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Abstract: This paper investigates the observer-based adaptive stabilization control problem for a class
of time-delay nonlinear systems with unknown control gain using an echo state network (ESN). In
order to handle unknown functions, a new recurrent neural network (RNN) approximation method
called ESN is utilized. It improves accuracy, reduces computing cost, and is simple to train. To address
the issue of unknown control gain, the Nussbaum function is used, and the Lyapunov–Krasovskii
functionals are used to address the delay term. The backstepping strategy and command filtering
methodology are then used to create an adaptive stabilization controller. All of the closed-loop
system’s signals are predicted to be confined by the Lyapunov stability theory. Finally, a simulation
example is used to demonstrate the effectiveness of the suggested control mechanism.

Keywords: echo state network (ESN); stabilization control; unknown control gain; time-delay
nonlinear systems

MSC: 93D05

1. Introduction

In the past decades, the time-delay problem which may seriously affect system per-
formance has become a common feature of various control systems. To solve this issue,
a number of schemes have been proposed. As in [1], by using a nominal feedback technique
that satisfied the nonlinear growth limit and transformed the delayed system into fully
delay-free equivalent systems, predictor-based controllers were developed by Ponomarev
for nonlinear systems with scattered input delays. Additionally, the small constant input
delay in [2] was addressed using the Pade approximation method. The adding-a-power in-
tegrator technique was used in [3] to solve the stability problem of stochastic time-delayed
systems, but the problem of determining whether the control of systems with time-delayed
was in the deterministic or stochastic case remained unsolved because of the difficulty of
developing a suitable Lyapunov–Krasovskii functional. Then, in [4], Lyapunov–Krasovskii
functions and backstepping design were used to handle an approximate-based fuzzy logic
control problem of nonlinear time-delay systems. However, all of the works listed above are
fundamentally predicated on the idea that the state variables in the systems are measurable,
and do not take time-delay terms into account.

In practical systems, unmeasurable or partially measurable states are very common
situations. For instance, the controlled systems in [5] must be predicated on the availability
of state variables, which restricted the applicability of these control strategies in practical
projects. So far, a state observer-based adaptive neural network (NN) control technique
is an effective method for addressing the state unpredictability issue. The work in [6]
presented the problem of the observer-based adaptive neural controller for a class of
nonlinear strict-feedback systems. In [7], Hua et al. studied the robust output tracking
control problem for a class of time-delayed nonlinear systems and developed an observer-
based NN controller using the backstepping strategy. In [8], the adaptive output-feedback
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control problem for uncertain nonlinear single-input and single-output (SISO) systems
with partially unpredictable states was studied, where a reduced-order observer was
designed to estimate unpredictable states. An adaptive output-feedback controller was
constructed by using a radial basis function (RBF) NN and incorporating the reduced-
order observer into a new backstepping design in [9]. Furthermore, a dynamic output-
feedback controller based on NN approximation theory was built to address the issue
of dynamic output-feedback control for a class of nonlinear time-delay linked systems
in [10]. The regionally stable conclusion from [6] was later extended to nonlinear strict-
feedback time-delay systems in [8,9], and then to nonlinear linked systems in [10]. Sufficient
conditions for obtaining the consistency of both sides of the considered system are obtained
by constructing appropriate Lyapunov–Krasovsky generalized functions and using the
linear matrix inequality (LMI) technique [11]. Based on the explanations above, the primary
restriction is that the control direction must be known. However, in practical applications,
there are frequently indications of the unknown control gains.

It is challenging to construct a controller for a controlled system when the sign of the
control coefficient is unknown because a controlled force acting in the wrong direction
could cause the system to deviate from the expected behavior. For an adaptive control
design, the researchers presented alternatively shifting the symbol of the control force.
The Nussbaum function was invented by Nussbaum (1983), which relied on increasing the
controller gain to move the system quickly to the desired state. Nussbaum-type functions
were first introduced in parametric adaptive control in [12]. After that, the Nussbaum
function was then expanded adaptive neural control of nonlinear time-delay systems
in [13], where an adaptive fuzzy output-feedback controller was developed by employing
the Nussbaum function to guarantee the uniformly ultimately bounded of all closed-loop
system signals. For tracking the control problem of a class of strict-feedback stochastic
nonlinear systems with unknown virtual control gain function as the primary characteristic,
a new fuzzy adaptive control scheme was put forth in [14]. Razumikhin–Nussbaum lemma
was proposed in [15] to solve the adaptive NN control problem for a class of stochastic
nonlinear time-delay systems with unknown control gain. With an asymmetric control
gain matrix, the control problem of a class of uncertain multi-input multi-output nonlinear
systems with unknown control directions and unmeasured states was addressed by an
observer-based fuzzy adaptive control technique in [16]. However, in [16], the problem of
unknown control gains did not affect the observer design, which is not reasonable. In order
to address the issue of unknown control gains for the observer, our research is focused on
this topic.

Additionally, designing the controllers by using the backstepping method will lead to
the “explosion of complexity” problem. To solve this problem, dynamic surface control
(DSC) and command filtering techniques have been introduced. DSC was employed in [17]
to get around the difficult math involved in the higher-order nonlinear dynamics. This
method used several sliding surfaces and a step-by-step recursive procedure to stabilize the
dynamic system. Different from DSC, the command filter is used to replace the traditional
DSC, which simplifies the derivation process and the design of the controller. For example,
in [18], an adaptive fuzzy tracking control problem for nonlinear systems was investigated
based on the fuzzy approximate method and the command-filtering technology. Sun et al.
investigated a command filtering-based finite-time adaptive fuzzy tracking control issue
in [19] for uncertain nonlinear systems with specified performance. The command filters
enable a more practical design where the controller is not differentiated, eliminating the
complexity brought on by the differential explosion. Thus, it is essential that the command
filtering technique is introduced into the design of the adaptive backstepping controllers.

In a word, it is relevant to investigate the adaptive stabilization control problem of
nonlinear time-delay systems based on ESN. In this study, an adaptive stabilization scheme
based on the ESN observer is proposed for a class of nonlinear time-delay systems with
unknown control gains. The following are the primary contributions of this article as
compared to the findings of earlier studies:
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(1) This paper takes advantage of the low computational complexity of ESN without
changing the connection weights between the energy reservoirs of the input and
hidden layers, simple training and high accuracy to approximate unknown nonlinear
function terms. For the learning algorithm of an RBF neural network, the key issue is
the reasonable determination of the central parameters of the hidden layer neurons.
There are still shortcomings that make the application scope limited. In this work,
ESN is applied to adaptive stabilization control of nonlinear time-delay system with
unknown control gain.

(2) Considering the unmeasurable variables in the system, an ESN-based full-dimensional
state observer is developed in this paper to estimate them in the system. This method
does not assume that all states of the controlled system are measurable. In contrast
to [16], the construction of the observer is more difficult due to the consideration of
the unknown control gains.

(3) The Nussbaum function is employed in the system to manage the unknown control
gain term. The difference is that, in this paper, the Nussbum function is applied to han-
dle the estimates of the unknown gain due to the observer. The Lyapunov–Krasovskii
functionals and the Nussbaum function are used to provide an adaptive stabilization
controller for the time-delay nonlinear system. All of the signals in the closed-loop
system are guaranteed to be bounded by the proposed controller.

Design the time-delayed system model, estimate the controlled object with state ob-
server, redesign the system equations on this basis, next design the compensation signal
to solve the computational complexity explosion caused by command filtering, use Lya-
punov–Krasovskii functionals to solve the time-delayed problem in the process of designing
the controller, and finally introduce the Nussbaum function in the actual controller design
to deal with the unknown control gain. Finally, the actual controller and the adaptive law
are designed.

The remainder of this article is structured as follows. Section 2 gives the problem
formulation and preliminary information. Section 3, provides a system stability analysis as
well as a new adaptive stabilization control mechanism. Section 4 provides a simulated
example. Section 5 contains the conclusion.

2. Preliminaries
2.1. Problem Formulation

Consider the following nonlinear nonstrict time-delay system with unknown con-
trol gain

ẋi = xi+1 + fi(x) + bi(x(t− τi))

ẋn = gn(t)u + fn(x) + bn(x(t− τn))

y = x1

(1)

where x = [x1, . . . , xn]
T ∈ Rn represents the unmeasurable state vector of the system.

The system input is u ∈ R, and y ∈ R is the system output. fi(x) and bi(x(t− τi)) are
smooth functions that have no known properties. When τmax is a known constant and τi
signifies the unknown time-varying delay that satisfies 0 < τi < τmax. gn(t) 6= 0 represents
a time-varying unknown bounded control gain function.

Definition 1 ([19]). If there exists a function satisfying

lim
s→∞

sup
1
s

∫ s

0
N(Φ)dΦ = +∞ (2)

lim
s→∞

inf
1
s

∫ s

0
N(Φ)dΦ = −∞ (3)

then N(Φ) is a Nussbaum-type function. In this paper, N(Φ) is chosen as Φ2 cos(Φ).
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Lemma 1 ([20]). Assuming Φ(t) is a smooth function on [0, t f ), if the following inequality holds

V̇0 ≤ −πV+
1
rn
[gn(t)N(Φ) + 1] Φ̇ (4)

where V0 ≥ 0 is radially unbounded, and π, rn are positive parameters, then 1
rn
[gn(t)N(Φ) + 1] Φ̇

is bounded on [0, t f ).

2.2. Echo State Network

An ESN is a new type of RNN with the above structural description. In Figure 1, K,
N and L are the number of neurons in the input, hidden and output layers, respectively.
Large-scale RNNs are used as a dynamic library in the hidden layer, which can also be
abbreviated as dynamic reservoir (DR). These leaky-integrator neurons that make up these
DRs are triggered by appropriate input and output feedback. When compared to come
forward NNs such as an RBFNN, an ESN has the advantage of faster training and does not
require changing the connection weights between inputs and energy storage in the hidden
layer. The continuous-time dynamics of the ESN used are followed by

ξ̇(x) = (1− ι) tanh(Witξ(x) + W f y + Wiu) + ιξ(x) (5)

where the activation function of DR is given as ξ(x) , the energy storage neuron’s leakage
rate is given as ι > 0, and the hyperbolic tangent function is indicated by tanh(·). The input,
internal, and feedback connection weight matrices are represented by Wi, Wit, W f ∈ Rn,
correspondingly. u is the external input in dimension K, so that the output equation reads
in the following

y = WTξ(x) (6)

and W ∈ Rn stands for the output weight matrix.

Figure 1. Architecture of ESN.

Through the [21–23], we obtained the method of an ESN for approximating the un-
known function. Since any continuous function can be approximated by the results of RNN,
this also proves that the existence of an ESN system y(x) in the form of (6) such that the
inequality is valid for any continuous function f (·) : Rn → R on a large enough compact
set Ω ∈ R

sup
x∈Ω
| f (x)− y(x)| ≤ ε̄ (7)

where ε̄ > 0 can be any arbitrary positive constant, and the function f (x) can be roughly
approximated by

f (x) = ε + WTξ(x), ∀x ∈ Ω (8)
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where W = arg minW∈Rn
{

supx∈Ω

∣∣ f (x)−WTξ(x)
∣∣} is satisfied by the ideal weight matrix

W ∈ Rn, ε denotes the ESN approximation error bounded by |ε| ≤ ε̄, where ξ j(x) is selected
in the sigmoid form provided by

ξ j(x) =
pj

oj + a
− x

dj

+cj, j = 1, 2, . . . , N (9)

where pj, oj and dj, cj are the constant parameters, and ξ j(x) is a constant in 0 < ξ j(x) < om

with om = max
{∣∣∣ pj

oj
+ cj,

pj
oj+1 + cj

∣∣∣}. Since the ideal weight matrix W is typically unknown

in practice, Ŵ, an estimation of W is used and updated by creating adaptive laws online to
ensure the asymptotic tracking performance.

Remark 1. Based on the aforementioned descriptions, it is found that the ESN is an alternative
functional approximation tool. Despite the fact that the RBFNN is frequently used in articles for
approximation, the ESN may be trained with more ease and accuracy than the RBFNN because it
does not require altering the weights between both the hidden and input layers.

Lemma 2 ([24]). Let ξ(·) be a function vector of the ESN. The center of the receptive field and the
input variable are vi = [vi1, . . . , vin]

T and Xn = [x1, . . . , xn], respectively. Create a new center
vi, with the input variable Sk being vi = [vi1, . . . , vik]

T and Sk = [x1, . . . , xk]
T for an integer,

k < n. Then, one has
ξT(Xn)ξ(Xn) ≤ ξT(Sk)ξ(Sk) (10)

for the same dimension constant, in which vi and Sk are indeed the vectors made up of the first k
components of vk

i and Xn.

Assumption 1 ([25]). The underlying inequality

bij ≤
∂ fi
∂xj
≤ bij (11)

is satisfied by the partial derivative ∂ fi/∂xi, where 1 ≤ i ≤ n and 2 ≤ j ≤ n, bij and bij are known
constants.

Assumption 2 ([18]). Positive constants di and hi exist for nonlinear functions fi(·) and qi(·) of
that kind that for 1 ≤ i ≤ n {

| fi(x)− fi(x̂)| ≤ di‖x− x̂‖
|qi(x)− qi(x̂)| ≤ hi‖x− x̂‖ (12)

where x̂ is the estimation of x.

Remark 2. Taking x̂ = 0 from Assumption 2 results in | fi(x)| ≤ di‖x‖, proving the existence of
strictly rising smooth functions Ki(a) = dia with a ∈ R, which serve as the bounding functions
for fi(·). Similar to this, strictly growing smooth functions ki(a) = hia with a ∈ R serving as the
bounding functions of qi(·) are also possible.

Lemma 3 ([26]). For ∀(x, y) ∈ Rn, the following inequality holds

xy ≤ jp

p
|x|p + 1

qjq
|y|q (13)

where j > 0, p > 1, q > 1 and (p− 1)(q− 1) = 1.
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Lemma 4 ([19]). For Lemma 1 and state transformation, the following inequality holds

‖x̂‖ ≤
n

∑
i=1
|si|ki(θi) (14)

where ki = 2
(

1 + ci +
1
2

)
+ 1

q2
i
θ̂2

i νT
i (Si)νi(Si), and ci, qi are positive design parameters.

Lemma 5 ([27]). If input noise satisfies
∣∣∣x(i+1)c

− αi

∣∣∣ ≤ ζ, where x(i+1)c
is the output of the

command filtering, the inequality as following is real for a scalar oi+1 > 0∣∣∣ϕi+1 − x(i+1)c

∣∣∣ ≤ oi+1ζ (15)

3. Observer-Based Controller Design and Stability Analysis

A backstepping design process for system (1) using the adaptive neural control proto-
col is presented in this section.

An ESN-based observer is built to estimate the unknown state x1, . . . , xn of the system
(1) as below { ˙̂xi = x̂i+1 − li(y− x̂1) + ŴT

i ξi
(

x1, ζ̂
)

˙̂xn = ĝn(t)u− ln(y− x̂1) + ŴT
n ξn

(
x1, ζ̂

) (16)

where x̂i is the estimation of xi, 1 ≤ i ≤ n− 1, ζ̂ = [x̂2, . . . , x̂n]
T, Ŵi is used to estimate the

unknown ideal weight vector, and it estimates Wi. li is the to-be-designed observation gain
parameter. ĝn(t) is the estimation of gn(t). fi

(
x1, ζ̂

)
is an unidentified nonlinear function,

thus an ESN WT
i ξi
(

x1, ζ̂
)

is used to model it in a way that, for a given degree of precision
ε̄ > 0

fi
(
x1, ζ̂

)
= WT

i ξi
(
x1, ζ̂

)
+ εi

(
x1, ζ̂

)
, |εi| ≤ ε̄ (17)

with Wi is the ideal right vector, and εi is the approximation error function.
The estimating error is defined as wi = xi − x̂i, for 1 ≤ i ≤ n.
Using (16) and (17), the error dynamic can be given as

ẇ =A0w + F(x1, ζ)− ŴTξ
(
x1, ζ̂

)
+ F(x)

+ B(x(t− τ))− F(x1, ζ)
(18)

where ζ = [x2, . . . , xn]T, w = [w1, . . . , wn]T, and

F(x1, ζ) = [ f1(x1, ζ), . . . , fn(x1, ζ)]T

ŴTξ
(
x1, ζ̂

)
= [ŴT

1 ξ1
(
x1, ζ̂

)
, . . . , ŴT

n ξn
(
x1, ζ̂

)
]T

F(x) = [ f1(x), . . . , fn(x)]T

B(x(t− τ)) = [b1(x(t− τ1)), . . . , bn(x(t− τn))]
T

A0 = A− LC, A =

[
L In−1
ln 0

]
L = [l1, . . . , ln−1]

T.

Define W̃=
[
W1 − Ŵ1, . . . , Wn − Ŵn

]T, and F
(
x1, ζ̂

)
= [ f1(x1, ζ̂), . . . , fn(xn, ζ̂)]T is to

address the impact of the F(x1, ζ) on the error dynamic.
Then, (18) can be rewritten as

ẇ = A0 w +
(

F(x1, ζ)− F
(
x1, ζ̂

))
+ ε
(
x1, ζ̂

)
+ F(x)

+ W̃Tξ
(

x1, ζ̂
)
+ B(x(t− τ))− F(x1, ζ)

(19)
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Choose the Lyapunov function candidate Vw as

Vw = wTPw +
n

∑
i=1

∫ t

t−τi

‖P‖d2
i w2

i (a)da (20)

with P being the to-be-designed positive definite matrix and the constant di will be speci-
fied later.

Differentiating Vw can get

V̇w =wT(PA0 + AT
0 P)w + 2 wT P

(
F(x1, ζ)− F

(
x1, ζ̂

))
+ 2 wT Pε

(
x1, ζ̂

)
+ 2 wT PW̃Tξ

(
x1, ζ̂

)
+ 2 wT PF(x) + 2 wT PB(x(t− τ)) + ‖P‖

n

∑
i=1

d2
i w2

i

− ‖P‖
n

∑
i=1

d2
i w2

i (τi)− 2 wT PF(x1, ζ)

=wT(PA0 + AT
0 P)w + 2 wT P

(
F(x1, ζ)− F

(
x1, ζ̂

))
+ 2wTP(ε(x1, ζ̂) + W̃Tξ(x1, ζ̂)) + 2 wT P(F(x)

− F(x̂)) + 2 wT P(B(x(t− τ))− B(x̂(t− τ)))

+ 2 wT PF(x̂) + 2 wT PB(x̂(t− τ)) + ‖P‖
n

∑
i=1

d2
i w2

i

− ‖P‖
n

∑
i=1

d2
i w2

i (τi)− 2 wT PF(x1, ζ)

(21)

According to differential mid-value theorem, one can get

2wTP(F(x1 − ζ)− F
(
x1 − ζ̂

)
) = 2wTPEw (22)

where matrix E is defined as

E =


0 ∂ f1

∂x2
· · · ∂ f1

∂xn
...

...
...

...
0 ∂ fn

∂x2
· · · ∂ fn

∂xn

 (23)

From Assumption 2 and Lemma 5, we have

2 wT Pε
(
x1, ζ̂

)
+2 wT PW̃Tξ

(
x1, ζ̂

)
≤σ wT Pw +

n ε2

σ
‖P‖2 (24)

+
‖P‖

σ

n

∑
i=1

aiW̃T
i W̃i

2wTP(F(x)− F(x̂))) ≤2wTPdi‖x− x̂‖ (25)

≤wTPw + ‖P‖
n

∑
i=1

d2
i wTw

2wTPB(x(t− τ))−2wTPB(x̂(t− τ))

≤2wTPhi‖x(t− τ)− x̂(t− τ)‖ (26)

≤wTPw + ‖P‖
n

∑
i=1

h2
i w2

i (τi)

where ai and σ are positive design constants.
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Invoking (22)–(26) into (21), one can obtain

V̇w ≤wT
(

PA0 + AT
0 P + 2P + σP + PE + ETP

)
w

+
nε2

σ
‖P‖+ ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
wTw

+ 2wTPF(x̂) + 2wTPB(x(t− τ))

+
‖P‖

σ

n

∑
i=1

aiW̃T
i W̃i − 2 wT PF(x1, ζ)

(27)

Then, a stabilization control method is proposed for this kind of nonlinear system.
The coordinate transformation of z is described by{

z1 = x̂1
zi = x̂i − xic

(28)

where i = 2, . . . , n and xic denotes the output of command filtering.
To avoid the increased complexity caused by the backstepping controller design,

the command filter is defined as

ϕ̇iωi = αi−1 − ϕi (29)

where ϕi is denoted as the output of the command filter that the virtual control signal
αi−1 is the corresponding input signal, and ωi is a positive design parameter. The initial
condition is ϕi(0) = αi(0). Since signal noise is ubiquitous, observation and control require
real signals, specified frequencies, and sudden changes in interference are excluded or
limited as much as possible, so command filters are applied and parameters are set.

To deal with the filtering error z, the error compensation signals ηi for i = 1, . . . , n are
designed. Define the compensated errors as{

si = zi − ηi
sn = zn − ηn

(30)

Step 1: Together with (16), (28) and (30), one can differentiate s1 as

ṡ1 = x̂2 − l1(y− x̂1) + ŴT
1 ξ1(x1, ζ̂)− η̇1 (31)

Choose the Lyapunov–Krasovskii function candidate as

V1 =
1
2

s2
1 + m

∫ t

t−τ1

s2
1k2

1(θ1(a))da +
1

2ρ1
θ̃2

1 (32)

where ρ1 is a design constant, θ̃1 = θ1 − θ̂1 and θ̂1 is the estimation of θ1, m is a positive
design parameter that will be designed later.

The derivative forms of V1 can be presented as

V̇1 =s1(x̂2 − l1w1 + ŴT
1 ξ1
(
x1, ζ̂

)
− η̇1) + ms2

1k2
1(θ1)

−ms2
1(τ1)k2

1(θ1(τ1))−
1
ρ1

θ̃1
˙̂θ1

(33)

According to Lemma 3, one has

−s1l1w1 ≤
1
2

β1w2
1 +

1
2β1

s2
1l2

1 (34)

where β1 is a positive design parameter.
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Invoking (34) into (33) yields

V̇1 ≤s1(x̂2 + ŴT
1 ξ1(x1, ζ̂)− η̇1) +

1
2β1

s2
1l2

1 + ms2
1k2

1(θ1)

−ms2
1(τ1)k2

1(θ1(τ1))−
1
ρ1

θ̃1
˙̂θ1 +

1
2

β1w2
1

(35)

Design the compensation signal η1 as

η̇1 = −c1η1 −
1
2

η1 + η2 + s2 + x2c − α1 (36)

where c1 is a positive design parameter.
Substituting (36) into (35) gives

V̇1 ≤s1(
1

2β1
s1l2

1 + WT
1 ξ1(x1, ζ̂)− W̃T

1 ξ1(x1, ζ̂))

+ s1(c1η1 +
1
2

η1 + α1) + ms2
1k2

1(θ1)

−ms2
1(τ1)k2

1(θ1(τ1))−
1
ρ1

θ̃1
˙̂θ1 +

1
2

β1w2
1

(37)

where
f̄1(X1) = WT

1 ξ1
(
x1, ζ̂

)
+ js1K2

1(θ1) +
1

2β1
s1l2

1 + ms1k2
1(θ1)

with X1 =
[
x1, . . . , xn, ŴT

1 , ζ̂
]T

. For the unknown f̄1(X1), an ESN WT
1 ν1(X1) is employed to

approximate it and such that for given ε̄1 > 0, f̄1(X1) = WT
1 ν1(X1) + ε1(X1), with |ε1| < ε̄1.

Using Lemmas 2 and 3, the following inequality holds

s1 f̄1(X1) = s1WT
1 ν1(X1) + s1ε1(X1)

≤ 1
2q2

1
s2

1‖W1‖2νT
1 (X1)ν1(X1) +

q2
1

2
+

1
2

s2
1 +

1
2

ε2
1

≤ 1
2q2

1
s2

1θ1νT
1 (S1)ν1(S1) +

q2
1

2
+

1
2

s2
1 +

1
2

ε̄2
1

(38)

where q1 being a positive constant, ‖W1‖2 = θ1, and S1 = [x1]
T.

From (38), (37) can be rewritten as

V̇1 ≤s1(−W̃T
1 ξ1(x1, ζ̂) + c1η1 +

1
2

η1+
1
2

s1 + α1)

− js2
1K2

1(θ1)−ms2
1(τ1)k2

1(θ1(τ1)) +
1
2

q2
1 +

1
2

β1w2
1

+
1
2

ε̄2
1+

1
2q2

1
s2

1θ̂1νT
1 (S1)ν1(S1)

+
1
ρ1

θ̃1(
ρ1

2q2
1

s2
1νT

1 (S1)ν1(S1)− ˙̂θ1)

(39)

Develop the virtual control signal α1 and adaptive law θ̂1 as

α1=− (c1 +
1
2
)z1 −

1
2q2

1
s1θ̂1νT

1 (S1)ν1(S1) (40)

˙̂θ1 =
ρ1

2q2
1

s2
1νT

1 (S1)ν1(S1)− γ1θ̂1 (41)

where γ1 is a positive design parameter.
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By substituting (40) and (41) into (39), it follows that

V̇1 ≤− c1s2
1 − js2

1K2
1(θ1)−ms2

1(τ1)k2
1(θ1(τ1))

+
γ1

ρ1
θ̃1θ̂1 − s1W̃T

1 ξ1
(
x1, ζ̂

)
+

1
2

q2
1 +

1
2

β1w2
1 +

1
2

ε̄2
1

(42)

Step i(2 ≤ i ≤ n− 1): Considering (16), (28), (30) and differentiating si with respect to
time yields

ṡi = x̂i+1 − li(y− x̂1) + ŴT
i ξi
(
x1, ζ̂

)
− ẋic − η̇i (43)

Consider the Lyapunov–Krasovskii function candidate

Vi =
1
2

s2
i + m

∫ t

t−τi

s2
i k2

i (θi(a))da +
1

2ρi
θ̃2

i (44)

where ρi is a design constant, θ̃i = θi − θ̂i and θ̂i is estimation of θi.
Invoking (43) and (44), the derivative of Vi is given by

V̇i =si(x̂i+1 − liw1 + ŴT
i ξ
(

xi, ζ̂
)
− ẋic − η̇i) + ms2

i k2
i (θi)

−ms2
i (τi)k2

i (θi(τi))−
1
ρi

θ̃i
˙̂θi

(45)

Consider the following fact

−siliw1 ≤
1
2

βiw2
1 +

1
2βi

s2
i l2

i (46)

where βi is a positive design parameter.
According to (46), it can be obtained

V̇i ≤si(x̂i+1 + ŴT
i ξi(x1, ζ̂)− ẋic − η̇i) +

1
2βi

s2
i l2

i

+ ms2
i k2

i (θi)−ms2
i (τi)k2

i (θi(τi))−
1
ρi

θ̃i
˙̂θi +

1
2

βiw2
1

(47)

The compensation signal ηi is designed as

η̇i = −ciηi −
1
2

ηi + ηi+1 − ηi−1 + si+1 + x(i+1)c
− αi (48)

where ci is a positive design parameter.
Then, (47) can be rewritten in the following form

V̇i ≤si(−ẋic +
1

2βi
sil2

i + WT
i ξi(x1, ζ̂)− W̃T

i ξi(x1, ζ̂))

+ si(ciηi +
1
2

ηi + ηi−1 + αi)−ms2
i (τi)k2

i (θi(τi))

+ ms2
i k2

i (θi)−
1
ρi

θ̃i
˙̂θi +

1
2

βiw2
1

(49)

where
f̄i(Xi) = jsiK2

i (θi) + WT
i ξi
(
x1, ζ̂

)
+ siηi−1 + msik2

i (θi) +
1

2βi
sil2

i

with Xi =
[
x1, . . . , xn, ŴT

i , ζ̂
]T

. Once again, an ESN WT
i νi(Xi) is used to approximate

the unknown function f̄i(Xi) such that for given ε̄i > 0, f̄i(Xi) = WT
i νi(Xi) + εi(Xi),

with |εi| < ε̄i.
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Similar to step 1, one has

si f̄i(Xi) ≤
1

2q2
i

s2
i ‖Wi‖2νT

i (Xi)νi(Xi) +
q2

i
2
+

1
2

s2
i +

1
2

ε̄2
i

≤ 1
2q2

i
s2

i θiν
T
i (Si)νi(Si) +

q2
i

2
+

1
2

s2
i +

1
2

ε̄2
i

(50)

with ‖Wi‖2 = θi, and Si = [x1, . . . , xi]
T.

It follows from substituting (50) into (49) that

V̇i ≤si(−ẋic + ciηi +
1
2

ηi +
1
2

si + αi)− js2
i K2

i (θi)

−ms2
i (τi)k2

i (θi(τi)) +
1
2

q2
i +

1
2

βiw2
1

+
1
2

ε̄2
i +

1
2q2

i
s2

i θ̂iν
T
i (Si)νi(Si)− siW̃T

i ξi
(
x1, ζ̂

)
+

1
ρi

θ̃i(
ρi

2q2
i

s2
i νT

i (Si)νi(Si)− ˙̂θi)

(51)

Choose the virtual control signal αi and adaptive law θ̂i as

αi=− cizi −
1
2

zi −
1

2q2
i

si θ̂iν
T
i (Si)νi(Si) + ẋic (52)

˙̂θi =
ρi

2q2
i

s2
i νT

i (Si)νi(Si)− γi θ̂i (53)

where γi is a positive design parameter.
According to (52) and (53), one has

V̇i ≤− cis2
i − js2

i K2
i (θi)−ms2

i (τi)k2
i (θi(τi))

+
γi
ρi

θ̃i θ̂i +
1
2

q2
i +

1
2

βiw2
1 +

1
2

ε̄2
i − siW̃T

i ξi
(
x1, ζ̂

) (54)

Step n: According to (16), (28), (30), the derivative of sn is

ṡn = ĝn(t)u− ln(y− x̂1) + ŴT
n ξn(x1, ζ̂)− ẋnc − η̇n (55)

Construct the Lyapunov–Krasovskii function candidate as

Vn = Vn−1 +
1
2

s2
n + m

∫ t

t−τn
s2

nk2
n(θn(a))da +

1
2ρn

θ̃2
n (56)

where ρn is a design constant and θ̃n = θn − θ̂n, ĝn = gn − g̃n. θ̂n and ĝn are estimation of
θn and gn.

V̇n is the time derivative of Vn

V̇n =V̇n−1 + ms2
nk2

n(θn)−ms2
n(τn)k2

n(θn(τn)

+ sn((gn(t)− g̃n(t))u− lnw1 + ŴT
n ξn

(
x1, ζ̂

)
− ẋnc

− η̇n)−
1
ρn

θ̃n
˙̂θn

(57)

according to Lemma 3, one can get

−snlnw1 ≤
1
2

βnw2
1 +

1
2βn

s2
nl2

n (58)

where βn is a positive design parameter.
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By taking (58) into consideration, one arrives at

V̇n ≤V̇n−1 +
1

2βn
s2

nl2
n + ms2

nk2
n(θn)−ms2

n(τn)k2
n(θn(τn))

+ sn((gn(t)− g̃n(t))u + ŴT
n ξn(x1, ζ̂)− ẋnc − η̇n)

− 1
ρn

θ̃n
˙̂θn +

1
2

βnw2
1

(59)

The compensation signal ηn is proposed as

η̇n = −cnηn − ηn−1 −
ηn

2
(60)

where cn is a positive design parameter.
Substituting (60) into (59) yields

V̇n ≤V̇n−1 + sn

(
(gn(t)− g̃n(t))u + cnηn + ηn−1 +

ηn

2

)
+ sn(

1
2βn

snl2
n + WT

n ξn(x1, ζ̂)− W̃T
n ξn(x1, ζ̂))

− sn ẋnc + ms2
nk2

n(θn)−ms2
n(τn)k2

i (θn(τn))

− 1
ρn

θ̃n
˙̂θn +

1
2

βnw2
1

(61)

Let

f̄ n(Xn) = msnk2
n(θn) + jsnK2

n(θn) + WT
n ξn

(
x1, ζ̂

)
+ g(t)u +

1
2βn

snl2
n + snηn−1 − 2 wT PF(x1, ζ)

with Xn =
[
x1, . . . , xn, ŴT

n , ζ̂
]T

. Similarly to step i, it follows that f̄n(Xn) = WT
n νn(Xn) +

εn(Xn) and |εn| < ε̄n.
The following inequality holds

sn f̄n(Xn) ≤
1

2q2
n

s2
n ‖Wn‖2νT

n (Xn)νn(Xn)

+
q2

n
2

+
1
2

s2
n +

1
2

ε̄2
n

≤ 1
2q2

n
s2

nθnνT
n (Sn)νn(Sn)

+
q2

n
2

+
1
2

s2
n +

1
2

ε̄2
n

(62)

with ‖Wn‖2 = θn, and Sn = [x1, . . . , xn]T.
From (61) and (62), one has

V̇n ≤V̇n−1 + sn(−g̃n(t)u +
1
2

sn − ẋnc + cnηn +
ηn

2
)

+
1

2q2
n

s2
n θ̂nνT

n (Sn)νn(Sn) +
1
2

βnw2
1 +

1
2

q2
n

+
1
2

ε̄2
n − js2

nK2
n(θn)−ms2

n(τn)k2
n(θn(τn))

+
1
ρn

θ̃n(
ρn

2q2
n

s2
nνT

n (Sn)νn(Sn)− ˙̂θn)

− snW̃T
n ξn

(
x1, ζ̂

)
+ 2 wT PF(x1, ζ)

(63)

Design the actual control signal u and the adaptive law θ̂n as

u = N(Φ)ū (64)
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ū = −cnzn −
1
2

zn −
1

2q2
n

sn θ̂nνT
n (Sn)νn(Sn) + ẋnc (65)

Φ̇ = −ūsnrn (66)

˙̂θn =
ρn

2q2
n

s2
nνT

n (Sn)νn(Sn)− γn θ̂n (67)

where cn, rn are positive parameters to be designed.
Along with (63)–(67), V̇n can be concluded as

V̇n ≤−
n

∑
i=1

cis2
i +

1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

js2
i K2

i (θi)−
n

∑
i=1

ms2
i (τi)k2

i (θi(τi))

+
n

∑
i=1

γi
ρi

θ̃i θ̂i +
n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i )

− snW̃T
n ξn

(
x1, ζ̂

)
+ 2 wT PF(x1, ζ)

(68)

Notice that

θ̃i θ̂i = θ̃i(θi − θ̃i) ≤
1
2

θ2
i −

1
2

θ̃2
i (69)

Consequently, V̇n is rewritten as

V̇n ≤−
n

∑
i=1

cis2
i +

1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

js2
i K2

i (θi)−
n

∑
i=1

ms2
i (τi)k2

i (θi(τi))

−
n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i )

− snW̃T
n ξn

(
x1, ζ̂

)
+ 2 wT PF(x1, ζ)

(70)

To develop the adaptive law regarding Ŵ, the Lyapunov function candidate can be
constructed as

Vm =
n

∑
i=1

Vi +
n

∑
i=1

1
2µi

W̃T
i W̃T

i

with µi being a positive constant.
Differentiating Vm and taking (70) into account, we have

V̇m ≤−
n

∑
i=1

siW̃T
i ξi −

n

∑
i=1

cis2
i −

n

∑
i=1

js2
i K2

i (θi)

−
n

∑
i=1

ms2
i (τi)k2

i (θi(τi)) +
1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i )

−
n

∑
i=1

1
µi

W̃T
i

˙̂Wi + 2 wT PF(x1, ζ)

(71)
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Choosing

˙̂Wi = −ϑiŴi − µisiξi
(
x1, ζ̂

)
(72)

with ϑi being a positive constant. Substituting (71) into (70) yields

V̇m ≤−
n

∑
i=1

cis2
i −

n

∑
i=1

js2
i K2

i (θi)−
n

∑
i=1

ms2
i (τi)k2

i (θi(τi))

+
1
rn
[g̃n(t)N(Φ) + 1]Φ̇−

n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

ϑi
µi

W̃T
i Ŵi

+
n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i ) + 2 wT PF(x1, ζ)

(73)

Therefore, based on the previous discussion, we construct the Lyapunov function
V0 = Vw + Vm and differentiate it, one can obtain

V̇0 ≤wT
(

PA0 + AT
0 P + 2P + σP + PE + ETP

)
w

+
nε2

σ
‖P‖+ ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
wTw + 2wTPF(x̂)

+ 2wTPB(x̂(t− τ))−
n

∑
i=1

cis2
i −

n

∑
i=1

js2
i K2

i (θi)

−
n

∑
i=1

ms2
i (τi)k2

i (θi(τi)) +
1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i )

+
‖P‖

σ

n

∑
i=1

aiW̃i
T W̃i +

n

∑
i=1

ϑi
µi

W̃T
i Ŵi + 2 wT PF(x1, ζ)

(74)

Using Lemmas 3 and 4, one can get

2wTPF(x̂) ≤ε0wTw +
1
ε0

FT(x̂)p2F(x̂)

≤ε0wTw +
1
ε0
‖P‖2‖F(x̂)‖2

≤ε0wTw + j‖x̂‖2

≤ε0wTw +
n

∑
i=1

js2
i K2

i (θi)

(75)

2wTPB(x̂(t− τ)) ≤ 1
ε0

BT(x̂(t− τ))P2B(x̂(t− τ))

+ ε0wTw

≤ε0wTw +
1
ε0
‖P‖2‖B(x̂(t− τ))‖2

≤ε0wTw + m‖x̂(t− τ)‖2

≤ε0wTw +
n

∑
i=1

ms2
i (τi)k2

i (θi(τi))

(76)

with j = n
ε0
‖P‖2 n

∑
i=1

d2
i , m = n

ε0
‖P‖2 n

∑
i=1

h2
i , and ε0 is a positive design parameter.
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Then, (74) can be rewritten as

V̇0 ≤wT
(

PA0 + AT
0 P + 2P + 2ε0 + σP + PE + ETP

)
w

+
nε2

σ
‖P‖+ ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
wTw

+
‖P‖

σ

n

∑
i=1

aiW̃i
T W̃i +

1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

cis2
i −

n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

ϑi
µi

W̃T
i Ŵi

+
n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i )

(77)

Theorem 1. For the system (1) that fulfilling all presumptions construct the observer (16). Assume
that ESN can approximate the packaged nonlinear function f i such that the approximation errors
are constrained. If a definite positive matrix P exists, then

PA0 + AT
0 P + 2P + 2ε0 + σP + PE + ETP

+ ‖P‖
n

∑
i=1

(
d2

i + h2
i

)
I < 0

(78)

where ε0, σ, di and hi are constants and I = wTw ensure that the closed-loop system is semi-globally
stabilized, and by selecting suitable design parameters, it is possible to make any variable in the
closed-loop system is infinitely small.

Proof. Combining (77) and (78) yields

V̇0 ≤wT
(

PA0 + AT
0 P + 2P + 2ε0 + σP + PE + ETP

)
w

+
nε2

σ
‖P‖+ ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
wTw

+
‖P‖

σ

n

∑
i=1

aiW̃i
T W̃i +

1
rn
[g̃n(t)N(Φ) + 1]Φ̇

−
n

∑
i=1

cis2
i −

n

∑
i=1

γi
2ρi

θ̃2
i +

n

∑
i=1

ϑi
µi

W̃T
i Ŵi

+
n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i )

(79)

Notice that

ϑi
µi

W̃T
i Ŵi ≤ −

ϑi
2µi

W̃T
i W̃i +

ϑi
2µi

WT
i Wi (80)
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Taking (79) and (80) into account gives

V̇0 ≤wT
(

PA0 + AT
0 P + 2P + 2ε0 + σP + PE + ETP

)
w

+
nε2

σ
‖P‖+ ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
wTw

+
1
rn
[g̃n(t)N(Φ) + 1]Φ̇−

n

∑
i=1

cis2
i −

n

∑
i=1

γi
2ρi

θ̃2
i

+
n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i +

ϑi
2µi

WT
i Wi)

+
n

∑
i=1

1
2µi

(
2µiai

σ
‖p‖ − ϑi)W̃T

i W̃i

(81)

For a given constant σ, a symmetric and positive matrix variable P must exist in order
for the error dynamics to be stable. This matrix inequality is

σP + PE + ETP < 0 (82)

This matrix inequality is challenging to resolve directly since E is a function matrix.
Another aspect, Assumption 1 suggests that a function µij(t)

(
0 ≤ µij ≤ 1

)
exists, such that

∂ fi
∂xj

= µijbij +
(
1− µij

)
bij

Consequently, matrix E can be written as

E = ∑
1≤i≤n,2≤j≤n

(
µijbij +

(
1− µij

)
bij

)
Iij (83)

where Iij is a square matrix of n-order. Furthermore, according to a convex combination
theory, the solvability of (81) is related to that of a collection of matrix inequalities with the
following type of time-invariant

σP + PC + CTP < 0 (84)

where the set Ω =
{

C|[C]ij is bij or bij ; 1 ≤ i ≤ n, 2 ≤ j ≤ n
}

is a member of the known
matrix C.

It is implied by inequality (78) that there is a constant ∆ > 0 such that

PA0 + AT
0 P + 2P + 2ε0 I + ‖P‖

n

∑
i=1

(
h2

i + d2
i

)
I < −∆I (85)

which implies that

wT
(

PA0 + AT
0 P + 2p + σP + PE + ETP

)
w + 2ε0 I

+ ‖P‖
n

∑
i=1

(
h2

i + d2
i

)
wTw

≤− ∆wTw

=− ∆
vH(P)

vH(P)wTw

≤− ∆
vH(P)

wTPw

(86)

where vH(P) denotes the maximum eigenvalue of matrix P.
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Furthermore, choose the design parameters λi, µi, ai, σ and ϑi, so that

n

∑
i=1

1
2µi

(
2µiai

σ
‖P‖ − ϑi

)
W̃T

i W̃i = Y0.

Define

Π= min
{
− ∆

vH(P)
wTw, ci, ρi, γi, Y0|1 ≤ i ≤ n

}
ℵ =

n

∑
i=1

(
1
2

βiw2
1 +

1
2

q2
i +

1
2

ε̄2
i +

γi
2ρi

θ2
i +

ϑi
2µi

WT
i Wi)

Then, it follows from (81) that

V̇0 ≤ −ΠV0 +
1
rn
[g̃n(t)N(Φ) + 1]Φ̇ + ℵ

which implies that all the closed-loop signals are bounded.
It can be seen from si = zi − ηi that if the convergence of the ηi is guaranteed, the error

si is actually stable. In the following, we will prove that ηi is bounded.
Construct the following Lyapunov function

Vη =
n

∑
i=1

1
2

η2
i (87)

Derivative of Vη gives

V̇η =− c1η2
1 −

1
2

η2
1 + η1(s2 + x2c)− α1η1 + · · ·

− ciη
2
i −

1
2

η2
i − ηi−1ηi + ηi

(
si+1 + x(i+1)c

)
− αiηi + · · · − cnη2

n −
1
2

η2
n − ηn−1ηn

=−
n

∑
i=1

ciη
2
i +

n

∑
i=1

si+1ηi

+
n−1

∑
i=1

(x(i+1)c
− αi −

1
2
)ηi

(88)

According to Lemma 5, the following inequality is satisfied with choosing suitable
parameter satisfying oi+1 > 1

2

V̇η ≤−
n

∑
i=1

ciη
2
i +

n−1

∑
i=1

(oi+1 −
1
2
+ si+1)ηi

≤− cmVn+1 + ΘV
1
2

n+1

(89)

where cm = 2 min ci, Θ =
√

2 min{(oi+1 − 1
2 + si+1)}. According to Lemma 1, it is proved

that ηi is convergent. Since si = zi − ηi, the errors si are stable.
The proof of theorem is thus completed.

4. Simulation Results

One example is presented to illustrate the viability of the suggested method in this section.
Think about the following numerical example of a nonlinear system, where the system

dynamics is described as
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ẋ1 = x2 − 100x1x2
2 + b1(t− τ1)

ẋ2 = (0.01 cos(t)− 5)u + 17x2
1x2 + b2(t− τ2)

y = x1

To consider the effect of delays, the time-varying delays are given as b1(t− τ1) =
5(4t + 10) and b2(t− τ2) = 0.002(9t− 50). The observer parameters are taken as l1 = −3.5
and l2 = 0.6.

Choose the initial values and adaptive parameters x1 = 0.2, x2 = 0, x̂1 = 0.1,
x̂2 = 0.01, ϕ2 = 0.1, η1 = 0.8, η2 = 0.8, Φ = 1.5, θ̂1 = 0.5, c1 = 3, c2 = 0.5, q1 = 1,
q2 = 8, γ1 = 1, γ2 = 0.5, r2 = 0.5, ω2 = 0.5, ρ1 = 2, ρ2 = 1, ĝ2 = 4.

Figures 2–5 show the simulation results. Figure 2 shows the correlation curves between
the state variable x1 and its corresponding estimate. The reaction of the actual controller
u is shown in Figure 3. The paths of the adaptive laws θ̂1, θ̂2, Ŵ1 and Ŵ2 are depicted in
Figures 4 and 5, respectively. According to the different points of the results of this paper
and others, such as in the design of the controller while considering the observer, time-delay
and unknown control gain brought under the influence of the designed controller and
adaptive law is more stable. These figures demonstrate that the simulation results support
the effectiveness of the suggested control strategy.

For the observer-based time-delayed system stabilization problem, the initials and
estimated values of the system can be observed in the images to reach stability after 5 s,
while in this paper it can be clearly seen that the images have stabilized before 5 s.

Figure 2. Paths of state variables x1 and x̂1.
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Figure 3. Curve of the controller u.

Figure 4. Curves of adaptive parameters θ̂1 and θ̂2.
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Figure 5. Curves of adaptive parameters Ŵ1 and Ŵ2.

5. Conclusions

In this paper, a class of adaptive stabilization control problem for nonlinear time-delay
systems with unknown control gain is considered. In order to estimate the unmeasurable
state variables, a state observer is established. An adaptive stabilization controller based on
an ESN observer is proposed by combining the command filtering technique, ESN, and Lya-
punov–Krasovskii functionals. On this basis, the unknown function is approximated by
an ESN, and the unknown control gain is addressed with the Nussbaum function. Then,
the simulation results prove the effectiveness of the designed scheme.
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