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Abstract: The issue of climate change holds immense significance, affecting various aspects of
life, including the environment, the interaction between soil conditions and the atmosphere, and
agriculture. Over the past few decades, a range of spatio-temporal and Deep Neural Network (DNN)
techniques had been proposed within the field of Machine Learning (ML) for climate forecasting,
using spatial and temporal data. The forecasting model in this paper is highly complex, particularly
due to the presence of nonlinear data in the residual modeling of General Space-Time Autoregressive
Integrated Moving Average (GSTARIMA), which represented nonstationary data with time and
location dependencies. This model effectively captured trends and seasonal data with time and
location dependencies. On the other hand, DNNs proved reliable for modeling nonlinear data
that posed challenges for spatio-temporal approaches. This research presented a comprehensive
overview of the integrated approach between the GSTARIMA model and DNNs, following the six-
stage Data Analytics Lifecycle methodology. The focus was primarily on previous works conducted
between 2013 and 2022. The review showed that the GSTARIMA–DNN integration model was a
promising tool for forecasting climate in a specific region in the future. Although spatio-temporal and
DNN approaches have been widely employed for predicting the climate and its impact on human
life due to their computational efficiency and ability to handle complex problems, the proposed
method is expected to be universally accepted for integrating these models, which encompass
location and time dependencies. Furthermore, it was found that the GSTARIMA–DNN method,
incorporating multivariate variables, locations, and multiple hidden layers, was suitable for short-
term climate forecasting. Finally, this paper presented several future directions and recommendations
for further research.

Keywords: integration; GSTARIMA; deep neural network; data analytics lifecycle; forecasting; climate

MSC: 68T07; 68T09

1. Introduction

The climate is a long-term average weather condition in a specific area or zone, and
it is determined by the climatic system of that region, such as the atmosphere. A spatio-
temporal model can observe and analyze various aspects based on location and time, and it
is integrable with other research fields for examining climate phenomena and developing
decision-making strategies. This model focuses on the sequence of events that can be
observed and identified according to their location and time. In the spatio-temporal model,
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the Box–Jenkins spatial model and time series are combined [1]. One commonly studied
model in this context is the Space-Time Autoregressive (STAR) model, which incorporates
a spatial lag operator, representing the effect of nearest neighbors on a particular spatial
location through weights. It was the first spatio-temporal model to be introduced, but it is
only applicable to homogeneous locations, assuming the same parameters for each area [2].
To address this limitation, the Generalized Space-Time Autoregressive (GSTAR) model
is developed, which is a natural extension of the STAR model. It allows autoregressive
parameters to vary across locations, making it suitable for analyzing heterogeneous sample-
site characteristics [3]. Furthermore, the Generalized Space-Time Autoregressive Integrated
Moving Average (GSTARIMA) model is specifically designed for analyzing nonstationary
spatio-temporal data [4].

Climate and air pollution are closely related, as climate change can significantly impact
air quality. Previous research, such as that focused on the GSTARMA model, has focused
on improving predictions of pollutant datasets within spatio-temporal frameworks [5].
These predictions are crucial for understanding the economic and societal impacts of air
pollution [6]. Furthermore, the influence of rainfall, as a climate factor, can be estimated
using GSTAR to plan rice planting seasons, which vary across different sites. GSTARIMA
is employed to analyze the distribution of yields and determine pricing based on the
transfer function [7–9]. These applications extend beyond agriculture, encompassing
various sectors [10]. Moreover, unobserved locations can be predicted using GSTAR–
Kriging [11,12]. When modeling temperature and forecasting nonlinear time-series data
with spatial dependency, the STARMA–GARCH hybrid model outperforms STARMA in
terms of modeling efficiency and forecasting accuracy [13]. Lastly, the effect of exogenous
climatic factors on disease prediction during seasons with spatio-temporal variation can
be examined using the Seasonal Difference Space-Time Autoregressive Integrated Moving
Average (SD–STARIMA) approach. This approach is specifically designed to analyze spatio-
temporal series data exhibiting seasonal distribution features [14], and can even generate a
statistical spatio-temporal model [15] for forecasting photovoltaic plant electricity output
in the near future [16].

In previous research, Deep Neural Networks (DNNs) have been used as part of
Deep Learning (DL), which is a widely recognized approach for integrating climatological
data. The supervised Convolutional Neural Network (CNN) algorithm technique has
been proven to be highly effective in handling complex climate and environmental data,
particularly nonlinear data; an example is the CNN forecast system for the prediction of
the El Niño model [17]. This has achieved a training accuracy of up to 94% [18], making
it particularly suitable for datasets containing multiple time series of high-dimensional
climate variables and multidimensional spatial series with undetermined sequences [19].
The accurate prediction of climate variables is crucial for social and economic activities, and
the CNN–LSTM hybrid model outperforms traditional Machine Learning (ML) approaches
in predicting rainfall for the next three hours [20]. This hybrid model has also proven to be
effective in analyzing air pollution using Deep Learning [21,22] and in large storms such as
typhoons [23]. Additionally, wind speed and meteorological conditions can be predicted
using the multilayer perceptron technique [24,25]. The characteristics of big data, including
large volumes, various variables, and rapid data growth, significantly impact predictions
in regional tourism management. ML, particularly the random forest algorithm, plays a
vital role in increasing tourist visits by providing accurate predictions [26]. Meteorological
forecasting, which includes enormous and complicated datasets, is intrinsically related to
mitigating environmental consequences on daily activities [27].

The integration of the Space-Time and Neural Network (NN) models as part of ML
is an emerging trend. These two models are being developed both independently and in
hybrid forms to analyze climate data. To forecast air quality and pollution, GSTAR has
been integrated with the NN model [28], and the Generalized Regression Neural Network
(GRNN) model has been employed to predict solar radiation, enabling the identification
of outlier data [29]. Nonlinear patterns can be generated and effectively addressed using
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spatio-temporal techniques in conjunction with NNs [30]. When downscaled weather and
climate data simulations of summer monsoon rainfall are conducted, a deep convolutional
architecture with data-type dependencies is selected for forecasting, as no single optimum
architecture exists for all variables [31]. DNN has a significant impact on the predictive
analysis of nonlinear data because cluster techniques provide relatively accurate results [32].
Figure 1 shows the rapid growth of research on spatio-temporal and DL in the context of
big climate data.
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learning models on climate data from 2013 to 2022.

The purpose of this research is to compile previous findings on forecasting spatio-
temporal and DNN models applied to climate data. It aims to cover topics such as spatial
models for stationary and nonstationary data, methods for estimating location and time
parameters using various approaches, supervised ML algorithms, and the potential for
integrating spatio-temporal and DNN models in climate forecasting. The findings from this
research will contribute to future climate forecasting efforts, with a focus on multivariate
time-series big data and the use of different DNN algorithms to enhance the accuracy
and timeliness of predictions. It provides an overview of published papers on integrated
Generalized Space-Time ARIMA with DNN forecasting. The examination of climatic big
data datasets employs the Data Analytics Lifecycle to gain insights. To guide the analysis,
the following three research questions (RQ) have been developed:

• RQ1: How does the integration of the GSTARIMA–DNN model using the ML tech-
nique work?

• RQ2: How does the integration of the GSTARIMA–DNN model utilizing ML con-
tribute to climate data forecasting?

• RQ3: How does the GSTARIMA–DNN model compare to the GSTARIMA model in
forecasting climate data?

This literature review is organized into five sections, with the first providing an
overview of its purpose. In the second section, information from previous research on
spatio-temporal modeling and DL in the context of climate is systematically identified.
The third focuses on traditional mathematical and statistical modeling methods. The
fourth explores the potential of integrating spatio-temporal and DNN models with big data
concepts for future climate forecasting. Lastly, the fifth section provides a conclusion by
analyzing the developed model and its ramifications.
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2. Materials and Methods
2.1. Literature Review and Information Analysis

This research focused on the implementation of GSTARIMA model with ML using
a DNN. Although there is considerable research on of GSTARIMA and NN and their
implementation, it remained incomplete. The integration of GSTARIMA–DNN using
an ML approach had not been extensively explored. To highlight the novelty of this
research, a literature search was conducted using search engines such as Scopus, Web of
Science, EBSCO, Dimensions, and other academic research sources (Other Sources). The
search followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) approach.

PRISMA serves as an evidence-based minimum reporting standard for systematic
reviews and meta-analyses. It is also beneficial for peer reviewers and editors [33] when
critically assessing published systematic reviews. In addition, a bibliometric approach was
employed, and despite its limited exploration, the method held significant theoretical and
empirical value [34]. Bibliometrics involves studying the scientific literature [35], utilizing
mathematics and statistics as connection tools. This acted as a supporting instrument for
parameterizing and evaluating scientific outputs [36]. The approach incorporated the latest
developments in scientific disciplines by reviewing related experts, cited publications, jour-
nals, and countries. It enabled mapping papers based on scientific knowledge; analyzing
authors, journals, institutions, articles, and countries using keyword searches and several
citations; identifying novel research topics [37]; and conducting comprehensive literature
reviews [38]. Additionally, it served as a medium for carrying out the complex literature
review method in scientific fields [39].

The bibliographic survey in this research involved searching for the published litera-
ture that supported spatio-temporal modeling, namely GSTAR, and research on DNNs in
ML. The search focused on peer-reviewed journals published in international languages.
The results were saved in various formats (CSV, BIB, RIS, CIW), with a dedicated for-
mat reader.

The determination of keyword A in Table 1 of the main paper corresponded to the
research topic of spatio-temporal and NN models. This was supported by keywords in
the paper and aligned with the research title on the Space-Time model [3,4,40]. Keyword
B referred to the concept of a DNN using the MLP and CNN algorithms for analyzing
time-series data in climate research [41–43]. Keyword C encompassed the concept of
the Data Analytics Lifecycle methodology, the use of climate variables that impacted the
environment, and the derived theory of the backpropagation algorithm [44–46].

Table 1. The mining of databases spatio-temporal and DNN using a machine learning approach.

Code Keywords Scopus Web of Science Dimensions EBSCO Total

A

(“GSTAR” OR “Generalized Space-Time
Autoregressive” OR “Spatio Temporal”) AND
(“Machine Learning” OR “Deep Learning” OR
“Multivariate Time Series”)

4556 2833 2312 1182 10,883

B

(“Neural Network” OR “Deep Neural
Network” OR “Feed Forward Neural Network”
OR “Multilayer Perceptron” OR
“Convolutional Neural Network” OR
“Autoregressive Integrated Moving Average”)

796,162 489,068 226,657 163,955 1,675,842

C

(“Data Analytics Lifecycle” OR “Climate” OR
“Weather” OR “Function Derivative
Approximation” OR “Ordinary
Differential Equation”)

1,108,037 1,032,136 619,507 585,205 3,344,885

D A AND B AND C 250 141 138 46 575
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A literature search was conducted to identify papers that included the main keywords,
such as “Spatio Temporal”, “Generalized Space-Time Autoregressive”, “Machine Learning”,
“Multivariate Time Series”, “Data Analytics Lifecycle”, and “Deep Learning”. These
keywords were obtained from several research papers discussing the basic concepts and
their application to the research object. The search engine was used to find papers based on
keywords and applied inclusion restrictions such as year, language, and article type. All
the papers obtained were sourced from the specified database portals.

2.2. Dataset Analysis

Figure 2 shows the systematic literature process using the PRISMA flow diagram,
which consisted of three stages, namely Identification, Screening, and Included. In the
Identification stage, articles were obtained from four search databases using code D, as
well as other academic research sources that supported this investigation.
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Figure 2. Systematic literature review selection was used in this research.

The analysis using the PRISMA method began with determining keywords related to
the topic of this proposed research. The keywords were generated from the keywords of
several papers, which are the main studies described above. After obtaining the keywords
shown in Table 1, in stage 2, the search (to process code D) was based on four databases
and papers on academic references (Table 1). In stage 3, 575 papers were obtained through
an inclusion search strategy by limiting the paper years to 2013–2022, the paper types to
articles and proceedings, and the language used to English. Stage 4 removed duplicates
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of papers from the four search databases using reference management software; we used
Mendeley to analyze them. After removing 265 duplicated articles, the screening stage
led to 354 articles. From these, 168 articles were excluded as they did not match the title
and supporting abstract. In the final stage for appropriate topics, we selected 47 papers
as research references by conducting content analysis to find gaps in the research that we
would conduct.

At the Included stage, 47 articles were obtained and analyzed for this research. Figure 3
shows the data analysis findings, divided into 4 clusters comprising 25 items. The search
keywords related to DL had 11 occurrences (cases) in 2021.
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Meanwhile, in the case of GSTAR research, there were six occurrences in 2018; CNN
had thirteen, and Meteorological Data had a total of four in the 2021 publication. The
visualization revealed that GSTAR research still had gaps and distant clusters from DL
and CNN, which formed the basis for the analysis conducted in this research. Despite the
availability of datasets, utilizing GSTARIMA for spatio-temporal modeling to evaluate data
based on location and time was still frequent, particularly when integrated with DNN.

2.3. Theoretical Background
2.3.1. Space-Time Autoregressive (STAR)

Time-series models that incorporated univariate and multivariate periods could be
observed in the ARIMA and Vector Autoregressive (VAR) models. On the other hand, the
Space-Time model combined elements of location and time in a multivariate time series. It
was first introduced by Pfeifer and Deutsch [2] and is known as STAR. The STAR model
assumes the same parameters for all locations and was used for homogeneous locations.
The STAR (p) model with order (1) was defined using a spatial lag operator to express
the effect of the closest location on a particular spatial lag using weights. This could be
formulated as follows:

Zt =
p

∑
k=1

λk

∑
l=0

[
ϕklW

(l)Zt−k

]
+ et (1)

where:
λk: the spatial order of the autoregressive of the kth order
Zt: vector with size (n× 1) at time-t
Zt−k: vector with size (n× 1) at a time (t − k)
ϕkl : the STAR parameter at time-k and spatial lag-l
W(l): matrix weight size (n× n) on spatial lag-l (with l = 1, 2, . . . ), and the weights

selected for wii = 0 and ∑
i 6=j

wij = 1

et: error vector with size (n× 1) at time-t, assuming e iid
t∼N(0,σ2I)
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2.3.2. Generalized Space-Time Autoregressive (GSTAR)

GSTAR, originally developed by Borovkova [3] as a natural generalization of the
STAR model, allows autoregressive parameters to vary per location. The GSTAR model
(pλp) applied to heterogeneous sample-site characteristics and was formulated when the
differencing and the Moving Average vector were 0, respectively. The given formula was
different in the aspect of the phi parameter, of which STAR was a scalar vector quantity
while GSTAR was a matrix:

Zt =
p

∑
k=1

λp

∑
l=0

ΦklW
(l)Zt−k + et (2)

where Φkl is the diagonal matrices for the AR parameter at lag-k and spatial lag-l of size
(n× n); diag(ϕ1

kl , ϕ2
kl , . . . ϕn

kl).

2.3.3. Generalized Space-Time Autoregressive Integrated Moving Average (GSTARIMA)

The expansion of GSTAR by adding a Moving Average (MA) element to GSTARMA
(pλp , qvq), with a differencing of 0, produced:

Zt =
p

∑
k=1

λp

∑
l=0

ΦklW
(l)Zt−k + et (3)

If Zt was an observation vector that was not stationary and the differencing process
was applied to make ∇Zt = (1− B)dZt stationary, the GSTARIMA (pλp , d, qvq) model
could be defined as:

∇Zt =
p

∑
k=1

λp

∑
l=0

ΦklW
(l)∇Zt−k −

p

∑
k=1

vq

∑
l=0

ΘklW
(l)et−k + et (4)

where:
∇Zt: observation vector with∇Zt = [∇Z1,t,∇Z1,t, . . . ,∇Zn,t] at the time-t = 1, 2, . . . , T

with size (n× 1)
Θkl : the diagonal matrices for the MA parameter lag-k and spatial lag-l are of size

(n× n); diag(θ1
kl , θ2

kl , . . . θn
kl)

p: autoregressive vector order (AR)
q: Moving Average vector order (MA)
λp: the spatial order-p of the autoregressive
vq: the spatial-q order of the moving average

2.3.4. Machine Learning (ML)

ML is a decision-making technology adopted through Artificial Intelligence (AI),
which is used in all areas of life for basic research and practical applications. The ML
approach could be defined as the exploration of computational methods to test the validity
of new knowledge and discover novel ways to organize existing knowledge [47].

In addition, ML offers various techniques for problem-solving, particularly in predict-
ing the future. In this technology era, it plays crucial roles in real-time applications, such as
business analytics, education, pharmaceuticals/molecular biology, manufacturing, crime
detection, financial support, and marketing. The technique is predominantly employed for
tackling complex problems, regardless of whether they involve structured or unstructured
data. AI facilitates ML in learning from past information by adapting to and extracting
valuable insights from large datasets (big data). The incorporation of ML features in data
analysis [48] is very important for model development. This technique has permeated
various software-based sectors and applications.

In ML, supervised learning is a potent method for classifying labeled/tagged data
using learning algorithms, such as regression techniques (Linear, Logistic, Polynomial)
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and classification (Random Forest, Support Vector Machine, Linear Discriminant Analysis,
K-Nearest Neighbor, NN Classifier), even using ensemble algorithms for algorithms in the
learning model [49]. This algorithm focused on qualitative data used in forecasting, consid-
ering the labels assigned to the data attributes. Supervised learning-based classification
methods were utilized to build the best predictive model.

On the other hand, unsupervised learning categorized and clustered unlabeled data
based on similarity. Through this technique, it became possible to discover hidden layers
and patterns [50]. This type of learning aided in diverse clustering applications, encom-
passing numerical and categorical data distribution as well as Dimensionality Reduction
(Wavelet Transform, PCA Method).

The semi-supervised learning algorithm combined supervised and unsupervised ap-
proaches known as reinforcement learning. In general, this technique addressed problems
on a large scale [51]. Reinforcement learning constituted the third paradigm of the ML
technique, which differed from other learning methods. It could shape data based on past
experiences even when the data were lacking. Learning techniques within this framework
were based on sequential decision-making [52].

2.3.5. Multilayer Perceptron (MLP)

The perceptron, which is the basic concept of the NN model, enabled the construction
of more complex artificial neuron hierarchies. Figure 4 shows the architecture of the
Multilayer Perceptron (MLP). The network had three input signals (x ∈ R×R×R), referred
to as the input layer. Input variables were not mapped to neurons but represented real
number values. In addition, the network had two output neurons arranged in the output
layer. The input and output layers were visible because they were directly connected
to the model. All layers in between were called hidden layers and could contain an
arbitrary number of neurons. In Figure 4, there are two hidden layers, each with four
neurons. The layer with all neurons connected to the preceding ones could be referred to as
fully connected. This network topology, denoted as {3, 4, 4, 2} referred to a feedforward
NN since the information flowed from the input to the output layer without loops. To
mathematically describe NNs, proper notation and indexing schemes were required, with j
neurons (j = 1, 2, . . . , ml) and l layer (l = 1, 2, . . . , L) consisting of ml neurons from the sum
v(l)j and the activation output y(l)j = ϕ(v(l)j ).
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Reduction (Wavelet Transform, PCA Method). 

The semi-supervised learning algorithm combined supervised and unsupervised 
approaches known as reinforcement learning. In general, this technique addressed 
problems on a large scale [51]. Reinforcement learning constituted the third paradigm of 
the ML technique, which differed from other learning methods. It could shape data based 
on past experiences even when the data were lacking. Learning techniques within this 
framework were based on sequential decision-making [52]. 

2.3.5. Multilayer Perceptron (MLP) 
The perceptron, which is the basic concept of the NN model, enabled the construction 

of more complex artificial neuron hierarchies. Figure 4 shows the architecture of the 
Multilayer Perceptron (MLP). The network had three input signals ( ∈ × ×x     ), 
referred to as the input layer. Input variables were not mapped to neurons but represented 
real number values. In addition, the network had two output neurons arranged in the 
output layer. The input and output layers were visible because they were directly 
connected to the model. All layers in between were called hidden layers and could contain 
an arbitrary number of neurons. In Figure 4, there are two hidden layers, each with four 
neurons. The layer with all neurons connected to the preceding ones could be referred to 
as fully connected. This network topology, denoted as {3, 4, 4, 2} referred to a feedforward 
NN since the information flowed from the input to the output layer without loops. To 
mathematically describe NNs, proper notation and indexing schemes were required, with 
j neurons ( 1, 2, ..., lj m= ) and l layer ( 1,2,...,l L= ) consisting of lm  neurons from the sum 
( )l
jv  and the activation output ( ) ( )( )l l

j jy v= ϕ . 

X1

X2

X3

1

2

3

4

1

j

3

4

1

2

(0) (1) (l) (L)

Input Layer

Hidden Layer Output Layer  
Figure 4. Architecture of multilayer perceptron [53]. Figure 4. Architecture of multilayer perceptron [53].

The weight w(l)
ij represents that the index j is a neuron measuring layer l, and the

second index-i shows the output neuron in the previous layer l − 1. The first layer l = 0 is
connected to the input value y(0) = xi. The weight w(l)

j0 captures the bias value, ensuring a
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constant output value yl−1
0 = ϕ(v(l−1)

0 ) = 1 is performed for each layer. With this definition,
the sum output at layer l is calculated as follows:

v(l)j =
ml−1

∑
i=0

w(l)
ij y(l−i)

i (5)

The vector notation for the weights in layer l is obtained as:

w(l) = (w(l)
10 , w(l)

11 , . . . , w(l)
ml ,ml−1)

T
(6)

Also, the vector containing all the weights in their entirety is calculated as:

w = (w(1), w(2), . . . , w(L))
T

(7)

Equation (6) states that w(l)
10 is the weight in the lth hidden layer, the data input-1, and

the neuron-0. Moreover, w(l)
11 is the weight on the hidden layer to-l, input data to-1 and

neuron-1, continuing until weight-l, hidden layer-ml, and neuron(ml-1). Equation (7) states
the weight vector for each hidden layer (1), (2), . . . , (L).

2.3.6. Convolutional Neural Network (CNN)

A CNN refers to a specialized type of MLP widely used for computer vision tasks such
as image classification and time-series analysis. The network is effective in qualitative data
analysis, particularly when dealing with numerical data for training and testing predictions
of historical data. A CNN functions by sliding a window over the data matrix. In this
review, convolution layers with multiple filters were applied, followed by an activation
function for classification, and the stages are shown in Figure 5. The CNN’s architecture
consisted of three layers, namely convolution, pooling, and fully connected. To obtain the
highest level of accuracy, the existing parameters were tested. In essence, the convolution
layer modified the weights of the filtered neuron layer to produce output. The defined
filters moved horizontally and vertically across each input vector matrix, generating feature
maps. Padding with a value of 0 was applied to maintain the maximum length of the input.
Equation (8) presents the process in the convolutions layer:

xl
j = f

(
∑i=1,...,s xl−1

i ∗ kl
ij + bl

j

)
, j = 1, . . . , M (8)

xl
j is a dependent variable of a th convolution, * is a convolution operator that multi-

plies the input by the kernel. xl−1
i is the ith input vector, kl

ij is the kernel received from j

through filtration combined with the ith feature map, while bl
j is related to the jth input filter.
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M represents the output result of a feature, while the function f (x) serves as the
activation function used in the CNN. It includes the Rectified Linear Unit (ReLU) in the
convolutional layer and the sigmoid function in the output classification [54].

f (x) = max(0, x), f ′(x) =
{

0, x < 0
1, x > 0

(9)

The pooling layer was an integral part of the CNN, serving to reduce the input
dimensionality by decreasing the number of parameters from the convolution layer. The
pooling method selected the maximum value from each vector as a feature using max
pooling. The equation for this layer was as follows:

xl
j = f

(
ψi

j(xl−1
i ) + bl

j

)
, j = 1, . . . , M (10)

Variable representation with value pooled as a feature of the input, f was the activation
function in the input processing. Meanwhile, ψl

i represented the bias set multiplied by bl
j

which corresponded to the jth input bias from the convolution filter results. M indicated
the output value containing the classification features required to achieve the desired
model output.

xl
j = f

(
∑i=1,...,s xl−1

i wl
ij + bl

j

)
, j = 1, . . . , M (11)

The CNN included a fully connected layer, xl
j as shown in Equation (11). The kernel

contained in the convolution layer equation was replaced by the multiplication of the
weights wl

ij, which represented the process of obtaining the jth output value associated
with the ith input variable. Nonlinear activation functions were necessary for this layer
to produce the desired output as predictive classes. This layer was the final process for
generating classification classes from the CNN [55]. The use of the CNN architecture aimed
to facilitate and avoid trial and error by leveraging well-established and tested models,
such as LeNet-5, utilized for image detection [56], or VGGNet, introduced by Simonyan
and Andrew Zisserman from the University of Oxford in 2014.

2.3.7. Data Analytics Lifecycle

The Data Analytics Lifecycle was designed to address the challenge of big data and
Data Science, including large data volumes, diverse data structures, and rapid data growth.
This lifecycle consisted of six stages, which could occur simultaneously in certain cases. In
most conditions, the analysis could progress both forward and backward, allowing for an
iterative approach that accommodated new information as it became available [57]. This
enabled problem-solving and moving through the process iteratively, also facilitating the
operationalization of research goals. The Data Analysis Lifecycle established best practices
for the analytical process, spanning from discovery to the completion of the research work.

The overview of the Data Analysis Lifecycle, spanning six stages, is presented
as follows:

• Stage 1—Discovery (Problem Formulation): This stage involved conducting a literature
review to prepare for problem analysis in research. It entailed gathering resources
such as references, technology, time, and data. The important activities in this stage
included creating a problem framework as an analytical challenge to be addressed in
the next stage and formulating initial hypotheses to test and explore the data.

• Stage 2—Data Preparation: Data pre-processing was carried out in this stage, involving
initial data analysis. It encompassed processes such as data cleaning, extraction,
transformation, and integration, preparing the data to be collected in the database
repository as a prerequisite for model preparation.

• Stage 3—Model Planning: This stage focused on planning the model by determin-
ing the methods, techniques, and research flow to be followed during the model-
building stage.
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• Stage 4—Model Building: At this stage, the research was directed towards developing
datasets for training purposes, testing, and producing output models. Consideration
was given to whether the existing device supported running the model efficiently,
such as fast hardware and parallel processing capabilities.

• Stage 5—Communicating Results: This stage involved testing the data model and
its changes with the user or in a laboratory setting, to determine whether the output
aligned with the development criteria. If the model did not meet the criteria, an
evaluation was conducted, and the process could return to the previous stage for
further refinement.

• Stage 6—Operationalizing (Operationalization): This stage entailed submitting the
final report, directions, codes, and technical documents. In addition, it could involve
implementing the model as a pilot project to ensure a broader application.

The Data Analysis Lifecycle could be repeated from steps 1 to 5 if further improve-
ments were required. The evaluation of the modeling process, from steps 6 to 1, was
indicated by dotted lines, highlighting the possibility of revisiting certain stages if the
modeling results did not meet the desired criteria.

3. Results

A total of 47 appropriate research studies were selected for additional investigation
based on the selection criteria. Table 2 shows the distribution of spatio-temporal and
DL methods used in the selected papers. The most widely applied models were DNN
and spatio-temporal models—location-based models offering flexibility in multivariate
time-series modeling. The traditional DNN model was specifically developed to solve
nonlinear time-series data problems. Hybrid combinations such as ConvLSTM, CNN–
BiLSTM, ConvGRU, and CNN–SVM were special variants of DL capable of learning
long-term dependencies as well as handling nonlinear and nonstationary data problems.
The hybrid model had the key advantage of achieving maximum prediction accuracy
with minimal error. The CNN and LTSM models had different working approaches in
completing the modeling process, with CNN excelling in speed and parallelization, while
LSTM operated sequentially.

Regarding the data used, satellite data predominated in the analysis, which could be
obtained from various sources such as NASA, ECMWF, NOAA, ENSO, and Himawari-8.
Satellite data proved to be highly effective, specifically in areas without manual measure-
ment sensors. Converting satellite images into data matrices enabled complex analysis and
minimized missing values at measurement locations.
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Table 2. Selected publications of spatio-temporal and DNN models based on ML approach for climate and environmental datasets.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Zheng et al., 2023) [19] DN
ECMWF (https:
//atmosphere.copernicus.eu/
(access on 22 May 2023)

- - - - RNN = 80.32%
SB-DNN = 80.06 Climate prediction

(Jiao et al., 2022) [58] SP, DN Solar Radiation, 17 locations,
48,989 data Hawaii -

CNN +
LSTM = 0.013,
GSINN = 0.0047

2.86

1.06
- Solar radiation

prediction

(Manley et al., 2022) [26] ML, BD Climate data temporal,
~750 locations (2005–2017) California, USA 0.924 - - -

Predict the pattern
of suitable
recreation in
summer

(Nikezić et al., 2022) [59] SP, DN, BD Image Satellite of Aerosol
(NASA), 21 months Earth surface - 0.3199 - 90%

Aerosol
movement
forecasting

(X. Zhang et al., 2022) [27] SP, ML LAPS = 2018–2021,
ERA5 1979–2021

China and Southeast
Asia -

LAPS
Temp = 0.37,
v-wind = 0.96
u-wind = 0.88
RH = 0.79

ERA5
Temp = 0.32,
v-wind = 0.96
u-wind = 0.87
RH = 0.76

- - Weather
prediction

(W. Li et al., 2022) [20] SP, DN Rainfall, temp, RH, wind,
dewpoint (2013–2019) Gansu, China - - - Rainfall (response)

variable = 85% Rainfall prediction

(Kumar et al., 2022) [13] SP NASA: temp max, temp avg
(1981–2020)

Bihar, India in
8 locations - -

STARMA temp
avg = 10.54, temp
max = 3.08

STARMA—GARCH
temp avg = 10.36%,
Temp max = 3.06%

-

Comparison of
STARMA–
GARCH and
STARMA

https://atmosphere.copernicus.eu/
https://atmosphere.copernicus.eu/
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Table 2. Cont.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Zou et al., 2022) [60] DN Image data of wind speed and
direction, air density

Croatia (Bruska and
Jelinak) -

Bayesian
CNN–BiLSTM dan
Vine–GMCM
(Bruska = 0.093,
Jelinak = 0.100)

- - Weather
prediction

(Marco et al., 2022) [61] SP, ML, BD Image data, 60 flood events from
1995 to 2020

Venice, Italia
(188 rainfall stations) - - -

Logistic
Regression = 0.860,
Neural
Network = 0.843,
Random
Forest = 0.844

Prediction of flood
mitigation due to
climate change

(Y. Li et al., 2022) [62] ML Weather data from 1980 to 2020 Tuojiang river basin,
China -

CNN–RF = 6.29,
CNN–SVM = 16.12,
CNN = 10.30,
RF = 8.12,
SVM = 9.20

-

CNN–RF = 0.97,
CNN–SVM = 0.85,
CNN = 0.94,
RF = 0.96,
SVM = 0.95

Evaporation
predictions
affecting the water,
carbon, and
energy cycles

(Kong et al., 2022) [63] SP, RN Weather data (2015–2015) 1 h
interval, prediction every 3 h

Beijing, China
(226 observation
station)

-
DeepSTF = 2.41,
CNNseq2seq = 2.50,
AttnSeq2seq = 2.54

-

DeepSTF = 70.03%,
CNNseq2seq = 68.41%,
At-
tnSeq2seq = 67.45%

Deep
Spatio-Temporal
Forecasting
(DeepSTF)

(Y. Zhang et al., 2022) [64] DN, RN River flow data (2012 to 2017) 1 h
interval.

Humber River,
Ontario, Canada -

LSTM = 8.48,
ConvLSTM = 8.73,
CNN–LSTM = 9.24,
STA–LSTM = 7.99

- - Early Warning
Flood forecasting

(Orescanin et al., 2022) [65] ML
Rainfall Satellite-borne passive
microwave (PMW) monthly data
(2017–1018)

Orbit di Laut
Atlantic - - - Bay.ResNet56 = 90%

Bay.ResNet38 = 93% Rainfall prediction

(Anshuka et al., 2022) [66] SP, DN Image data NOAA 1980 to 2020
Southwest Pacific.
30,000 measuring
stations

Train multivariate
SST = 0.49,
Test Multivariate
SST = 0.6

Mean = 0.75 for
22 locations

Extreme rainfall
prediction

(Suhartono et al., 2021) [67] GS CO, PM10 from 14 January 2017
to 14 February 2018 Surabaya, Indonesia - ARIMA = 0.22,

MGSTAR = 4.99
ARIMA = 29.51%,
MGSTAR = 116.94% - Air pollution

prediction
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Table 2. Cont.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Böhm et al., 2021) [68] ML Numerical conversion image
satellite data. 2017–2019 Chili -

Each location < 40%
detected fog
frequency

- -
Fog detection for
freshwater sources
in desert areas

(Christoforou et al.,
2021) [69] DN

Daily wind speed data from
5 locations from 1 January 2013
to 31 December 2014

Greece -
WRF = 2.3,
DCNN = 0.997 to
1.803

WRF = 26.14%,
DSTNN = 14% -

Prediction of wind
speed for
electricity
consumption

(Kong et al., 2022) [63] SP, DN Weather data (2015 to 2017) data
interval of 1 h Beijing, China - Temp = 2.41 -

Temp = 70.03%,
RH = 70.34%,
Wind = 84.44%,
Wind
breeze = 77.05%

Weather
Prediction

(Silva et al., 2021) [70] SP, DN Wind speed, temperature, and
pluviometry in 2013 to 2016 Brazil -

LR = 21.73
MLP
(10 neuron) = 4.15

- -
Detect the spread
of dengue fever
using climate data

(Guillaumin et al.,
2021) [71] DN CO2 gas satellite data, for

~7000 days (20 years)
Image of Earth’s sea
surface 85.5% - - -

Predict the
distribution of
CO2

(Steffenel et al., 2021) [72] SP, DN
Ozone data from 1980 to 2019,
6 h interval (ERA5)
(58,500 observations)

South America,
South Africa, and
New Zealand

- Min = 55.63
Max = 134.83 - - Ozone prediction

(Kimura et al., 2021) [73] SP, DN Climate data (1984 to 2020) Tokachi River,
Hokkaido, Japan

LR = 0.744,
LSTM = 0.839,
LSTM (add
data) = 0.871,
LSTM
(TL) = 0.853

LR = 2.96,
LSTM = 2.027,
LSTM (add
data) = 1.807
LSTM (TL) = 1.933

- -

Predict the
correlation of air
temperature with
surface water
temperature

(Geng et al., 2021) [74] SP, DN, RN
ENSO: (CMIP5) (1864 to 2004)
for training, (GODAS) (1994 to
2010) for validation

ENSO3.4, Pacific - CNN = 0.5603,
DC–LSTM = 0.5558 - -

El Niño and
Southern
Oscillation (ENSO)
Forecasting

(Kumar et al., 2021) [31] DN, BD Rainfall of ERA5 data (1975 to
2009) India DeepSD = 67

SRCNN- = 68 - - - Rainfall prediction



Mathematics 2023, 11, 2975 15 of 25

Table 2. Cont.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Liu et al., 2021) [75] SP, ML Climate data (GRACE dan USGS)
(2007 to 2016)

Northeastern United
States

RGR ≥ 046
(t1 = 0.85,
t2 = 0.85,
t3 = 0.80).
t = month

- - - Prediction of
groundwater level

(Al-Shargabi et al.,
2021) [76] DN Cold energy, heat energy Qasim Region,

Saudi Arabia

DNN, LM
algoritma
(layer = 2,
neuron = 20).
0.99 (train)
0.99 (test)

DNN, LM algoritma
(layer = 2,
neuron = 20).
0.119 (Heat) 3.604
(Cool)

- -

Prediction of
energy
consumption due
to climate change

(Adewoyin et al.,
2021) [77] DN ERA5 as a target, E-OBS as input UK -

all seasons = 3.081,
winter = 3.570,
spring = 2.504.
summers = 2.991,
autumns = 3.215

- -

Climate modeling
for flood
anticipation due
to extreme rains

(Sulistyono et al.,
2020) [10] GS Rainfall (2005 to 2015) East

Java—Indonesia -

Cross-correlation
weight = 10.471.
cross-covariance
weight = 10.433

- - Precipitation
forecasting

(Akbar et al., 2020) [5] GM CO gas from January to
December 2018 Surabaya, Indonesia -

GSTARMA–
OLS = 0.20,
GSTAR–OLS = 0.22

- -
Comparison of
GSTAR and
GSTARMA

(Rajakumari et al.,
2020) [78] ML NO2, SO2, and O3 for 10 years,

6 h intervals - - RNN = 3.378,
ARIMA = 2.006 - - Air pollution gas

prediction model

(Huang et al., 2020) [79] DN, RN
Hotspots = 3240 data,
coal gas = 1464 data,
Lorenz = 3000 data

-
Hot spots = 3.3834,
coal gas = 0.0493
Lorentz = 0.0756

Hot spots = 0.0419,
coal gas = 0.1094
Lorentz = 0.0135

-

Anticipation of
nonlinear growth
predictions on
energy and
weather data

(Chirayath et al.,
2020) [80] SP, DN Image data Coral reefs at sea

level Fiji - - - 84.3%
Biodiversity and
Ecological
predictions
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Table 2. Cont.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Ziyabari et al., 2020) [81] SP, DN
Solar radiation from 2000 to 2017,
30-min intervals (National Solar
Radiation Database)

Philadelphia,
Pennsylvania -

ResNet/LSTM
(Adam,
ReLU) = 0.068

- - Predictions on
Photovoltaic (PV)

(Zhang et al., 2020) [82] SP, ML Hurricane data (Japanese
Himawari-8 satellite)

Beijing-Tianjin-
Hebei,
China

-

Predictions per 30
min
ConvLSTM = 9.232,
TrajGRU = 9.117,
ConvGRU = 10.24

- -
Distribution of
storm event
information

(Chen et al., 2019) [23] DN Weather data area ~1000 km

Western Pacific
(WP), Eastern
Pacific (EP), dan
North Atlantic (NA).

- - -
WP = 0.852
EP = 0.780
NA = 0.759

Typhoon intensity
forecasting

(Ding et al., 2019) [83] SP, RN Weather data, 3 h interval from
May 2002 to January 2018

Stream of the Lech
River, Austria -

FC = 85.74
SVM = 78.82
LSTM = 74.96
STA–LSTM = 66.02

FC = 0.633
SVM = 0.720
LSTM = 0.750
STA–LSTM = 0.807

Forecasting floods
in watersheds

(Pusporani et al.,
2019) [84] ML, GS air pollution, 2018 Surabaya, Indonesia -

MGSTAR = 11.37
MGSTAR–
FFNN = 5.49
MGSTAR–
DLNN = 4.9

Forecasting linear
and nonlinear air
pollution data

(Thongniran et al.,
2019) [85] SP, DN Radar data in coastal bays from

2014 to 2016 Thailand -

CNN–GRU
(U) = 4.509,
CNN–GRU
(V) = 7.405

- - Prediction of sea
surface

(Wilms et al., 2019) [86] SP, DN GEFCom dataset. Wind power
targets

Australia
(10 locations)

Conv
LSTM524 = 0.7588,
Conv
LSTM254 = 0.7688

Conv
LSTM524 = 0.1697,
Conv
LSTM254 = 0.1661

- - Forecasting wind
power on turbines

(Cui et al., 2019) [87] SP, ML Soil moisture (EC-TEMP sensor)
from 2002 to 2015 Tibetan Plateau 0.71 0.05 - - Tibetan Plateau

humidity forecast

(Zhao et al., 2018) [14] SP HFRS from 2005 to 2014 Hubei Province,
China -

Luotian = 0.004
Zhongxiang = 0.003
Yicheng = 0.001

Luotian = 10.3
Zhongxiang = 13.2
Yicheng = 9.12

Hemorrhagic
fever with renal
syndrome (HFRS)
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Table 2. Cont.

Reference Model Dataset Location
Content Performance Analysis

R2 RMSE MAPE Accuracy Application

(Saikhu et al., 2018) [88] SP, DN Rainfall, 1983 to 2016 Surabaya, Indonesia -
RNN
Train = 48.69,
Test = 94.46

- - Rainfall prediction

(Andayani et al., 2018) [9] GM, GX Price of rice (BPS) from January
2007 to December 2014

Java Island,
Indonesia -

GSTARIMA–
X = 287.316,
GSTAR = 313.872

GSTARIMA–
X = 3.059,
GSTAR = 2.752

Comparison
predictions of
GSTARIMA and
GSTARIMA–X

(Abdullah et al., 2018) [11] GS Monthly rainfall (1981 to 2016) West Java, Indonesia - -

Majalengka-
Kuningan = 8.97%,
Majalengka-
Ciamis = 12.51%,
Kuningan-
Ciamis = 7.72%,

- Rainfall prediction

(Astuti et al., 2017) [89] GS CPO export volume from
January 2004 to August 2015 Sumatera, Indonesia - -

MSE
(uniform
weight = 9.30 × 103,
Distance
weight = 9.66 × 106)

-
Crude Palm Oil
(CPO) export
volume prediction

(Handajani et al.,
2017) [8] GS Rainfall, 2004 to 2015 Central Java,

Indonesia -
Sragen = 155.16
Karanganyar = 179.11
Klaten = 141.70

- - Rainfall prediction

(Ippoliti, 2001) [90] GS
Sulfur Dioxide (SO2) from 1
January 1999 to 31 December
1999

Milan, Italia

28 December
1999 to 31
December
1999 are 0.983,
0.855, 0.775,
0.802

- - -
Prediction online
monitoring of
Sulfur Dioxide

Notes: SP = Spatio-Temporal, ML = Machine Learning, DN = Deep Neural Network, RN = Recurrent Neural Network, BD = Big Data, GS = Generalized Space-Time Autoregressive,
GM = Generalized Space-Time Autoregressive Moving Average, GX = Generalized Space-Time Autoregressive Integrated Moving Average—Exogenous.
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Furthermore, spatio-temporal and DNN models were employed in several articles
across various domains, as shown in Table 2. For example, Jiao et al. (2022) [58] utilized
three models (CNN, LSTM, GSINN) to forecast solar datasets for 17 locations. Although
all models performed well, GSINN yielded the highest performance analysis value. An-
dayani et al. (2018) [9] employed a spatio-temporal model to compare rainfall at three
different locations using GSTARIMA–X and GSTAR. The results showed that GSTARIMA–X
exhibited a small error value, highlighting the significant influence of the Moving Average
on the modeling. Furthermore, Cui et al. (2019) [87] applied a spatio-temporal hybrid
model with ML to forecast soil moisture for detecting the growing season on the Tibetan
plateau, achieving a satisfactory R2 value. Traditional models such as STAR, GSTAR, and
GSTARIMA, developed from scratch, also played a promising role in modeling location
and time dependencies with stationary and nonstationary data. On the other hand, DL,
as a subset of ML, was widely used and reliable for achieving high forecasting accuracy.
All the application models employed appropriate methods to select data, although there
were variations across different models and contexts (Kumar et al., 2022) [13]; due to the
geographical dependency of the time-series data and their nonlinear features, temperature
modeling and forecasting is challenging. The authors designed a hybrid model of monthly
maximum temperatures and temperature ranges called the Space-Time Autoregressive
Moving Average Generalized Autoregressive Conditional Heteroscedasticity (STARMA–
GARCH) model. The fitted STARMA model residual was checked for nonlinear behavior.
GARCH modeling is, therefore, necessary. To capture the dynamics of monthly maximum
temperatures and temperature ranges, the STARMA–GARCH hybrid model was applied.

4. Discussion
4.1. Gaps in the Literature

The analysis results in this research showed an interesting area for further investi-
gation. The GSTARIMA model produced residuals, which were an integral part of the
proposed model. The DNN process, whether using an MLP or a CNN, played a crucial
role in minimizing residual values. In general, traditional spatio-temporal prediction
models [8,11,89,90] or hybrids with NNs tended to use variables from a limited number
of locations, or NN modeling employed a single layer [78,87,88].

The model used diverse climate data sources, prioritizing the integration of DL
models without considering location parameters [20,23,58–60,79]. The performance
analysis of DL integration yielded quite good results based on empirical simulation.
However, climatic conditions in a particular location could vary due to the influence of
other locations. This research did not extensively explore this gap, such as the influence
of temperature, humidity, wind speed, solar radiation, and soil surface humidity, which
could affect rainfall patterns across different locations. Climate analysis used more than
single-variable constraints, such as predicting air pollution, rainfall, and wind speed sep-
arately [10,65,71,74,81]. Although this approach enhanced model accuracy, addressing
other complex parameters was necessary to provide different solutions during general
climate forecasting for adjacent locations that exhibited a significant correlation.

In the equatorial regions, the spatio-temporal hybrid model and NN employed
stationary data, emphasizing the GSTAR model and NN with a single hidden layer [30].
Computation time and the analysis of specific variables played a notable role. The
integration of the spatio-temporal model with DNN required a fast computation time,
considering the hidden layer and selecting the appropriate regression activation function
to improve accuracy compared to previous research. Fine-tuning the model was essential
to mitigate trial and error during the integration process and optimize research time. For
example, in the CNN model, the GSTARIMA residual input adopted the architecture
of the output layer, which consisted of a fully connected layer. A nonlinear activation
function was necessary to generate prediction classes as output. While this layer served
as the final step in classifying CNN outputs [55], the use of the architecture was based
on traditional tested models, such as LeNet-5 used in image detection [56], or VGGNet
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introduced by Simonyan and Andrew Zisserman from the University of Oxford in 2014.
This architecture was primarily employed in image processing and could hypothetically
enhance the accuracy of the regression DNN.

4.2. Conceptual Model
4.2.1. Data Analytics Lifecycle for Climate Dataset

The proposed model concept integrated the GSTARIMA model with a DNN research
flow using the Data Analysis Lifecycle methodology shown in Figure 6. The process
began with the research problem formulation stage, encompassing problem identification,
determining data sources as research indicators, and formulating initial hypotheses based
on selected data samples to integrate the GSTARIMA–DNN model. Furthermore, the data
preparation stage involved pre-processing, which included acquiring and preparing the
data sources for analysis. The prepared data were then used as a model and stored in a
repository database, constituting a significant volume of big data (such as climate data
volume distributed by EarthData). The model planning stage involved providing data
inputs for GSTARIMA as spatio-temporal modeling, considering multiple sample locations
with various variables. Supervised ML algorithms were selected to fill in the input for
the spatio-temporal model. Subsequently, in the model development stage, GSTARIMA
modeling was performed using the Box–Jenkin procedure to produce a residual model
based on the diagnostic test results. These findings served as the input data for the
DNN process.
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The standard selection of the architecture (Multilayer Perceptron or CNN) deter-
mined accuracy and error values. The training and testing process of the model optimized
accuracy and minimized errors by updating the GSTARIMA–DNN model integration archi-
tecture, including the hidden layer and the number of neurons, and adjusting the activation
function used to determine the weight for the next layer. This ensured that the obtained
results aligned with the initial target. The stage of communicating the results involved the
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integration trial of the GSTARIMA–DNN model. The results were assessed based on their
adherence to the initial hypothesis, leading to the formulation of a mathematical modeling
theorem. Recommendations were required to select a model according to the research
findings. The final stage was operationalization, which entailed implementing the model
in a broader domain, documenting research results, reporting, and disseminating scientific
papers in journals or other scientific meetings. The Data Analytics Lifecycle was carried
out continuously to improve each stage until the model achieved the desired accuracy
according to the final target

4.2.2. Integration of GSTARIMA with DNN for Forecasting

Based on the gap analysis and previous research reviews of existing models, GSTARIMA
was integrated with DNN in a conceptual model, utilizing multiple layers and complex
algorithms. Figure 7 shows the framework diagram for GSTARIMA model planning as
part of the model building stage. As stated in the introduction, to answer the first research
question, we explored how to integrate the two different models regarding GSTARIMA
and DNN. The process began by inputting pre-processed climate data results comprising
eight variables: rainfall, temperature, humidity, air pressure, wind speed, solar radiation,
soil surface moisture, and root moisture.
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Descriptive statistics were then obtained to examine the overall data average for each
variable, standard deviation, maximum and minimum values, and data correlation be-
tween variables in the preparation data. The next stage involved testing data stationarity
using Autocorrelation and Partial Autocorrelation functions. If the test results indicated
nonstationarity in the average, a first-level differencing process was carried out on the
identification process. On the other hand, if the data were stationary, the spatial weight
matrix calculation was conducted using a distance weighting matrix. By plotting the
Spatial Autocorrelation and Spatial Partial Autocorrelation functions, data were analyzed
to observe autocorrelation and partial autocorrelation relationships, accounting for spa-
tial dependence between locations. For parameter estimation of the GSTARIMA model,
maximum likelihood was employed to obtain parameters for each location variable. Sub-
sequently, the GSTARIMA model went through a diagnostic test to ensure no correlation
existed among the residuals. The final stage of GSTARIMA modeling yielded residuals,
which served as input for the DNN process in determining its architecture.

Figure 7 shows the process of obtaining the value of et for the GSTARIMA model using
Equation (4). The error vector symbolized by et followed independently and identically
distributed (iid) in the multivariate normal distribution NM(0, σ2IM), while the element
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matrix W(l) denoted the spatial lag weight l. The values ε̂∗t could be obtained for N locations
and Z variables, generating the GSTARIMA residual.

Following residual modeling, the forecasting process employed a DNN. The design
of the DNN architecture significantly influenced the performance of the model analy-
sis. Configuring the hidden layer, the number of neurons, and updating the weights
through backpropagation greatly affected the MSE and MAPE values. The residual of
the GSTARIMA model representing nonlinear data served as the input for the DNN. The
residual input comprised a multivariate vector of climate variables. The process utilized the
DNN algorithm with a multilayer architecture, such as an MLP or a CNN. The value Ẑi,t
represented a combination of GSTARIMA results Ẑ∗i,t−1 and the DNN calculation of the non-
linear residual value ε̂∗i,t. Selecting an appropriate activation function for DNN regression
modeling greatly aided in fine-tuning the integration model. GSTARIMA–DNN integration
model enabled short-term forecasting for the next year and long-term forecasting for 5 to
10 years. The interpretation of the integration model was visualized using geospatial
thematic maps, such as choropleth, heat, [91] or dot density maps, generating evaluating
insights for climate forecasting. The end of the modeling process was the interpretation of
forecasting, which generates knowledge for the short and long term.

Furthermore, the integration model obtained was applied to climate data with the
abovementioned eight parameters. The hypothesis was based on each residual climate
variable obtained from the GSTARIMA results. Nonlinear data were processed using MLP
or CNN algorithms separately. The results were returned to the initial GSTARIMA model
and compared without using a DNN to obtain the Mean Absolute Percentage Error (MAPE)
resulting from the two models. The main element of this integration model is the residual,
which is assumed to be independent and identically distributed (iid) and normal with
constant variance. Although the residuals obtained from the GSTARIMA model are not
linear, Deep Neural Networks anticipate non-constant (nonlinear) data. If the residual is
not linear, then it is assumed that the DNN algorithm (we use MLP and DNN) makes the
residual stable due to the involvement of the Moving Average (MA) element and further
validation using MAPE values.

5. Conclusions

This paper proposed a systematic review integrating the spatio-temporal (GSTARIMA)
model and DNNs for forecasting climate datasets. The review shows that hybrid and tradi-
tional models utilizing spatio-temporal and DL techniques have achieved high accuracy in
performance analysis. Incorporating spatially sourced data from satellites and temporal
data facilitates the development of intricate models for representing climate and environ-
mental phenomena across multiple regions of the world. Notably, DNNs, representing ML,
have shown promising outcomes and can provide reliable climate forecasting using multi-
variate time-series data. Through this research, the proposal is to integrate the GSTARIMA
model with a DNN, capitalizing on the respective strength of each model. GSTARIMA
reliably handles nonstationary data properties characterized by location dependence and
seasonal patterns. However, the complexity of the model is complemented by a DNN,
which adeptly captures nonlinear data patterns from GSTARIMA residuals. This integra-
tion is achieved by utilizing algorithms such as Multilayer Perceptron or CNN, which
encompass multiple hidden layers and diverse activation functions. As a part of ML, the
spatio-temporal aspect of DNNs is anticipated to assume a critical role in the future of
statistical and mathematical climate forecasting.
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