On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients
Abstract
:1. Introduction
2. Coefficients’ Inequalities
3. Closure Theorems
4. Radius of Convexity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Challab, K.A.; Darus, M.; Ghanim, F. On meromorphic parabolic starlike functions involving the q-hypergeometric function. AIP Conf. Proc. 2018, 1974, 030003. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations. J. Math. Anal. Appl. 2004, 300, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Darus, M. Some properties on a certain class of meromorphic functions related to cho–kwon–srivastava operator. Asian-Eur. J. Math. 2012, 5, 1250052. [Google Scholar] [CrossRef]
- Ghanim, F.; Darus, M. A study of Cho-Kwon-Srivastava operator with applications to generalized hypergeometric functions. Int. J. Math. Sci. 2014, 2014, 374821. [Google Scholar] [CrossRef] [Green Version]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. Integral operator defined by q-analogue of Liu-Srivastava operator. Stud. Univ. Babes-Bolyai Math. 2013, 58, 529–537. [Google Scholar]
- Murugusundaramoorthy, G.; Janani, T. Meromorphic parabolic starlike functions associated with q-hypergeometric series. Int. Sch. Res. Not. 2014, 2014, 923607. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kim, I.H. Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 2007, 187, 115–121. [Google Scholar] [CrossRef]
- Dziok, J.; Srivastava, H.M. Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function. Contemp. Math. 2002, 5, 115–125. [Google Scholar]
- Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Intergral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar] [CrossRef]
- Ghanim, F.A. study of a certain subclass of Hurwitz-Lerch-Zeta function related to a linear operator. Abstr. Appl. Anal. 2013, 2013, 763756. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Darus, M. A new class of meromorphically analytic functions with applications to the generalized hypergeometric functions. Abstr. Appl. Anal. 2011, 2011, 159405. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Darus, M.; Wang, Z.G. Some properties of certain subclasses of meromorphically functions related to cho-kwon-srivastava operator. Information 2013, 16, 6855–6866. [Google Scholar]
- Lin, J.L.; Srivastava, H.M. A linear operator and associated families of meromorphically multivalent functions. J. Math. Anal. Appl. 2001, 259, 566–581. [Google Scholar]
- Lin, J.L.; Srivastava, H.M. Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. Comput. Model. 2004, 39, 21–34. [Google Scholar]
- Aouf, M.K. On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. Appl. 1991, 7, 209–219. [Google Scholar]
- Aouf, M.K.; Murugusundaramoorthy, G. On a subclass of uniformly convex functions defined by the Dziok-Srivastava operator. Austral. J. Math. Anal. Appl. 2008, 5, 1–17. [Google Scholar]
- Lin, J.L.; Srivastava, H.M. Subclasses of meromorphically multivalent functions associated with a certain linear operator. Math. Comput. Model. 2004, 39, 35–44. [Google Scholar]
- Mogra, M.L.; Reddy, T.R.; Juneja, O.P. Meromorphic univalent functions with positive coefficients. Bull. Aust. Math. Soc. 2009, 32, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Owa, S.; Pascu, N.N. Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions. J. Inequal. Pure Appl. Math. 2003, 4, 17. [Google Scholar]
- Pommerenke, C. On meromorphic starlike functions. Pac. J. Math. 1963, 13, 221–235. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Somanatha, C. Certain differential operators for meromorphic functions. Houst. J. Math. 1991, 17, 279–284. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, N.S.; Shahen, A.; Darwish, H. On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients. Mathematics 2023, 11, 2991. https://doi.org/10.3390/math11132991
Almutairi NS, Shahen A, Darwish H. On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients. Mathematics. 2023; 11(13):2991. https://doi.org/10.3390/math11132991
Chicago/Turabian StyleAlmutairi, Norah Saud, Awatef Shahen, and Hanan Darwish. 2023. "On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients" Mathematics 11, no. 13: 2991. https://doi.org/10.3390/math11132991
APA StyleAlmutairi, N. S., Shahen, A., & Darwish, H. (2023). On Meromorphic Parabolic Starlike Functions with Fixed Point Involving the q-Hypergeometric Function and Fixed Second Coefficients. Mathematics, 11(13), 2991. https://doi.org/10.3390/math11132991