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Abstract: This article defines a new class of meromorphic parabolic starlike functions in the punctured
unit disc D∗ = {z ∈ C : 0 < |z| < 1} that includes fixed second coefficients of class Ad

s,c(ψ, τ, ν, η)

and the q- hypergeometric functions. For the function belonging to the class Ad
s,c(ψ, τ, ν, η), some

properties are obtained, including the coefficient inequalities, closure theorems, and the radius
of convexity.
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1. Introduction

Let η be a fixed point in the unit disc D := {z ∈ C : |z| < 1}. UsingH(D), denote the
class of functions that are regular and

A(η) = { f ∈ H(D) : f (η) = f
′
(η)− 1 = 0}

Using Sη = { f ∈ A(η), denotethe f ollowing : f is univalent in D }, the subclass of
A(η) consisting of the functions of the form

ζ(z) = z− η +
∞

∑
l=1

al(z− η)l .

Let κ denote the class of meromorphic functions ζ(z) of the form

ζ(z) =
1
z
+

∞

∑
l=1

alzl (1)

defined on the punctured unit disc D∗ = {z ∈ C : 0 < |z| < 1}.
Using κη , denote the subclass of κ consisting of the form’s functions

ζ(z) =
1

z− η
+

∞

∑
l=1

al(z− η)l , al ≥ 0; z 6= η, z ∈ D. (2)

If a function ζ(z) of the form (2) belongs to the class of meromorphic starlike of order
σ (0 ≥ σ < 1), it is indicated by κ∗η(σ), if

−<
(
(z− η)ζ

′
(z)

ζ(z)

)
> σ, z 6= η, z ∈ D, (3)
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and belongs to a class of meromorphic convex of order σ(0 ≤ σ < 1), which is indicated by
κk

η(σ), if

−<
(

1 +
(z− η)ζ

′′
(z)

ζ
′(z)

)
> σ, z 6= η, z ∈ D. (4)

For functions ζ(z), given by (2) and g(z) = 1
z−η + ∑∞

l=1 bl(z− η)l ,(bl ≥ 0), we define
the Hadamard product or convolution of ζ(z) and g(z) by

(ζ ∗ g)(z) =
1

z− η
+

∞

∑
l=1

albl(z− η)l = (g ∗ ζ)(z). (5)

Define the following operator [1].

qµ,ξ(z) =
1

z− η
+

∞

∑
l=1

(
µ

l + 1 + µ

)ξ

(z− η)l , (µ > 0, ξ ≥ 0). (6)

Cho [2], Ghanim, and Darus [3] studied the above function when η = 0.
Corresponding to the function qµ,ξ(z) and using the Hadamard product for ζ(z) ∈ κη ,

we define a new linear operator J (µ, ξ, η) on κη(σ) by

Jµ,ξ ζ(z) = (ζ(z) ∗ qµ,ξ(z)) =
1

z− η
+

∞

∑
l=1

(
µ

l + 1 + µ

)ξ

|al |(z− η)l . (7)

When η = 0, it reduces to Ghanim and Darus [4].
A generalized q-Taylars formula for fractional q-calculus was introduced more re-

cently by Purohit and Raina [5], who also derived a few q-generating functions for q-
hypergeometric functions.

As with the aforementioned functions, we attempt to derive a generalized differential
operator on meromorphic functions in D∗ = {z ∈ C : 0 < |z| < 1} in this paper and study
some of their characteristics.

For complex parameters γ1, . . . , γd and β1, . . . , βs(βt 6= 0,−1, . . . ; t = 1, 2, . . . , s) the
q-hypergeometric function dΦs(z) is defined by

dΦs(γ1, . . . , γd; β1, . . . , βs; q, z) =
∞

∑
l=0

(γ1, q)l . . . (γd, q)l
(q, q)l(β1, q)l . . . (βs, q)l

× [(−1)lq

(
l
2

)
]1+s−dzl , (8)

with
(

l
2

)
= l(l − 1)/2 where q 6= 0 when d > s + 1(d, s ∈ N0 = N ∪ {0}; z ∈ D∗). The q-shifted

factorial is defined for γ, q ∈ C as a product of l factors by

(γ; q)l =

{
(1− γ)(1− γq) . . .

(
1− γql−1

)
(l ∈ N)

1 (l = 0)
(9)

and in terms of basic analogue of the gamma function

(qγ, q)l =
Γq(γ + l)(1− q)l

Γq(γ)
l > 0. (10)

It is important to note that limq→−1

(
(qγ; q)l/(1− q)l

)
= (γ)l = γ(γ+ 1) . . . (γ+ l− 1)

is the familiar Pochhammer symbol and

dΦs(γ1, . . . , γd; β1, . . . , βs; z) =
∞

∑
l=0

(γ1)l . . . (γd)l
(β1)l . . . (βs)l

zl

l!
. (11)
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Now, for z ∈ D, 0 < |q| < 1, and d = s + 1, the basic hypergeometric function defined
in (8) takes the form

dΦs(γ1, . . . , γd; β1, . . . , βs, ; q, z) =
∞

∑
l=0

(γ1, q)l . . . (γd, q)l
(q, q)l(β1, q)l . . . (βs, q)l

zl , (12)

which converges absolutely in the open disc D.
According to the recently introduced function dΦs(γ1, . . . , γd; β1, . . . , βs; q, z) for mero-

morphic functions ζ ∈ κ consisting of functions of the form (1), Al-dweby and Darus [6]
developed the q-analogue of the Liu-Srivastava operator, as follows:

dΥs(γ1, . . . , γd; β1, . . . , βs, ; q, z) ∗ ζ(z) =
1
z dΦs(γ1, . . . , γd; β1, . . . , βs, ; q, z) ∗ ζ(z)

=
1
z
+ ∑∞

l=1
∏d

i=1(γi, q)l+1
(q, q)l+1 ∏s

i=1(βi, q)l+1
alzl ,

(13)

where ∏m
n=1(γn, q)l+1 = (γ1, q)l+1(γ2, q)l+1 . . . (γm, q)l+1 , where z ∈ D∗ = {z ∈ C : 0 <

|z| < 1}, and

dΥs(γ1, . . . , γd; β1, . . . , βs, ; q, z) =
1
z dΦs(γ1, . . . , γd; β1, . . . , βs, ; q, z)

=
1
z
+ ∑∞

l=1
∏d

i=1(γi, q)l+1
(q, q)l+1 ∏s

i=1(βi, q)l+1
zl .

(14)

Murugusundaramoorthy and Janani [7] defined the following linear operator for
functions ζ ∈ κη and for real parameters γ1, . . . , γd and β1, . . . , βs(βt 6= 0,−1, . . . ; t =
1, 2, . . . , s):

dΥs(γ1, . . . , γd; β1, . . . , βs, ; q, z− η) : κη → κη , (15)

dΥs(γ1, . . . , γd; β1, . . . , βs, ; q, z− η) =
1

z− η dΦs(γ1, . . . , γd; β1, . . . , βs, ; q, z− η)

=
1

z− η
+ ∑∞

l=1
∏d

i=1(γi, q)l+1
(q, q)l+1 ∏s

i=1(βi, q)l+1
(z− η)l .

(16)

Corresponding to the functions dΥs(γ1, . . . , γd; β1, . . . , βs, ; q, z− η) and qµ,ξ(z) given
in (6) and using the Hadamard product for ζ(z) ∈ κη , we define a new linear operator
J µ

ξ (γ1, γ2, . . . γd; β1, β2, . . . βs; q) on κη by

J µ
ξ (γ1, γ2, . . . γd; β1, β2, . . . βs; q)ζ(z)

=
(
ζ(z) ∗d Υs(γ1, γ2, . . . γd; β1, β2, . . . βs; q, z− η) ∗ qλ,ξ(z)

)
(17)

=
1

z− η
+

∞

∑
l=1

∏d
i=1(γi, q)l+1

(q, q)l+1 ∏s
i=1(βi, q)l+1

(
µ

l + 1 + µ

)ξ

al(z− η)l .

=
1

z− η
+

∞

∑
l=1

Ωd
s (l)al(z− η)l , (18)

where

Ωd
s (l) =

∏d
i=1(γi, q)l+1

(q, q)l+1 ∏s
i=1(βi, q)l+1

(
µ

l + 1 + µ

)ξ

. (19)
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For convenience, we will denote

J µ
ξ (γ1, γ2, . . . γd; β1, β2, . . . βs; q)ζ(z) = J µ

ξ (γd, βs, q)ζ(z). (20)

In (17), for ξ = 0, the operator was investigated by Murugusundaramoorthy and
Janani [7].

Recent studies on the meromorphic functions with generalized hypergeometric func-
tions and with q-hypergeometric functions include those by Cho and Kim [8], Dziok and
Srivastava [9,10], Ghanim [11], Ghanim et al. [12,13], Liu and Srivastava [14,15], Aldweby
and Darus [6], Murugusundaramoorthy and Janani [7]. We define the following new
subclass of functions in κη using the generalized operator J µ

ξ (γd, βs, q)ζ(z). In response to
earlier work on meromorphic functions by function theorists (see [15–22]).

For 0 ≤ ν < 1 and 0 ≤ ψ ≤ 1, we let Ad
s (ψ, τ, ν, η) indicate a subclass of κη that

consists of functions of the form (2) that satisfy the requirement that

−<
(
(z− η)(J µ

ξ (γd, βs, q)ζ(z))
′
+ ψ(z− η)2(J µ

ξ (γd, βs, q)ζ(z))′′

(1− ψ)J µ
ξ (γd, βs, q)ζ(z) + ψ(z− η)(J µ

ξ (γd, βs, q)ζ(z))′

)

> τ

∣∣∣∣∣ (z− η)(J µ
ξ (γd, βs, q)ζ(z))

′
+ ψ(z− η)2(J µ

ξ (γd, βs, q)ζ(z))′′

(1− ψ)J µ
ξ (γd, βs, q)ζ(z) + ψ(z− η)(J µ

ξ (γd, βs, q)ζ(z))′
+ 1

∣∣∣∣∣+ ν, (21)

where (17) is used to give J µ
ξ (γd, βs, q)ζ(z) .

Additionally, we can state this condition by

−<
(
(z− η)F

′
(z)

F(z)

)
> τ

∣∣∣∣∣ (z− η)F
′
(z)

F(z)
+ 1

∣∣∣∣∣+ ν, (22)

where
F(z) = (1− ψ)J µ

ξ (γd, βs, q)ζ(z) + ψ(z− η)(J µ
ξ (γd, βs, q)ζ(z))′

=
1− 2ψ

z− η
+

∞

∑
l=1

(lψ− ψ + 1)Ωd
s (l)al(z− η)l , al ≥ 0 (23)

where Ωd
s (l) defind by (18).

It is interesting to note that we can define a number of new subclasses of κη by
specializing the parameters ψ, τ and d, s. In the examples that follow, we demonstrate two
significant subclasses.

Example 1. For ψ = 0, we let Ad
s (0, τ, ν, η) = Ad

s (τ, ν, η) indicate a subclass of κη that consists
of functions of the form (2), which satisfy the requirement that

−<
(
(z− η)(J µ

ξ (γd, βs, q)ζ(z))
′

J µ
ξ (γd, βs, q)ζ(z)

)
> τ

∣∣∣∣∣ (z− η)(J µ
ξ (γd, βs, q)ζ(z))

′

J µ
ξ (γd, βs, q)ζ(z)

+ 1

∣∣∣∣∣+ ν, (24)

where J µ
ξ (γd, βs, q)ζ(z) is given by (17).

Example 2. Example 2. For ψ = 0, τ = 0, we let Ad
s (0, 0, ν, η) = Ad

s (v, η) indicate a subclass of
κη that consists of functions of form (2) that satisfy the requirement that

−<
(
(z− η)(J µ

ξ (γd, βs, q)ζ(z))
′

J µ
ξ (γd, βs, q)ζ(z)

)
> ν, (25)
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where J µ
ξ (γd, βs, q)ζ(z) is given by (17).

We begin by recalling the following lemma due to Challab, Darus and Ghanim [1].

Lemma 1 ([1]). The function ζ(z) defined by (2) is in the class in Ad
s (ψ, τ, ν, η) if, and only if,

∞

∑
l=1

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)al ≤ (1− 2ψ)(1− ν). (26)

The result is sharp.
In view of Lemma 1, we can see that the function ζ(z), defined by (2) in the class

Ad
s (ψ, τ, ν, η), satisfies the ceofficient inequality

a1 ≤
(1− 2ψ)(1− ν)

[(1 + v + 2τ)]Ωd
s (1)

, (27)

where

Ωd
s (1) =

∏d
i=1(γi, q)2

(q, q)2 ∏s
i=1(βi, q)2

(
µ

µ + 2

)ξ

.

Hence we may take

a1 =
(1− 2ψ)(1− ν)c

[((1 + v + 2τ))]Ωd
s (1)

0 ≤ c ≤ 1. (28)

Making use of (27), we now introduce the following class of functions:
Let Ad

s,c(ψ, τ, ν, η) denote the subclass of Ad
s (ψ, τ, ν, η), consisting of a function of the

form

ζ(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[(1 + ν + 2τ)]Ωd

s (1)
(z− η) +

∞

∑
l=2

al(z− η)l , (29)

where
al≥0 and 0 ≤ c ≤ 1.

In this paper, we obtain the coefficient inequalities for the class Ad
s,c(ψ, τ, ν, η) and

closure theorems. Further, the radius of convexity are obtained for the class Ad
s,c(ψ, τ, ν, η).

2. Coefficients’ Inequalities

Theorem 1. Let the function ζ(z) be defined (28). Then, ζ(z) is in the classAd
s,c(ψ, τ, ν, η) if, and

only if,

∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)al ≤ (1− 2ψ)(1− ν)(1− c). (30)

The result is sharp.

Proof. Putting

a1 =
(1− 2ψ)(1− ν)c

[(1 + τ) + (v + τ)]Ωd
s (1)

0 ≤ c ≤ 1, (31)

Using (25) and simplification, we arrive at the result, which is sharp for the function

ζ(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[(1 + τ) + (ν + τ)]Ωd

s (1)
(z− η) +

(1− 2ψ)(1− ν)(1− c)
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
(z− η)l(l ≥ 2). (32)
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Corollary 1. Let the function ζ(z) defined by (27) be in the class Ad
s,c(ψ, τ, ν, η). Then,

al ≤
(1− 2ψ)(1− ν)(1− c)

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)

(l ≥ 2). (33)

The result for the function ζ(z) given by (31) is sharp.

Corollary 2. If 0 ≤ c1 ≤ c2 ≤ 1

Ad
s,c2

(ψ, τ, ν, η) ⊆ Ad
s,c1

(ψ, τ, ν, η).

3. Closure Theorems

Using Theorem 1, we can prove the following theorems:

Theorem 2. Let the function

ζ j(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η) +

∞

∑
l=2

al,j(z− η)l (al,j ≥ 0), (34)

be in the class Ad
s,c(ψ, τ, ν, η). for every j = 1, 2, . . . , s. Then, the function

g(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η) +

∞

∑
l=2

bl(z− η)l(bl ≥ 0), (35)

is also in the same class Ad
s,c(ψ, τ, ν, η), where

bl =
1
m

m

∑
j=1

al,j(l = 1, 2, . . .). (36)

Proof. Since ζ j(z) ∈ Ad
s,c(ψ, τ, ν, η), it follows from Theorem 1 that

∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)al,j ≤ (1− 2ψ)(1− ν)(1− c), (37)

for every j = 1, 2, . . . , m. Hence,

∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)bl

=
∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)(

1
m

m

∑
j=1

al,j)

=
1
m

m

∑
j=1

(
∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)al,j

)
(38)

≤ (1− 2ψ)(1− ν)(1− c).

From Theorem 1, it follows that g(z) ∈ Ad
s,c(ψ, τ, ν, η). This completes the proof.

Theorem 3. The class Ad
s,c(ψ, τ, ν, η) is closed under convex linear combination

Proof. Let ζ j(z)(j = 1, 2) be defined by (33)

h(z) = φζ1(z) + (1− φ)ζ2(z) (0 ≤ φ ≤ 1), (39)
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It is sufficient to prove that the function h(z) is also in the class Ad
s,c(ψ, τ, ν, η).

Since

h(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η) +

∞

∑
l=2

[φal,1 + (1− φ)al,2](z− η)l . (40)

Then, we have Theorem 1, that

∞

∑
l=2

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)[φal,1 + (1− φ)al,2]

≤ φ(1− 2ψ)(1− ν)(1− c) + (1− φ)(1− 2ψ)(1− ν)(1− c)

= (1− 2ψ)(1− ν)(1− c).

Therefore, h(z) ∈ Ad
s,c(ψ, τ, ν, η).

Theorem 4. Let

ζ(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η), (41)

and

ζl(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η) +

(1− 2ψ)(1− ν)(1− c)
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
(z− η)l (l ≥ 2). (42)

Then, ζ(z) is in the class Ad
s,c(ψ, τ, ν, η), if, and only if, it can be expressed in the form

ζ(z) =
∞

∑
l=1

λlζl(z), (43)

where λl ≥ 0 and ∑∞
l=1 λl = 1.

Proof. Let

ζ(z) =
∞

∑
l=1

λlζl(z), (44)

=
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ)]Ωd

s (1)
(z− η) +

∞

∑
l=2

(1− 2ψ)(1− ν)(1− c)
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
λl(z− η)l .

Since

∞

∑
l=2

(1− 2ψ)(1− ν)(1− c)λl

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)

.
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
(1− 2ψ)(1− ν)

(45)

= (1− c)∑∞
l=2 λl = (1− c)(1− λ1) ≤ (1− c).

Hence, using Theorem 1, we have ζ(z) ∈ Ad
s,c(ψ, τ, ν, η).

Conversely, we assume that ζ(z), defined by (28), is in the class Ad
s,c(ψ, τ, ν, η).

Then by applying (32), we can obtain

al ≤
(1− 2ψ)(1− ν)(1− c)

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)

(l ≥ 2). (46)

Setting

λl =
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
(1− 2ψ)(1− ν)(1− c)

al (l ≥ 2). (47)



Mathematics 2023, 11, 2991 8 of 10

λ1 = 1−
∞

∑
l=2

λl . (48)

we have (42). The proof of Theorem 4 is now complete.

4. Radius of Convexity

Theorem 5. Let the function ζ(z) be defined by (28) in the class Ad
s,c(ψ, τ, ν, η). Then, ζ(z) is

meromorphically convex of order δ(0 ≤ δ < 1) in 0 < |z− η| < r1 = r1(ψ, τ, ν, η, c, δ) where
r1(ψ, τ, ν, η, c, δ), which has the highest value

(1 + δ)(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
r2 +

(l(l + 2− δ)(1− 2ψ)(1− ν)(1− c)
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (lo)
rl+1 ≤ (1− δ), (49)

for l ≥ 2. The result is sharp for the function

ζl(z) =
1

z− η
+

(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η) +

(1− 2ψ)(1− ν)(1− c)
[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd

s (l)
(z− η)l , (50)

for some l.

Proof. It is sufficient to show that∣∣∣∣∣ (z− η)ζ
′′
(z)

ζ
′
(z)

+ 2

∣∣∣∣∣ ≤ 1− δ (0 ≤ δ < 1)for0 < |z− η| < r1(ψ, τ, ν, η, c, δ).

Note that

∣∣∣∣∣ (z− η)ζ
′′
(z)

ζ
′
(z)

+ 2

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

2(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η)2 + ∑∞

l=2 l(l + 1)al(z− η)l+1

−1 +
(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
(z− η)2 + ∑∞

l=2 lal(z− η)l+1

∣∣∣∣∣∣∣∣ ≤ 1− δ

=

2(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
|z− η|2 + ∑∞

l=2 l(l + 1)al |z− η|l+1

1−
(

(1− 2ψ)(1− ν)c
[(1 + τ) + (ν + τ)]Ωd

s (1)
|z− η|2 + ∑∞

l=2 lal |z− η|l+1
) ≤ 1− δ

2(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
r2 + ∑∞

l=2 l(l + 1)alrl+1

1− (1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
r2 −∑∞

l=2 lalrl+1
≤ 1− δ, (51)

for 0 < |z− η| < r if, and only if,

2(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
r2 +

∞

∑
l=2

l(l + 1)alr
l+1 ≤ (1− δ)

(
1− (1− 2ψ)(1− ν)c

[1 + ν + 2τ]Ωd
s (1)

r2 −
∞

∑
l=2

lalr
l+1

)

(3− δ)(1− 2ψ)(1− ν)c
[1 + ν + 2τ]Ωd

s (1)
r2 +

∞

∑
l=2

l(l + 2− δ)alr
l+1 ≤ (1− δ). (52)

Since ζ(z) is in the class Ad
s,c(ψ, τ, ν, η), from (32), we may take

al =
(1− 2ψ)(1− ν)(1− c)λl

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)

(l ≥ 2), (53)

where λl ≥ 0 (l ≥ 2) and
∞

∑
l=1

λl ≤ 1. (54)
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We select the positive integer l0 = l0(r) for each fixed r, where
l(l + 2− δ)rl+1

[l(1 + τ) + (ν + τ)](1 + lψ− ψ)Ωd
s (l)

is maximal. Then it follows that

∞

∑
l=2

l(l + 2− δ)alr
l+1 ≤ (lo(lo + 2− δ)(1− 2ψ)(1− ν)(1− c)

[lo(1 + τ) + (ν + τ)](1 + loψ− ψ)Ωd
s (lo)

rlo+1 (l ≥ 2). (55)

Then ζ(z) is convex of order δ in 0 < |z− η| < r1(ψ, τ, ν, η, c, δ) provided that

(3− δ)(1− 2ψ)(1− ν)c
[(1 + τ) + (ν + τ)]Ωd

s (1)
r2 +

(lo(lo + 2− δ)(1− 2ψ)(1− ν)(1− c)
[lo(1 + τ) + (ν + τ)](1 + loψ− ψ)Ωd

s (lo)
rlo+1 ≤ (1− δ). (56)

We find the value ro = ro(ψ, τ, ν, η, c, δ) and the corresponding integer lo(ro)so that

(3− δ)(1− 2ψ)(1− ν)c
[(1 + τ) + (ν + τ)]Ωd

s (1)
r2

o +
(lo(lo + 2− δ)(1− 2ψ)(1− ν)(1− c)

[lo(1 + τ) + (ν + τ)](1 + loψ− ψ)Ωd
s (lo)

rlo+1
o = (1− δ). (57)

Then, this value ro is the radius of meromorphically convex of order δ for functions belonging
to the class Ad

s,c(ψ, τ, ν, η).

5. Conclusions
The fixed second coefficients of class Ad

s,c(ψ, τ, ν, η) and the q- hypergeometric functions are
included in the new class of meromorphic parabolic starlike functions defined in this article. Some
features are obtained for the function in the class Ad

s,c(ψ, τ, ν, η), including the radius of convexity,
closure theorems, and coefficient inequalities.
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