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Abstract: This study focuses on the solution of the rotationally symmetric Rossler attractor by
using the adaptive predictor–corrector algorithm (Apc-ABM-method) and the fractional Laplace
decomposition method (ρ-Laplace DM). Furthermore, a comparison between the proposed methods
and Runge–Kutta Fourth Order (RK4) is made. It is discovered that the proposed methods are
effective and yield solutions that are identical to the approximate solutions produced by the other
methods. Therefore, we can generalize the approach to other systems and obtain more accurate
results. In addition to this, it has been shown to be useful for correctly discovering examples via the
demonstration of attractor chaos. In the future, the two methods can be used to find the numerical
solution to a variety of models that can be used in science and engineering applications.

Keywords: numerical solution; the Apc-ABM method; ρ-Laplace DM; generalized Caputo fractional
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1. Introduction

In recent decades, fractional differential equations have become prominent due to
modeling and chaos [1,2]. Many alternative approaches to solving fractional differential
equations have been developed [3,4]. Many fields, from electrical engineering to biology
and physics, have found use for the modeling of chaotic and hyper-chaotic systems [5–8].

Numerous studies cover chaos application: the modeling of electrical circuits. The
use of chaotic models is acceptable because of how difficult it is to forecast a wide range
of real-world occurrences. Numerous novel methods for assessing chaotic systems have
appeared in recent years [9–12]. Two of these methods, asymptotic stability and Lyapunov
exponents, shed light on how the parameters of the model affect the dynamics of the
chaotic model. Numerous mathematical and scientific fields make use of fractional calculus.
For certain cutting-edge research and applications, scientists, mathematicians, biologists,
and those from other fields [13–19] are increasingly turning to fractional calculus. Given
the ambiguity surrounding fractional operators, this finding is noteworthy. Singularity
freedom [20] applies to derivatives with exponential and Mittag–Leffler kernels. Since they
consider the impact of long-term memory, the fractional derivatives are very useful.
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In this study, we use methods to analyze numerical solutions to chaotic systems with
generalized fractional derivative orders. By using a rigorous mathematical methodology,
we explore cutting-edge and time-saving approaches to the problem of solving the new
fractional chaotic model. As a result, there is hope for the investigation of further models
using the proposed techniques.

In [21–23], Katugampola introduced the generalized fractional integral and the frac-
tional derivative. The generalization of the definition of the fractional derivative with
Caputo type is given in [24].

The researchers introduced the fractional Laplace transform to deal with generalized
fractional derivatives [25]. It was used to solve some mathematical problems involving
generalized fractional derivatives. A coupling of the fractional Laplace transform and
some other analytical methods [26,27] was used to solve problems containing a generalized
fractional derivative. The results indicated the effectiveness of these methods. One such
effective method is the ρ-Laplace decomposition method (ρ-Laplace DM), which has been
used to solve differential equations involving a generalized fraction.

There are many strong reasons to use fractional derivatives in practice. The fractional
Rössler system, a set of three nonlinear equations that displays chaotic dynamics, is an
extension of the original Rössler system. Some possible physical or chemical phenomena
that the fractional Rössler system could describe are a chemical reaction’s fluid flow dy-
namics and a chaotic oscillator’s dynamics with fractional damping [28], as proven by
recent studies [29–31]. The literature contains many examples of chaotic systems, such as
the Lorenz attractor, the electrical circuit described by Chua, the system described by Chen,
the system described by Lu, and the basic chaotic system [32–36].

Systems that have symmetry are more susceptible to multistability because it is guar-
anteed that each asymmetric attractor will have a twin attractor that is symmetrical with it.
Due to the fact that every asymmetric attractor contains a symmetric twin attractor, systems
that have symmetry are particularly susceptible to the phenomenon of multistability. How-
ever, there is a possibility that there are advantages to multistability, such as the capacity
to recreate and research events in the actual world, where they also exist. Consider the
rotationally symmetric Rossler attractor [37], which is described by

Dα,ρ
0 x(t) = −y− yz,

Dα,ρ
0 y(t) = x + ay,

Dα,ρ
0 z(t) = b + z

(
x2 − c

)
,

(1)

where Dα,ρ
0 (.) is the generalized Caputo-type fractional derivative [24], a =0.4, b = 0.4, c = 4.5,

and the system is chaotic, with initial conditions x(0) = 1.5, y(0) = 0.0, and z(0) = 0.0.
The prospect of multistability is offered by chaotic dynamical systems that have a

symmetric structure thanks to the presence of an independent amplitude control parameter.
The development of symmetric Rossler systems results in the production of a symmetric
pair of unusual attractors that coexist together. In chaotic systems, symmetry offers a
unique amplitude control parameter that may be used independently, which is beneficial
for engineering applications.

This study focuses on the solution of the rotationally symmetric Rossler attractor by
using two different methods. We are able to apply the methods to various types of systems
in order to obtain more accurate findings. We are certain that our approaches will be used
in the not-too-distant future to design and simulate a wide range of fractional models.
These models have the potential to be utilized in the resolution of increasingly difficult
physics, biology, and engineering issues.

The significance of these techniques rests in the fact that they are used to the find a
numerical solution in a variety of models, including disease models and chaotic models,
and that it can be expanded to incorporate other models in pathology, dynamical models,
coding, and hyper-chaos. Both capabilities contribute to the method’s overall usefulness.
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In addition to this, the method is useful for the discovery of chaos and can be applied to
other, more complex models.

2. Basic Definitions

Definition 1. The generalized fractional integral of the function f , Iα,ρ
a+ f (t), α > 0, and ρ > 0, is

given by

Iα,ρ
a+ f (t) =

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1 f (s)ds, α > 0, t > a, (2)

for m− 1 < α ≤ m, where m ∈ N (see [21]).

Definition 2. The generalized Riemann–Liouville fractional derivative (RLFD) of the function
f , RDα,ρ

a+ f (t), of order α > 0, is given by [22].

RDα,ρ
a+ f (t) =

ρα−m+1

Γ(m− α)

(
t1−ρ d

dt

)m∫ t

a
sρ−1(tρ − sρ)m−α−1 f (s)ds, t > a ≥ 0. (3)

Definition 3. The generalized Caputo fractional derivative (CFD) operator, Dα,ρ
a+ , α > 0, is

given by

(
Dα,ρ

a+ f
)
(t) =

ρα−m+1

Γ(m− α)

∫ t

a
sρ−1(tρ − sρ)m−α−1

(
s1−ρ d

ds

)m
f (s)ds, t > a. (4)

where ρ > 0, a ≥ 0, and m− 1 < α < m (see [24]).

Definition 4 ([25]). The ρ-Laplace transform of a function f : [0, ∞]→ R is defined by

Lρ{ f (t)} =
∫ ∞

0
e−δ tρ

ρ f (t)
dt

t1−ρ
. (5)

The ρ-Laplace transform of the generalized CFD is defined by

Lρ

{
Dα,ρ

0 f (t)
}
= δαLρ{ f (t)} − δα−1 f (0). (6)

3. Methodology of the Apc-ABM Algorithm

The purpose of this part is to present the algorithm used in the APC-ABM method:{
Dα,ρ

a+y(t) = f (t, y(t)), t ∈ [0, T],
y(k)(a) = yk

0, k = 0, 1, · · · , dαe, (7)

where Dα,ρ
a+ is a generalized Caputo fractional operator.

Then, for n− 1 < α ≤ n, a > 0, ρ > 0, y ∈ Cn([a, T]), model (8) is equivalent and
we obtain

y(t) = u(t) +
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1 f (s, y(s))ds, (8)

where

u(t) = ∑m−1
n=0

1
ρnn!

(tρ − aρ)n
[(

x1−ρ d
dx

)n
y(x)

]∣∣∣∣
x=a

. (9)

The first step of our algorithm, under the assumption that the function f is such that a
unique solution exists on some interval [a, T], consists of dividing the interval [a, T] into N
unequal subintervals, {[tk, tk+1], k = 0, 1, · · · , N − 1}, using the mesh points.
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{
t0 = a,

tk+1 =
(

tρ
k + h

)1/ρ
, k = 0, 1, · · · , N − 1,

(10)

where h = Tρ−aρ

N . Now, to numerically solve the IVPs, we build approximations
yk, k = 0, 1, · · · , N. If we have previously assessed the approximations y

(
tj
)

and
yj ≈ y

(
tj
)
(j = 1, 2, · · · , k), we wish to use the integral equation to generate the approxima-

tion yk+1 ≈ y(tk+1).

y(tk+1) = u(tk+1) +
ρ1−α

Γ(α)

∫ tk+1

a
sρ−1

(
tρ
k+1 − sρ

)α−1
f (s, y(s))ds, (11)

Making the substitution
z = sρ (12)

we obtain

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)

∫ tρ
k+1

aρ

(
tρ
k+1 − z

)α−1
f
(

z1/ρ, y
(

z1/ρ
))

dz (13)

That is,

y(tk+1) = u(tk+1) +
ρ−α

Γ(α)∑
k
j=0

∫ tρ
j+1

tρ
j

(
tρ
k+1 − z

)α−1
f
(

z1/ρ, y
(

z1/ρ
))

dz (14)

Subsequently, the trapezoidal quadrature method is employed in consideration of the

weight function
(

tρ
k+1 − z

)α−1
. In order to estimate the integrals on the right-hand side of

the equation, a suitable method must be employed (Equation (13)). The corrector formula
is derived in the following manner, y(tk+1), k = 0, 1, 2, · · · , N − 1:

y(tk+1) ≈ u(tk+1) +
ρ−αhα

Γ(α + 2)∑
k
j=0 aj,k+1 f

(
tj, y

(
tj
))

+
ρ−αhα

Γ(α + 2)
f (tk+1, y(tk+1)) (15)

where

aj,k+1 =

{
kα+1 − (k− α)(k + 1)α if j = 0,(
k− j + 2)α+1 +

(
k− j)α+1 − 2

(
k− j + 1)α+1 if 1 ≤ j < k

(16)

The ultimate step of our methodology involves substituting the quantity y(tk+1). The
predictor value is located on the right-hand side of Formula (15), yP(tk+1). The integral
equation (Equation (13)) is solved through the utilization of the one-step Adams–Bashforth
method. In this scenario, the act of replacing the function with another equivalent one is con-
sidered. f

(
z1/ρ, y

(
z1/ρ

))
at each integral in Equation (16) with the amount f

(
tj, y

(
tj
))

yields

yP(tk+1) ≈ u(tk+1) +
ρ−α

Γ(α)∑
k
j=0

∫ tρ
j+1

tρ
j

(
tρ
k+1 − z

)α−1
f
(
tj, y

(
tj
))

dz (17)

yP(tk+1) = u(tk+1) +
ρ−αhα

Γ(α + 1)∑
k
j=0 [(k + 1− j)α − (k− j)α ] f

(
tj, y

(
tj
))

(18)

Thus, the aforementioned formula comprehensively characterizes our adaptive P-C
approach for evaluating the approximation, yk+1 ≈ y(tk+1):

yk+1 ≈ u(tk+1) +
ρ−αhα

Γ(α + 2)∑
k
j=0 aj,k+1 f

(
tj, yj

)
+

ρ−αhα

Γ(α + 2)
f
(

tk+1, yp
k+1

)
, (19)
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where yj ≈ y
(

tj

)
, j = 0, 1, · · · , k, and the predicted value yP

k+1 ≈ yP(tk+1) can be determined as
described in Equation (18) with the weights aj,k+1 being defined according to (35). The proposed

adaptive Apc-ABM-method uses a non-uniform grid {tj+1 =
(

tρ
j + h

)ρ
: j = 0, 1, · · · , N − 1}

with t0 = a and h = Tρ−aρ

N , where N represents a positive integer. It is posited that the
utilization of the Apc-ABM methodology for initial value problems (IVPs) featuring the
generalized CFD is rendered infeasible in instances where a uniform grid is employed, as
is the case with the aforementioned scenario [38].

4. Applications of the Apc-ABM Algorithm

This section is dedicated to exploring the solutions of Equation (1). With the Apc-ABM
method, great results can be achieved when a = b = 0.4 and c = 4.5, with initial conditions
x(0) = 1.5, y(0) = 0, and z(0) = 0. By using Equation (18), the approximations xk+1, yk+1,
and zk+1, and for N ∈ N and T > 0,

xk+1 ≈ x0 + a ρ−αhα

Γ(α+2)∑k
j=0 aj,k+1

(
yj − xj

)
+ a ρ−αhα

Γ(α+2)

(
yP

k+1 − xP
k+1

)
,

yk+1 ≈ y0 +
ρ−αhα

Γ(α+2)∑k
j=0 aj,k+1

(
(c− a)xj − xjzj + cyj

)
+ ρ−αhα

Γ(α+2)

(
(c− a)xP

k+1 − xP
k+1zP

k+1 + cyP
k+1

)
,

zk+1 ≈ z0 +
ρ−αhα

Γ(α+2)∑k
j=0 aj,k+1

(
xjyj − bzj

)
+ ρ−αhα

Γ(α+2)

(
xP

k+1yP
k+1 − bzP

k+1

)
,

(20)

where h = Tρ

N and
xP

k+1 ≈ x0 + a ρ−αhα

Γ(α+1)∑k
j=0 [(k + 2− 1− j)α + (−k + j)α ]

(
yj − xj

)
,

yP
k+1 ≈ y0 +

ρ−αhα

Γ(α+1)∑k
j=0 [(k + 2− 1− j)α + (−k + j)α ]

(
(c− a)xj − xjzj + cyj

)
,

zP
k+1 ≈ z0 +

ρ−αhα

Γ(α+1)∑k
j=0 [(k + 2− 1− j)α + (−k + j)α ]

(
xjyj − bzj

)
.

(21)

Table 1 presents the numerical solution using the Apc-ABM method to Equation (21)
when α = 1, ρ = 1, (a, b, c) = (0.5, 0.5, 3.5), and (x0, y0, z0) = (1/2, 1/2, 0), and comparing
the results with the RK4 method. Table 2 presents the numerical solution for the value of
α = 0.95.

Table 1. Numerical solutions for a fractional equation (Equation (1)) when α = 1, ρ = 1, N = 200,
and t = 2.

h x y z

1/160 −1.439249004245022 1.926879753830334 0.115497632553681

1/320 −1.437027804276252 1.919749862274107 0.115546731072315

1/640 −1.435904100808411 1.916191943945559 0.115570069443809

1/1280 −1.435338988519151 1.914414758678336 0.115581435786859

1/2560 −1.435055619161782 1.913526611637655 0.115587043236967

1/5120 −1.434913731421401 1.913082649779714 0.115589828030596

1/10240 −1.434842736816009 1.912860696799313 0.115591215694437

1/20480 −1.434780588799649 1.912666503235824 0.115592427311921

R K4 −1.434770838159845 1.912637598049335 0.115592614892760

Table 2. Numerical solutions for a fractional equation (Equation (1)) when α = 0.95, ρ = 1, and
t = 0.5.

h x y z

1/160 1.28921526386768 0.794012894194367 0.113077179858054

1/320 1.287865984843871 0.793856954812710 0.112751179833214
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Table 2. Cont.

h x y z

1/640 1.287192129056913 0.793776634317518 0.112588754203015

1/1280 1.286855399733513 0.793735886510549 0.112507684690222

1/2560 1.286687085043668 0.793715365736676 0.112467185722739

1/5120 1.286602940232841 0.793705068634685 0.112446945181642

1/10240 1.286560870966092 0.793699910905249 0.112436827146182

1/20480 1.286524062075699 0.793695392872633 0.112427975087295

R K4 1.286518803332891 0.793694747080276 0.112426709876828

5. ρ-Laplace DM

In this section, we discuss Equation (7) with a generalized CFD to illustrate the
algorithm of the ρ-Laplace DM.

The ρ-Laplace DM divides Equation (1) into a linear term Ay(t), a nonlinear term
By(t), and a source function C(t) as follows:

Dα,ρ
0 y(t) = Ay(t) + By(t) + C(t),ρ > 0,0 < α ≤ 1, (22)

Taking Lρ to Equation (22), we obtain

Lρ[y(t)] =
y0

δ
+

1
δα

Lρ[C(t)] +
1
δα

Lρ[Ay(t) + By(t)] (23)

Operating L−1
ρ , we obtain

y(t) = G(t) + L−1
ρ

[
1
δα

Lρ[Ay(t) + By(t)]
]

(24)

where G(t) = L−1
ρ

[
y0
δ + 1

δα Lρ[C(t)]
]
.

The ρ-Laplace DM represents a series solution of y(t) by

y(t) = ∑∞
n=0 yn(t) (25)

Furthermore, the nonlinear function By(t) can be expressed in a series of polynomials:

∑∞
n=0 Kn (26)

Substituting Equations (25) and (26) into Equation (24) yields

∑∞
n=0 yn(t) = G(t) + L−1

ρ

[
1
δα

Lρ

[
A∑∞

n=0 yn(t) + ∑∞
n=0 Kn

]]
. (27)

As a result, the recurrence relation

y0(τ) = G(t), (28)

yn+1(τ) = L−1
ρ

[
1
δα

Lρ[Ayn(t) + Kn]

]
, n ≥ 0. (29)

Finally, a series is used to approximate the solution.

ψM(t) = ∑M−1
n=0 yn(t) (30)
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6. Application of ρ-Laplace DM

According to what is presented in Section 5, after applying the ρ-Laplace DM to each
equation of System (1), we obtain

∞
∑

n=0
xn(t) = x(0) + L−1

ρ

[
1
δα Lρ

[
−

∞
∑

n=0
yn(t)−

∞
∑

n=0
U

n

]]
∞
∑

n=0
yn(t) = y(0) + L−1

ρ

[
1
δα Lρ

[
∞
∑

n=0
xn(t)− a

∞
∑

n=0
yn(t)

]]
,

∞
∑

n=0
zn(t) = btαρ

ραΓ[1+α]
+ L−1

ρ

[
1
δα Lρ

[
∞
∑

n=0
V

n
− c

∞
∑

n=0
zn(t)

]]
.

(31)

where the nonlinear terms yz and zx2 are given by

yz = ∑∞
n=0 Un and yz = ∑∞

n=0 Un (32)

The ρ-Laplace DM provides the recursive relation:

x0(t) = 1.5

y0(t) = 0

z0(t) =
btαρ

ραΓ[1 + α]

xn+1(t) = L−1
ρ

[
1
δα

Lρ[−yn(t)−Un(t)]
]

, n ≥ 0

yn+1(t) = L−1
ρ

[
1
δα

Lρ[xn(t)− ayn(t)]
]

, n ≥ 0

zn+1(t) = L−1
ρ

[
1
δα

Lρ[Vn(t)− czn(t)]
]

, n ≥ 0

The first few components are
x0(t) = 1.5

y0(t) = 0

z0(t) =
btαρρ−α

Γ[1 + α]

x1(t) = 0

y1(t) =
1.5tραρ−α

Γ[1 + α]

z1(t) =
b(2.25 − c)t2ραρ−2α

Γ[1 + 2α]

x2(t) = −
1.5bt3αρρ−3αΓ[1 + 2α]

Γ2[1 + α]Γ[1 + 3α]
− 1.5t2αρρ−2α

Γ[1 + 2α]

y2(t) =
1.5at2αρρ−2α

Γ[1 + 2α]

z2(t) =
b
(
5.0625 − 4.5c + c2)t3αρρ−3α

Γ[1 + 3α]
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x3(t) = −
1.5at3αρρ−3α

Γ[1 + 3α]
− 1.5b(2.25 − c)Γ[1 + 3α]t4αρρ−4α

Γ[1 + α]Γ[1 + 2α]Γ[1 + 4α]
− 1.5abΓ[1 + 3α]t4αρρ−4α

Γ[1 + α]Γ[1 + 2α]Γ[1 + 4α]

y3(t) = −
1.5t3αρρ−3α

Γ[1 + 3α]
+

1.5a2t3αρρ−3α

Γ[1 + 3α]
− 1.5bt4αρρ−4αΓ[1 + 2α]

Γ2[1 + α]Γ[1 + 4α]

z3(t) = −
4.5bt4αρρ−4αΓ[1 + 3α]

Γ[1 + α]Γ[1 + 2α]Γ[1 + 4α]
+

11.390625bt4αρρ−4α

Γ[1 + 4α]
− 15.1875bct4αρρ−4α

Γ[1 + 4α]
+

6.75bc2t4αρρ−4α

Γ[1 + 4α]

bc3t4αρρ−4α

Γ[1 + 4α]
− 4.5b2t5αρρ−5αΓ[1 + 2α][1 + 4α]

Γ3[1 + α]Γ[1 + 3α]Γ[1 + 5α]
Therefore, the approximate solution is given as

x(t) = ∑∞
n=0 xn(t),

y(t) = ∑∞
n=0 yn(t),

z(t) = ∑∞
n=0 zn(t).

(33)

Table 3 displays the ρ-Laplace DM solution of Equation (1). When α = 0.90 and
ρ = 0.95, we observed that the ρ-Laplace DM solution given in Table 3 for the fractional
order and fractional parameter has the same behavior as the ρ-Laplace DM solution given
in Table 4 for integers α = 1 and ρ = 1.

Table 3. ρ-Laplace DM solutions to fractional model equation (Equation (1)) when α = 0.90 and
ρ = 0.95.

t x y z

0 1.5 0.0 0.0

0.1 1.4796996703743301 0.2347426924022824 0.05053705282095178

0.2 1.430966701161987 0.4315761993664601 0.07795664830887342

0.3 1.3578018024536942 0.6161357560230636 0.09178543190387903

0.4 1.2621444225163563 0.7907363746739074 0.09111861049966521

0.5 1.145647714788557 0.9552091317148814 0.07230353761707926

Table 4. A comparison of the numerical solutions to fractional model equation (Equation (1)).

t x- ρ-Laplace D x- Apc-ABM x- RK4

0 1.5 1.5 1.5
0.1 1.492213875 1.492219789642530 1.492218810160190
0.2 1.467822 1.467899837621127 1.467897787108336
0.3 1.4255238749999999 1.425901742914282 1.425898584622672
0.4 1.3643519999999998 1.365527369775399 1.365523123300982
0.5 1.283671875 1.286524062075699 1.286518803332891

t y- ρ-Laplace D y- Apc-ABM y- RK4

0 0.0 0.0 0.0

0.1 0.15278500000000003 0.152780418545565 0.152780702318047

0.2 0.31024000000000007 0.310175637425140 0.310176020055442

0.3 0.4709250000000001 0.470625099220481 0.470625370691797

0.4 0.6332800000000002 0.632410659829444 0.632410592018532

0.5 0.7956249999999999 0.793695392872633 0.793694747080276

t z- ρ-Laplace D z- Apc-ABM z- RK4

0 0.0 0.0 0.0

0.1 0.035795535625 0.035799537976347 0.035799091697084

0.2 0.06402089000000001 0.064132733630666 0.064131982855701

0.3 0.085135625625 0.085961681371914 0.085960705651558

0.4 0.09848848 0.101893186504205 0.101892039586943

0.5 0.102259765625 0.112427975087295 0.112426709876828
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Table 4 also shows the comparison of outcomes of the solution of system (1) using the
ρ-Laplace DM, Apc-ABM method, and RK4 method when α = 1, ρ = 1 a = b = 0.4, and
c = 4.5, with x(0) = 1.5, y(0) = 0, and z(0) = 0. We note that the results obtained when
using the ρ-Laplace DM and Apc-ABM methods are very close to those obtained using the
RK4 method.

In Figures 1 and 2, solutions were drawn using Equation (1) by using the Apc-ABM-
method, with (a, b, c) = (0.2, 0.2, 6.5), (x0, y0, z0) = (1, 0, 0), T = 400, and N = 800 when
α = 0.95 and ρ = 0.8, 1.2. In Figure 3, solutions were drawn using Equation (1) by using
α = 1 and ρ = 1.
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7. Conclusions

This study presents the numerical solution of a fractional system using two different
methods and compares the solutions. The APc-ABM method and the ρ-Laplace DM both
benefited from the provision of a numerical strategy that was accomplished with the help
of software packages. As the step size h fell, the APc-ABM technique produced numerical
results that were impressively close to the RK4 solutions. Furthermore, we showed from
the comparison that the numerical solutions obtained by the Laplace DM and APc-ABM
are identical to the approximate solutions produced by the RK4 method. The obtained
numerical results demonstrate that our method carries out its procedures in the context of
fractions in a way that satisfies expectations with regard to the degree to which it maintains
its numerical stability. We suggest applying this strategy to more complex physics and
engineering problems.
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