, from their
result, that the order picking process becomes accelerated by 4.60% by using a high-
density flow rack system, which directly reduces the order picking time. Furthermore,
Poon et al. [53] proposed that zoning and class-based assignment rules, in comparison to
random assignment policies, have been observed to tend to reduce trip lengths by 24%
while boosting picking times by 21%. The authors adopted an automated data capturing
technology—radio frequency identification and an advanced problem-solving technique—
genetic algorithms, in order to manage material demand and the order management system
and the results showcased that the integration of the above technologies helped enterprises
to improve their operational efficiency on the production floor.

Careful study of the available literature on order picking and warehouse management
reveals that this is a vast area of research and a slight improvement in warehouse space, or
in any of the various parameters of warehouse management, can bring noteworthy change
in the operational time or cost.

2.6. Contributions

As discussed previously, the optimization process in the warehouse not only analyzes
the current warehouse state but also provide proposals for improvement [54–56]. So, this
proposed model is aimed to provide the following:

• A proposal to improve the picking time of products within a cross dock by considering
a decentralized set up where the full details and information about product delivery
are not shared with all the players on the supply chain;

• In this study, the aim is not to optimize the internal resources within a cross dock.
Rather, the study aims at finding the pallet quantity of each product type and the
maximum number of pallets carried by each handling device to minimize the total
picking time when there is a discrepancy in information shared;

• Instead of evenly distributing the orders in a day and then finding the number of pick-
ers required, the focus has been laid on a particular order and distributing the workload
between every picker and ensuring that none of the allocated pickers are idle;
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• We further tried to obtain the optimal solution using optimization software Lingo 19.0
(LINDO SYSTEM Inc.1415 North Dayton street, Chicago, IL 60642), rather than cplex
or gurobi, and also to estimate the resource utilization level in our work.

3. Mathematical Formulation

A major portion of the warehouse cost is being driven by the labor cost. Warehouse
order picking, being the most expensive and labor-intensive operation for almost every
warehouse, demands proper management. Manual labor is bounded by factors like ab-
senteeism, safety, health issues, and efficiency level. Hence the deployment of machines
for handling materials has become more popular. A machine has more carrying capacity
compared to manual labor and can work relentlessly ignoring factors like health, safety,
and absenteeism issues, so warehouses are gradually shifting to automation with the use
of conveyor belts, pallet trucks, automated guided vehicles for material handling within
a cross-dock or distribution center or warehouse facility. After the order-picking process,
delivery of the orders is initiated by loading the shipping trucks at the dock doors. Until
all of the truck’s required orders have been picked, the collected orders are buffered in a
short-term storage area near the dock door.

Centralized settings in product management emphasize the proper transmission of
the required information through a central authority to the various players of supply
chain management. However, product inaccuracy, the presence of defective items, and
transparency are some of the noticeable issues which cannot be ignored and may hamper
the operational management of the warehouse or supply chain [57–59]. In this study, a
decentralized setting was taken into consideration where there exist gaps in the information
shared. A cross-dock center handling different product types packed in different pallet
types which are a part of varying order types to be dispatched for different locations
(shown in Figure 2) is the area of focus. The order from a customer can be for different
products which can be packed in different pallet types. Not knowing the number of pallets
of each product type will enhance operational time. Thus, in this proposed model, we
aimed at estimating the number of different pallet types for each product type when
the order quantity of each product is known. The products in different pallet types are
unloaded, transported, temporarily stored, sorted, picked for shipping, and loaded in
specified outbound trucks with the help of handling resources. Knowing the number of
pallet types against the product type makes the sorting and picking operations easy.

Furthermore, different pallets need different handling devices based on the product
they carry and the carrying capacity of the device. Hence, in this study, apart from
minimizing the total processing time of the product handling, the focus is also on assigning
the handling resources needed for order picking within a cross-dock or distribution center in
a particular time slot, when the pallet quantity and pallet types are known. An investigation
into the level of resource utilization was also incorporated in this study.

Assumptions

1. Unloading and order picking of the pallets can be initiated only when the inbound
truck is stationed at the receiving dock. Unloading and picking of the pallets must be
finished within a specified due time;

2. The facility has enough handling resources and is a non-collaborative warehouse
where the resources are being shared by a single operator and not rented from
a third party;

3. Different pallet types of products were considered in the order [47]. One pallet is
picked at a time following a single-order picking policy which avoids the mixing up
of product and pallet types;

4. Different material handling devices were used in the service for order picking. The
picking time of the pallets in this model is different for each pallet type and depends on
the picker type (i.e., the material handling device used) as well as on each component’s
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height and horizontal distance from the picker [50]. All the handling devices are in
service mode and are assigned for pallet picking;

5. The demand for each product in a planning horizon is known beforehand.
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4. Mathematical Model

The objective function of the designed mathematical model aims at minimizing the
total picking time of the pallet handling by the handling devices.

Min Z = ∑M
m = 1 ∑K

k = 1 (Z km ∗ Pkm ) (1)

- Product availability constraint

Equation (2) represents the available order quantity of each product type satisfying
the demand requirement of products [47].

∑J
j = 1 (p ij ∗Yij )≤ A ∀ i ∈ I (2)

The total number of pallets for a particular product contains different pallet types.
Equation (3) represents that the number of pallets of different types for each product is
equal to the daily demand requirement of pallets [47].

∑K
k = 1 xik = a, ∀ i ∈ I (3)
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Equation (4) confirms that the amount of ith product in the jth order should be at least
C so that a uniform distribution of product exists. The pallets are not under packed.

Yij ≥ C ∀ i ∈ I, ∀ j ∈ J (4)

where C is the fixed order size for a particular product.

- Machine requirement constraint

The total number of pallets of different products is addressed by the available handling
devices. There is no unattended pallet; this is represented by constraint 5:

∑M
m = 1 Zkm = ∑I

i = 1 xik, ∀ k ∈ K (5)

Equation (6) represents the concept that all the handling devices in a planning horizon
have been utilized and that there is no idle device.

Zkm≥ B, ∀ k ∈ K, ∀ m ∈ M (6)

where B is the number of pallets to be carried by each machine.

- Non-negative constraint

xik≥ 0 ∀ i ∈ I, ∀ k ∈ K (7)

- Integer constraint

xik and Zkm are all integers.

∀ i ∈ I, ∀ k ∈ K (8)

5. Solution Methodology

This designed model’s solution methodology necessitates a method that can handle a
variety of variables. Using a traditional approach to manage a large number of variables
takes time. In order to achieve the best results, a variety of strategies can be used. This
study introduces the LINGO software 19.0 (LINDO SYSTEM Inc.1415 North Dayton street,
Chicago, IL 60642)for solving this planning problem. It is practical, quick, and effective
in resolving planning issues. LINGO has grown to be a significant instrument for solving
optimization issues now because of its superior and effective problem-solving capabilities
and strong pertinence. In addition, LINGO makes use of a standard modeling language
that can be utilized to program optimization issues. Users can use some built-in features
during modeling because they are available. It uses the branch and bound technique to
generate the optimal solution of the designed mixed integer linear programing model.

A numerical experiment was presented to estimate the minimum picking time of the
order. The pallets containing the products are unloaded from the inbound vehicles. They
are transported to a temporary storage facility where they are sorted based on order type
and product type and following a single picker policy, the pallets are picked up by the
handling devices to be loaded into the shipping truck destined for a particular location
(as shown in Figure 3). The base case of instances (as shown in Table 1) is introduced first
which has been derived from the data set [2,47] and modified depending on the need of the
model accordingly. Subsequently, further additional instances are generated by varying
parameters and its effect on the total picking time and the utilization level of the handling
devices is investigated. The data set contains data of a cross-dock center that handles
various products, inbound and outgoing vehicles, and order types in a day. In total, four
different order types of 1000 kg, 600 kg, 580 kg, and 400 kg were considered apart from four
different pallet types. The unloaded product is shipped to outbound trucks for dispatch
within 24 h. The inbound trucks are unloaded at the strip door following a particular order,
one truck at each door at a time, in each time slot.
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Table 1. Parameters of the base case instance.

Parameter Notation Value

Total number of pick order pallets O 160
Number of product type I 3

Number of pallet type K 4
Number of order type J 4

Number of material handling
devices or pickers in each time slot M 4

Daily demand requirement of
pallets for each product a {70, 55, 35}

Daily demand of products A 10,000 kg

In addition, medium-size and small-size cross docks for an operation were envisioned
rather than large cross docks because large cross-dock facilities have sufficient internal
resources of their own as well as proper warehouse management systems. Therefore, they
are less motivated to optimize or plan their resources. So, it is reasonable to consider
a scaled-down version of our empirical data. According to Jodlbauer [60], the average
processing time of the machine should be short. He also mentioned that the average
processing time is independent of the scheduling, sequencing, and lot sizing. It is only
influenced by the total input and the individual standard processing time. Here, in this
proposed model, the processing time of the machine is the same as the picking time of the
handling devices. The picking time of the pallets in this model is different for each pallet
type and depends on the picker type (i.e., the material handling device used) as well as on
each component’s height and horizontal distance from the picker.
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6. Results and Discussion

For the base case instance, three different types of products were considered. These
products are packed in four different pallet types whose quantity is to be determined and
all the products are part of the four different order types of customers. The average picking
time per component is referred from [49] and modified to suit our model. With the given
parameters, the total picking time for the base case is found to be 328.32 min, where the
number of pallets of each product type is given in Table 2.

Table 2. Represents the picking time with respect to varying parameters and decision variable.

Decision variable Pallet type K
Product I

i1 i2 i3 Picking Time

K1 6 26 0

328.32 min
Base case (xik) ≥ 0 K2 0 29 35

K3 32 0 0
K4 32 0 0

K1 5 4 23

328.32 min
Additional

instance (xik) ≥ 4 K2 17 43 4

K3 24 4 4
K4 24 4 4

Parameters Pallet type K
Product I

i1 i2 i3 Picking time

K1 6 26 0

328.32 min
Base case K = 4 K2 0 29 35

K3 32 0 0
K4 32 0 0

K1 24 22 24

301.44 min
Additional

instance K = 3 K2 4 47 4

K3 4 27 4

K = 5 Exceeds the capacity of the solver

M = 4

Pallet
Machine

M1 M2 M3 M4 Picking time

Base case K1 8 8 8 8

328.32 minK2 8 40 8 8
K3 8 8 8 8
K4 8 8 8 8

M = 3

K1 8 8 8

287.2 min
Additional

Instance K2 8 72 8

K3 8 8 8
K4 8 8 8

M = 5 Exceeds the capacity of the solver

6.1. Base Case Instance

In total, there are 70 pallets of product 1, 55 pallets of product 2, and 35 pallets of
product 3. These 70 pallets of product 1 are in a combination of 4 different pallet types,
similarly as for product 2 and product 3. Most of the products are packed in pallet type 2
compared to the other three types.

The following pallets are then picked up by the handling devices and shipped to the
outbound trucks. (Refer Table 2). The total 32 pallets of each type 1, type 3, and type 4
are being equally carried by 4 different devices while 64 pallets of type 2 are picked by
the 4 handling devices where machine 2 carries the maximum number of pallets. In this
proposed model, the number of machines available in a particular time slot is four. This led
to the utilization of each picker to 40% ( |O|M = 160

4 ). However, it was found that machine 2 is
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overloaded and carrying 64 pallets compared to machines 1, 3, and 4, where each of them is
carrying 32 pallets. Thus, the utilization level of machine 2 is 64

40 ∗ 100 = 160% compared
to the utilization level of other machines which is at 32

40 ∗ 100 = 80%. This over-utilization
of machines may result in machine breakdown and a disruption in services.

6.2. Additional Case Instance

In this section, the emphasis is to know how the change in the parameters affects the
picking time of the pallets. In the base case, the total number of pick orders considered
is 160 which is a combination of three different product types, packed in four different
pallet types.

• Variation in pick order: The optimal result is generated with 70 pallets of product
1, 55 pallets of product 2, and 35 pallets of product 3. An alteration in the number
of pallets of the product types brings no noticeable change in the total picking time.
However, when the total pick order is varied, the total picking time changes as well.
This increase or decrease in the total picking time is only dependent on the total
pick order as the number of pallets is increasing. This change in the picking time is
irrespective of the change in the number of pallets of each product type;

• Variation in the number of machines: The variation in the number of handling devices
affects its utilization level as well as the total picking time. Using three machines for
the same order quantity has reduced the total picking time by 41.12 min; however,
it has increased the utilization level of machine 2. Even though every machine is
bounded by a minimum carrying capacity, the utilization level of the machines is
not uniform. Employing three machines will increase the utilization level of each
machine to 53.33%. However, the workload on machine 2 seems to further increase to
180%, confirming that machine 2 is over-utilized compared to others and may lead to
machine breakdown because of overloading and excessive use (refer to Table 2). Thus,
decreasing the number of machines increases the utilization level of machines by 13%.
Hence, using four machines is the optimal result;

• Variation in pallet types: A total of four different pallets of varying sizes were con-
sidered in the pick order. Decreasing the number of pallet types for the same order
quantity affects the total picking time. It was noticed that when three types of pallets
are used to accommodate an order of 160, the total picking time is 301.44 min and the
variation in the number of pallets of each type is given in Table 2);

• Variation in the number of products: The considered number of products generates a
global optimal solution. Decreasing the product types generates infeasible solutions
while increasing the product types makes the model unsolvable;

• Variation in picking time. As mentioned earlier the processing time of the machine
or the picking time is only influenced by the total input and the individual standard
processing/picking time. Figure 4 shows how the 10% variation in the picking time
of every component affects the total processing time. We conclude from the obtained
result that when the individual picking time of the pallets is less than the overall
picking time, it is definitely reduced.

6.3. Pallet Utilization

The decision variable xik denotes the number of kth pallet types from the ith product
type. In the model, it is ensured that the decision variable xik ≥ 0 which generates the
distribution of products in the pallet types is given by Table 2. The results confirm that
pallet type 3 and pallet type 4 are not very much used for the packing of the products. Each
pallet type is of a varying size so using bigger pallet sizes to accommodate small loads
engulfs more warehouse space. Adding a lower bound on xik offers better utilization of
the pallet types, where products are distributed in all of them. Imposing a lower bound on
the decision variable does not bring any change in the total picking time or the number of
pallets of each type. It manifolds the distribution of products in all pallet types rather than
confiding to selective (Figure 5).
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7. Managerial Insights

Money, management, marketing and sales, products and services, people, processes,
and systems are the seven pillars on which the base of a successful business stands. A
small improvement in any of these above-mentioned factors has the capability of heavily
improving a company’s performance. Hence, facility managers and business owners
are on a constant search for the newest strategies and policies that can improve time,
cost, quality, and productivity dimensions [61]. Thus, while selecting a picking method,
facility managers and business owners must be cautious because it can make or break the
efficiency of warehouse operations. The shortcomings of the decentralized settings impose
even greater responsibilities on warehouse managers in maintaining a smooth operation.
Through this model, the warehouse managers would be able to draw a clear picture of
the number of pallets of each product and can manage the storage and distribution of
handling devices as well as warehouse space accordingly. They can predict the type of
pickers/handling devices required for order picking and regulate the cost and time to finish
the operation. Those companies which prefer the pre-picking process and organize the
customer order packed in boxes or pallets, for them knowing the pallet quantity of each
product will smooth their task.
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8. Conclusions and Future Research

A careful review of the literature related to modern warehouses and traditional ware-
houses reveals a significant difference in their operational level, demanding that the ma-
jority of models and frameworks must undergo significant modifications in order to be
applied to contemporary warehouse operations on a dynamic scale and current size and
application. Warehouse operations are intricate and interconnected, and when dealt with
or optimized in isolation, they fail to produce results that are globally ideal. Hence, the
necessity of coordinated strategies for operational issues and multiple decision making
within warehouses, cross-dock centers, or distribution centers that are strongly connected
is one point that is highlighted, making it necessary to group pertinent issues that must be
resolved at the same time [62].

Through this study, it is discovered that most warehouse operations have some degree
of uniqueness based on the sector in which they operate and organizational policies. Apart
from picking or retrieval functions of warehouse operations, some other factors like the
homogeneity or heterogeneity, size, number of the items stored, handling characteristics
of products or their product carriers [63], etc., are vital in warehouse operational decision
making. As a result, it is clear that the range of potential research areas has been reduced to
results regarding problem-specific solutions.

In order to make the best use of warehouse resources through proper palletizing,
this article offers a straightforward and practical MILP model. The total picking time is
calculated based on the number of pallets carried by each handling device. The number
of pallets for each product is calculated based on the daily demand for each product as
well as on other warehouse operational constraints. Though increasing the number of
material handling devices used for order picking reduces the picking time, it increases the
utilization level of the machines by 13% and increases the chances of machine damage.
The use of three different pallet types for managing four different product types reduces
the picking time but it increases the possibilities of product congestion within the pallets
leading to product damage. The model was able to produce optimal answers for almost
all the investigated situations with minimal computational time and effort. This shows
that the suggested MILP model offers a good approach to the issue of pallet distribution
and picker utilization by optimizing the number of pallets required to satisfy the demand
from each product category and the number of pallets carried by each handling device. In
a real-world setting where the labor cost is exponentially huge, the methodology suggested
in this work can be utilized as a starting point for the further optimization of fundamental
warehousing functions.

For future research, there are various other aspects that can be incorporated into the
model and further explored.

• The proposed model for this study takes into account the homogeneity of the items
that are placed on a pallet. Future research could explore the possibility of test-
ing and enhancing the model to function when the items to be piled on the pallet
are heterogeneous;

• The proposed model is based on the fact that the daily demand and order quantity are
deterministic. The model can be further explored with stochastic demands or alterna-
tively, the study could be expanded further to include forecasted order quantities as
model inputs;

• In this model, a particular order in a planning horizon concentrated in a decentralized
small-sized cross dock is considered and the pallet distribution and machine’s work-
load are suggested accordingly to attain the minimized total picking time. The effect
of multiple orders and its effects on the total picking time can be further investigated
within the premises of a large-sized cross dock;

• The allocation of material handling devices for this model was random. However, the
model can be explored by setting the allocation of machines to pallet picking on the
criteria of the shortest processing or picking time.
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Abbreviations
Indices, decision variables, and parameters were included in the following subsection of

notation to formulate the mathematical model:

Indices
K Number of pallet types
J Number of order types
I Number of product types.
M Number of available material handling machines
A Daily demand requirement of products in Kg
a Daily demand requirement of pallets of each product

Parameters

Yij
Order Quantity of ith product in jth order where i = 1,2,3, . . . , I and
J = 1,2,3, . . . , J

pij Number of pallets of ith product in jth order

Pkm
Processing time of kth pallet in mth machine, where k = 1,2,3, . . . , K and
m = 1,2,3, . . . , M.

Decision variables

Zkm
Number of pallets k carried by machine m, where k = 1, 2,3, . . . , K,
m = 1,2,3, . . . , M.

Xik
Number of kth pallet type from ith product type, where i = 1,2,3, . . . , I, and
k = 1,2,3, . . . , K
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