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Abstract: In this paper, we present a novel integral transform known as the one-dimensional
quaternion quadratic-phase Fourier transform (1D-QQPFT). We first define the one-dimensional
quaternion quadratic-phase Fourier transform (1D-QQPFT) of integrable (and square integrable)
functions on R. Later on, we show that 1D-QQPFT satisfies all the respective properties such
as inversion formula, linearity, Moyal’s formula, convolution theorem, correlation theorem and
uncertainty principle. Moreover, we use the proposed transform to obtain an inversion formula for
two-dimensional quaternion quadratic-phase Fourier transform. Finally, we highlight our paper with
some possible applications.
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1. Introduction

Recently, Castro et al. [1,2] introduced a superlative generalized version of the Fourier
transform(FT) coined as quadratic-phase Fourier transform (QPFT) which has overthrown
all the applicable signal processing tools as it provides a unified analysis of both transient
and non-transient signals in an easy and insightful fashion. We refer to [3,4] for information
about integral transforms.

For parameter µ = (A, B, C, D, E), the QPFT of any signal f ∈ L1(R) is defined as

Qµ[ f ](w) =
1√
2π

∫
f (t)Λµ(t, w)dt, (1)

where Λµ(t, w) is called quadratic-phase Fourier kernel and is given by

Λµ(t, w) = exp{i(At2 + Btw + Cw2 + Dt + Ew)} (2)

with A, B, C, D, E ∈ R, B 6= 0.
Later on, much research has been carried out on quadratic-phase Fourier transform

(see [5–8]). In the prospect of signal processing, it is evident that any signal processing tool
converts the time-domain signals into frequency-domain. Further, in signal processing,
convolution of two functions [9–13] is a most useful tool in constructing a filter for denoising
the given noisy signals (see [14]).

In past decades, hypercomplex algebra has become a leading area of research with its
applications in color image processing, image filtering, watermarking, edge detection and
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pattern recognition (see [15–21]). The Cayley–Dickson algebra of order four is labeled as
quaternions which has wide applications in optical and signal processing. The extension
of the Fourier transform in quaternion algebra is known as quaternion Fourier transform
(QFT) [22] which is believed to be the substitute for the commonly used two-dimensional
complex Fourier transform (CFT). The QFT has a wide range of applications: see [23,24].
The quaternion linear canonical transform (QLCT) and the quaternion offset linear canonical
transform (QOLCT) are the generalized versions of the QFT and QLCT, respectively, which
are both effective signal processing tools. The modern era of information processing is
in dire need of quaternionic valued signals and, therefore, is a very hot area of research
(see [25–28]). Recently, Bhat and Dar [29] introduced quaternion quadratic-phase Fourier
transform Q-QPFT as a generilization of QFT. Since then it has gained much popularity
in signal processing community [30–33]. Many fundamental properties of Q-QPFT are
known, but the theory about quaternion one-dimensional QPFT as far as we know is still in
its infancy. Therefore, it is worthwhile to study the theory of quaternion one-dimensional
QPFT which can be productive for signal processing theory and applications.

In this paper, our main objective is to introduce the novel integral transform called the
one-dimensional quaternion quadratic-phase Fourier transform (1D-QQPFT) and study
its properties, such as inversion formula, linearity, Moyal’s formula, convolution theorem,
correlation theorem, Heisenberg–Pauli–Weyl uncertainty inequality and inversion formula
for two-dimensional quaternion QPFT.

This paper is organized as follows: In Section 2, some general definitions and basic
properties of quaternions are summarized. The definition and the properties of the 1D-
QQPFT are studied in Section 3. In Section 4 we obtain inversion formula for the two-
dimensional quadratic-phase Fourier transform. In Section 5, some potential applications
of the proposed transform are highlighted. In Section 6, conclusions are drawn.

2. Preliminaries

Here, we introduce the already known results which are required in subsequent sections.

2.1. Quadratic-Phase Fourier Transform

In this subsection we introduce the quadratic-phase Fourier transform, which is a
neoteric addition to the classical integral transforms and we also give its inversion formula
and some other classical results which are already present in literature.

Definition 1. Given a parameter µ = (A, B, C, D, E), the QPFT of any signal f ∈ L1(R) is
defined by

Qµ[ f ](w) =
1√
2π

∫
f (t)Λµ(t, w)dt, (3)

where the quadratic-phase Fourier kernel Λµ(t, w) is given by

Λµ(t, w) = exp{i(At2 + Btw + Cw2 + Dt + Ew)} (4)

with A, B, C, D, E ∈ R, B 6= 0.

Theorem 1. The inversion formula of the quadratic-phase Fourier transform is given by

f (t) =
|B|√
2π

∫
Qµ[ f ](w)Λµ(t, w)dw. (5)

Using the inversion theorem, we can obtain the Parseval’s relation given by

〈 f , g〉 = |B|〈Qµ[ f ], Qµ[g]〉 (6)

Theorem 2 ( [5,6]). Let f , g ∈ L2(R) and α, β, τ ∈ R then

1. Qµ[α f + βg](w) = αQµ[ f ](w) + βQµ[g](w).
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2. Qµ[ f (t− τ)](w) = exp{−i(Aτ2 + Bτw + Dτ)}Qµ[exp{−2iAτt} f (t)](w).
3. Qµ[ f (−t)](w) = Qµ′ [ f (t)](−w), where µ′ = (A, B, C,−D,−E).

4. Qµ[exp{iαt} f (t)](w) = exp{i(α2 + 2αBw + αEB) 1
B}Qµ[ f ]

(
w + A

B

)
.

5. Qµ[ f (t)](w) = Q−µ[ f (t)](w), where −µ = (−A,−B,−C,−D,−E).

Theorem 3 (QPFT Convolution [5]). If f , g ∈ L2(R) then

Qµ[ f ∗µ g(t)](w) = exp{−i(Cw2 + Ew)}Qµ[ f ](w)Qµ[g](w)

where
( f ∗µ g)(t) =

1√
2π

∫
R

f (z)g(t− z) exp{2iAz(t− z)}dz. (7)

Theorem 4 (Heisenberg–Pauli–Weyl inequality [6]). Let Qµ[ f ] be the quadratic-phase Fourier
transform of any signal f , then the following inequality holds:

∫
R

w2|Qµ[ f ]|2dw
∫

R
t2| f (t)|2dt ≥

{
1

2|B|

∫
R
| f (t)|2dt

}2
.

2.2. Quaternions

Let R and C be the usual set of real numbers and set of complex numbers, respectively.
The division ring of quaternions in the honor of Hamilton, is denoted by H and is defined as

H = {a + e1b + e2c + e3d : a, b, c, d ∈ R}
= {(a + e1b) + e2(c− e1d) : a, b, c, d ∈ R}
= {z1 + e2z2 : z1, z2 ∈ C} (CayleyDickson f orm)

where e1, e2, e3 satisfy Hamilton’s multiplication rule

e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1,

e3e1 = −e1e3 = e2 and e2
1 = e2

2 = e2
3 = −1.

Every member of H is known as quaternion. In quaternion algebra addition, multiplication,
conjugate and absolute value of quaternions are defined by

(a1 + e2a2) + (b1 + e2b2) = (a1 + b1) + e2(a2 + b2),

(a1 + e2a2)(b1 + e2b2) = (a1b1 − a2b2) + e2(a2b1 + a1b2),

(a1 + e2a2)
c = a1 − e2a2,

|a1 + e2a2| =
√
|a1|2 + |a2|2,

here, ak is the complex conjugate of ak and |ak| is the modulus of the complex number
ak, k = 1, 2. For all a = a1 + e2a2, b = b1 + e2b2 ∈ H, the following properties of conjugate
and modulus and multiplicative inverse are well known.

(ac)c = a, (a + b)c = ac + bc, (ab)c = bcac,

|a|2 = aac = |a1|2 + |a2|2, |ab| = |a||b|,

a−1 =
a
|a|2 .

We denote Lp(R, H), the Banach space of all quaternion-valued functions f satisfying
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‖ f ‖p =

(∫
| f1(t)|p + | f2(t)|pdt

)1/p
< ∞, p = 1, 2.

Moreover, on L2(R, H) the inner product

〈 f , g〉 =
∫

f (t)[g(t)]cdt,

where integral of a quaternion valued function is defined by∫
( f1 + e2 f2)(t)dt =

∫
f1(x)dt + e2

∫
f2(x)dt,

whenever the integral exists.

3. Quaternion One-Dimensional Quadratic-Phase Fourier Transform

In this section, we will introduce the definition of quaternion one-dimensional quadratic-
phase Fourier transform (1D-QQPFT) by using [34–37]. Prior to that we note e1, e2 and e3 (or
equivalently i, j, k) denote the three imaginary ,units in the quaternion algebra [38].

Definition 2. The 1D-QQPFT of any signal f ∈ L1(R, H) with respect a parameter µ =
(A, B, C, D, E) is defined by

QH
µ [ f (t)](w) =

1√
2π

∫
f (t)Λe2

µ (t, w)dt (8)

where
Λe2

µ (t, w) = exp{e2(At2 + Btw + Cw2 + Dt + Ew)}. (9)

With A, B, C, D, E ∈ R, B 6= 0. Now we can find that if f (t) is a real-valued signal in (8), then we
can interchange the kernel (2) and (9).

By appropriately choosing parameters in
µ = (A, B, C, D, E) the 1D-QQPFT(8) gives birth to the following existing time-frequency
transforms:

• For µ = (0, 1, 0, 0, 0), the 1D-QQPFT (2) boils down to the quaternion one-dimensional
Fourier Transform [34]

• For µ = (A/2B,−1/B, C/2B, 0, 0) and multiplying the right side of (9) by 1/
√

e2B
the 1D-QQPFT(2) reduces to the quaternion one-dimensional linear canonical trans-
form [37].

• For µ = (cot θ/2,− csc θ, cot θ/2, 0, 0), θ 6= 0 and multiplying the right side of (9) by√
1− e2 cot θ, the 1D-QQPFT (2) reduces to the quaternion one-dimensional fractional

Fourier transform [35].
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Example 1. The 1D-QQPFT of the signal f (t) = exp{−kt2}, k ≥ 0 is given by

QH
µ [ f (t)](w)

=
1√
2π

∫
f (t)Λe2

µ (t, w)dt

=
1√
2π

∫
exp{−kt2} exp{e2(At2 + Btw + Cw2 + Dt + Ew)}dt

=
1√
2π

exp{e2(Cw2 + Ew)}
∫

exp{−kt2} exp{e2(At2 + Btw + Dt)}dt

=
1√
2π

exp{e2(Cw2 + Ew)}

×
∫

exp
{
−(k + e2 A)

[
t + e2

(Bw + D)2

2(k + e2 A)

]}
dt exp

{
− (Bw + D)2

4(k + e2 A)

}
. (10)

Now, with the help of Gaussian integral, (10) yields

QH
µ [ f (t)](w)

=
1√
2π

exp{e2(Cw2 + Ew)}
√

π

k + e2 A
exp

{
− (Bw + D)2

4(k + e2 A)

}
= exp{e2(Cw2 + Ew)}

√
1

2(k + e2 A)
exp

{
− (Bw + D)2

4(k + e2 A)

}
.

Definition 3 ( Inversion). The inverse can be expressed in the form

f (t) = {QH
µ }−1[QH

µ [ f ]](t)

=
|B|√
2π

∫
QH

µ [ f ](w)Λe2
µ (t, w)dw. (11)

Definition 4. Let f = f1 + e2 f2 be a quaternion valued signal in L1(R, H), then the quaternion
quadratic-phase Fourier transform is defined as

QH
µ [ f (t)](w) = QH

µ [ f1(t)](w) + e2QH
µ [ f2(t)](w). (12)

By above definition, it is consistent with the quadratic-phase Fourier transform on L1(R, C). Now
it is clear from the definition of quaternion quadratic-phase Fourier transform and the properties of
quadratic-phase Fourier transform on L1(R, H), that QH

µ

(
QH

ν [ f ]
)
= QH

µ+ν[ f ] and {QH
µ [ f ]}−1 =

QH
−µ[ f ] for every signal f ∈ L1(R, H).

Theorem 5. The quaternion quadratic-phase Fourier transform QH
µ is H−linear on L1(R, H).
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Proof. Let us consider two quaternion signals f = f1 + e2 f2 and g = g1 + e2g2 in L1(R, H);
now, by the linearity of QH

µ on L1(R, C), we obtain

QH
µ [ f + g](w)

= QH
µ [( f1 + e2 f2) + (g1 + e2g2)](w)

= QH
µ [( f1 + g1) + e2( f2 + g2)](w)

= QH
µ [ f1](w) + QH

µ [g1](w)

+e2

(
QH

µ [ f2](w) + QH
µ [g2](w)

)
=
(

QH
µ [ f1](w) + e2QH

µ [ f2](w)
)
+
(

QH
µ [g1](w)

+ e2QH
µ [g2](w)

)
= QH

µ [ f ](w) + QH
µ [g](w).

Now, to prove H−linearity, we let q = q1 + e2q2 ∈ H and f = f1 + e2 f2 ∈ L1(R, H) be
arbitrary, then we have

QH
µ [e2 f ](w) = QH

µ [e2( f1 + e2 f2)](w)

= QH
µ [e2 f1 − f2](w)

= e2QH
µ [ f1](w)−QH

µ [ f2](w)

= e2

(
QH

µ [ f1](w) + e2QH
µ [ f2](w)

)
= e2QH

µ [ f ](w).

Therefore,

QH
µ [q f ](w) = QH

µ [q1 f ](w) + QH
µ [e2q2 f ](w)

= q1QH
µ [ f ](w) + e2q2QH

µ [ f ](w)

= (q1 + e2q2)QH
µ [ f ](w)

= qQH
µ [ f ](w).

Which completes the proof.

Theorem 6 (Moyal’s formula). Let f , g ∈ L1(R, H) ∩ L2(R, H) be two signals functions with
QH

µ [ f ] ∈ L1(R, H), 〈 f , g〉 = |B|〈QH
µ [ f ], QH

µ [g]〉.
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Proof. For f , g ∈ L1(R, H) ∩ L1(R, H) with QH
µ [ f ] ∈ L1(R, H),

〈 f , g〉

=
∫

f (t)[g(t)]cdt

=
|B|√
2π

∫ ∫
QH

µ [ f ](w)Λe2
µ (t, w)dw[g(t)]cdt (by (11))

=
|B|√
2π

∫ ∫
QH

µ [ f ](w)Λe2
µ (t, w)[g(t)]cdtdw

=
|B|√
2π

∫
QH

µ [ f ](w)
∫ {

g(t)Λe2
µ (t, w)

}cdtdw

=
|B|√
2π

∫
QH

µ [ f ](w)

{∫
g(t)Λe2

µ (t, w)dt
}c

dw

= |B|
∫

QH
µ [ f ](w)

{
1√
2π

∫
g(t)Λe2

µ (t, w)dt
}c

dw

= |B|
∫

QH
µ [ f ](w){QH

µ [g](w)}cdw

= |B|〈QH
µ [ f ], QH

µ [g]〉,

which completes the proof.

Lemma 1. For f ∈ Lp(R, C), p = 1, 2, we have QH
µ [ f ](w) = QH

−µ[ f ](w).

Proof. It follows from Definition 2 that

QH
µ [ f ](w) = 1√

2π

∫
f (t)Λe2

µ (t, w)dt

= 1√
2π

∫
f (t)Λe2

µ (t, w)dt

= 1√
2π

∫
f (t)Λe2

−µ(t, w)dt

= 1√
2π

∫
f (t)Λe2

−µ(t, w)dt

= QH
−µ[ f ](w),

which completes the proof.

Remark 1. The Lemma 1 can also be written as QH
−µ[ f ](w) = QH

µ [ f ](w).

Definition 5. For f ∈ L2(R, H) and g ∈ L1(R, H), define

( f ⊗µ g) = ( f1 ∗µ g1 −QH
−2µ[ f 2 ∗µ g2]) + e2( f2 ∗µ g1 + QH

−2µ[ f 1 ∗µ g1]) (13)

where ⊗µ is the proposed definition of convolution.

Remark 2. QH
−2µ = QH

−µ ◦QH
−µ is the composition of QH

−µ with itself.

Theorem 7 (Convolution theorem). Let f , g be two given signal functions such that f ∈
L2(R, H) and g ∈ L1(R, H), then for all w ∈ R we have

QH
µ [ f ⊗µ g](w) = QH

µ [ f ](w)QH
µ [g](w) exp{−e2(Cw2 + Ew)}. (14)
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Proof. By applying Definition 5 and Theorem 3, we have

QH
µ [ f ⊗µ g](w)

= QH
µ

[
( f1 ∗µ g1 −QH

−2µ[ f 2 ∗µ g2])
]
(w)

+e2QH
µ

[
( f2 ∗µ g1 + QH

−2µ[ f 1 ∗µ g1])
]
(w)

= QH
µ [ f1](w)QH

µ [g1](w) exp{−e2(Cw2 + Ew)}

−QH
µ QH
−2µ[ f 2](w)QH

µ [g2](w) exp{−e2(Cw2 + Ew)}

+e2

{
QH

µ [ f2](w)QH
µ [g1](w) exp{e2(Cw2 + Ew)}

+QH
µ QH
−2µ[ f 1](w)QH

µ [g1](w) exp{−e2(Cw2 + Ew)}
}

=
{[

QH
µ [ f1]QH

µ [g1]−QH
−µ[ f 2]Q

H
µ [g2]

]
(w)

× e2
[
QH

µ [ f2]QH
µ [g1]−QH

−µ[ f 1]Q
H
µ [g1]

]
(w)

}
× exp{−e2(Cw2 + Ew)}

=
{[

QH
µ [ f1]QH

µ [g1]−QH
µ [ f2]QH

µ [g2]
]
(w)

× e2
[
QH

µ [ f2]QH
µ [g1] + QH

µ [ f1]QH
µ [g1]

]
(w)

}
× exp{−e2(Cw2 + Ew)}

= QH
µ [ f ](w)QH

µ [g](w) exp{−e2(Cw2 + Ew)},

which completes the proof.

Remark 3. By appropriate choice of parameters in µ = (A, B, C, D, E), Theorem 7 yields the
corresponding convolution theorem for all the integral transforms ranging from the 1D quaternion
Fourier transform to the much recent 1D quaternion special affine Fourier transforms.

Prior to establishing the correlation theorem for the proposed 1D-QQPFT, we have the
following lemma:

Lemma 2 (QPFT Correlation). If f , g ∈ L2(R) then

Qµ[ f ◦µ g(t)](w)

= exp{e2(Cw2 + Ew)}Qµ′ [ f ](w)Qµ[g](w)

where µ′ = (−A, B, C, D, E) and

( f ◦µ g)(t) =
1√
2π

∫
R

f (z)g(t + z) exp{2e2 Az(t + z)}dz. (15)
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Proof. From the Definition 1, we have

Qµ[ f ◦µ g(t)](w)

=
1√
2π

∫
R
( f ◦µ g)(t) exp{e2(At2 + Btw + Cw2 + Dt + Ew)}dt

=
1

(
√

2π)2

∫
R

∫
R

f (z)g(t + z) exp{2e2 Az(t + z)}

× exp{e2(At2 + Btw + Cw2 + Dt + Ew)}dzdt

=
1

(
√

2π)2

∫
R

∫
R

f (z)g(u) exp{2e2 Azu}

× exp{e2[A(u− z)2 + B(u− z)w + Cw2 + D(u− z) + Ew]}dzdu

=
1√
2π

∫
R

g(u) exp{e2[Au2 + Buw + Cw2 + Du + Ew]}du

× 1√
2π

∫
R

f (z) exp{e2[Az2 − Bzw− Cw2 − Dz− Ew]}dzee2(Cw2+Ew)

= exp{i(Cw2 + Ew)} 1√
2π

×
∫

R
f (z) exp{−e2[(−A)z2 + Bzw + Cw2 + Dz + Ew]}dz

× 1√
2π

∫
R

g(u) exp{e2[Au2 + Buw + Cw2 + Du + Ew]}du

= exp{e2(Cw2 + Ew)} 1√
2π

×
∫

R
f (z) exp{e2[(−A)z2 + Bzw + Cw2 + Dz + Ew]}dz

× 1√
2π

∫
R

g(u) exp{e2[Au2 + Buw + Cw2 + Du + Ew]}du

= exp{e2(Cw2 + Ew)}Qµ′ [ f ](w)Qµ[g](w),

which completes the proof.

Definition 6. For f ∈ L2(R, H) and g ∈ L1(R, H), define

( f �µ g)

= ( f1 ◦µ g1 −QH
−2µ′ [ f 2 ◦µ g2]) + e2( f2 ◦µ g1 + QH

−2µ′ [ f 1 ◦µ g2])

where µ′ = (−A, B, C, D, E) and �µ is the proposed definition of correlation.

Theorem 8 (Correlation theorem). Let f , g be two given signal functions such that f ∈ L2(R, H)
and g ∈ L1(R, H), then for all w ∈ R we have

QH
µ [ f �µ g](w) = QH

µ′ [ f ](w)QH
µ [g](w) exp{e2(Cw2 + Ew)} (16)
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Proof. By applying Definition 6 and Lemma 2, we have

QH
µ [ f �µ g](w)

= QH
µ

[
( f1 ◦µ g1 −QH

−2µ′ [ f 2 ◦µ g2])
]
(w)

+e2QH
µ

[
( f2 ◦µ g1 + QH

−2µ′ [ f 1 ◦µ g2])
]
(w)

= QH
µ′ [ f1](w)QH

µ [g1](w) exp{e2(Cw2 + Ew)}

−QH
µ′Q

H
−2µ′ [ f 2](w)QH

µ [g2](w) exp{e2(Cw2 + Ew)}

+e2

{
QH

µ′ [ f2](w)QH
µ [g1](w) exp{e2(Cw2 + Ew)}

+QH
µ′Q

H
−2µ′ [ f 1](w)QH

µ [g2](w) exp{e2(Cw2 + Ew)}
}

=
{[

QH
µ′ [ f1]QH

µ [g1]−QH
−µ′ [ f 2]Q

H
µ [g2]

]
(w)

× e2
[
QH

µ′ [ f2]QH
µ [g1]−QH

−µ′ [ f 1]Q
H
µ [g1]

]
(w)

}
× exp{e2(Cw2 + Ew)}

=

{[
QH

µ′ [ f1]QH
µ [g1]−

[
QH

µ′ [ f2]
]
QH

µ [g2]

]
(w)

× e2

[
QH

µ′ [ f2]QH
µ [g1] +

[
QH

µ′ [ f1]
]
QH

µ [g2]

]
(w)

}
× exp{e2(Cw2 + Ew)}

= QH
µ′ [ f ](w)QH

µ [g](w) exp{e2(Cw2 + Ew)},

which completes the proof.

Theorem 9 (1D-QQPFT Uncertainty inequality). Let QH
µ [ f ] ∈ L2(R, H) and f , t f (t) ∈

L2(R, H). Then, we have

∫
R

w2|Qµ[ f ]|2dw
∫

R
t2| f (t)|2dt ≥ 1

8|B|2

(∫
R
| f (t)|2dt

)2
.

Proof. For f = f1 + e2 f2 in L2(R, H), we have ‖ f ‖2
2 = ‖ f1‖2

2 + ‖ f2‖2
2. Thus∫

R
w2|Qµ[ f ]|2dw

∫
R

t2| f (t)|2dt

=
∫

R

(
w2|Qµ[ f1]|2 + w2|Qµ[ f2]|2

)
dw

×
∫

R

(
t2| f1|2 + t2| f2|2

)
dt

≥
∫

R
w2|Qµ[ f1]|2dw +

∫
R

t2| f1|2

+
∫

R
w2|Qµ[ f2]|2dw +

∫
R

t2| f2|2.
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Now, using Theorem 4, we obtain∫
R

w2|Qµ[ f ]|2dw
∫

R
t2| f (t)|2dt

≥
{

1
2|B|

∫
R
| f1(t)|2dt

}2
+

{
1

2|B|

∫
R
| f2(t)|2dt

}2

=
1

4|B|2

{(∫
R
| f1(t)|2dt

)2
+

(∫
R
| f2(t)|2dt

)2
}

≥ 1
8|B|2

(∫
R
| f1(t)|2dt +

∫
R
| f2(t)|2dt

)2

=
1

8|B|2

(∫
R
| f (t)|2dt

)2

which completes the proof.

4. Application to the 2-Dimensional Quaternion Quadratic-Phase Fourier Transform

In Section 3, we used 1D-QQPFT to define various topics but the main motive to
define the proposed transform is to obtain an inversion formula for the two-dimensional
quaternion quadratic-phase Fourier transform (2D-QQPFT) which will lay the foundation
for applications of two-dimensional quaternion quadratic-phase Fourier transform in signal
processing. Prior to that we shall define two-dimensional quaternion quadratic-phase
Fourier transform(2D-QQPFT). Let us begin:

Definition 7. The 2D-QQPFT of a quaternion-valued signal function f ∈ L1(R2, H), with respect
to parameter µs = (As, Bs, Cs, Ds, Es) for s = 1, 2 is defined as

QH
µ1,µ2

[ f ](w) =
1

2π

∫
R2

f (t)Λe1
µ1(t1, w1)Λ

e2
µ2(t2, w2)dt

where w = (w1, w2) ∈ R2, t = (t1, t2) ∈ R2 and Λe1
µ1(t1, w1) and Λe2

µ2(t2, w2) are kernel signals
given by

Λe1
µ1(t1, w1)

= exp{e1(A1t2
1 + B1t1w1 + C1w2

1 + D1t1 + E1w1)}

Λe2
µ2(t2, w2)

= exp{e2(A2t2
2 + B2t2w2 + C2w2

2 + D2t2 + E2w2)}

where As, Bs, Cs, Ds, Es ∈ R, Bs 6= 0 and s = 1, 2.

Theorem 10. Let f ∈ L2(R2, H) and QH
µs [ f ] ∈ L1(R2, H). Then, 2-D QQPFT is invertible

with inverse

f (t)

= {QH
µ1,µ2
}−1[QH

µ1,µ2
{ f }](t)

=
|B1B2|

2π

∫
R2

QH
µ1,µ2

[ f ]}(w)Λe2
−µ2

(t1, w1)Λ
e1
−µ1

(t2, w2)dw.

Proof. From the Definition 1D-QQPFT and the 2D-QQPFT, we have

QH
µ1,µ2
{ f }(w) =

∫
QH

µ1
{ f }(w1)Λ

e2
µ2(t2, w2)dt2

= QH
µ2

[
QH

µ1
{ f }

]
(w).
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Now it is given that f ∈ L2(R2, H) and QH
µs [ f ] ∈ L1(R2, H); therefore, we have∫

R2
QH

µ1,µ2
{ f }(w)Λe2

−µ2
(t2, w2)Λ

e1
−µ1

(t1, w1)dw

=
∫ ∫

QH
µ2

[
QH

µ1
{ f }

]
(w)Λe2

−µ2
(t2, w2)dw2

×Λe1
−µ1

(t1, w1)dw1.

Using (11), we obtain ∫
R2

QH
µ1,µ2
{ f }(w)Λe2

−µ2
(t2, w2)Λ

e1
−µ1

(t1, w1)dw

=

√
2π

|B2|

∫
QH

µ1
{ f }(w1)Λ

e1
−µ1

(t1, w1)dw1

=
2π

|B1B2|
f (t),

which completes the proof.

5. Potential Applications

The QQPFT which is a generalized version of the QFTs has gained its ground in-
termittently and profoundly influenced several disciplines of science and engineering,
including harmonic analysis, quantum mechanics, differential equations, optics, pattern
recognition, and so on [29,30]. The 1D-QQPFT can be widely applied in computer graphics,
computer vision, robotics and even in astrophysics [39,40]. The 1D-QQPFT can be used
in the recovery of bandlimited quaternion-valued signals in 1D-QQPFT domain from
noisy samples; it is based on the oversampling theorem and without adding too much
complexity, a reconstruction algorithm for bandlimited signals in 1D-QQPFT domain from
noisy observations is obtained [41]. The potential application can be found in the detection
of linear frequency-modulated(LFM) and non-transient quaternion-valued signals [31].
Moreover, the 1D-QQPFT can have a potential application in image preprocessing, color
analysis and neural computing techniques for speech recognition [42]. On the other hand,
the convolution and correlation type operators are very important mathematical objects
which are used in the modelling of a great diversity of applied problems in signals, images
and optics, especially in the design and implementation of multiplicative filters in the 1D-
QQPFT [43]. The potential application can be found in in the theory of linear time-invariant
(LTI) system [44].

The uncertainty inequalities have potential applications in signal processing as they
can estimate the lower bound of integral [19,29,31]. The estimation of band-widths is
another possible application of the proposed transform [45]. Theorem 9 can be used in
the estimation of effective band-width in the 1D-QQPFT domain which states that the
band-width of a system that performs 1D-QQPFT cannot be narrower than 1

T2
µ8B2 , where Tµ

is the spread of the signal in the time domain.

6. Conclusions

In this paper, we have proposed the definition of the novel integral transform known as
the one-dimensional quaternion quadratic-phase Fourier transform (1D-QQPFT) which is
the embodiment of several well-known signal processing tools. We then obtained Moyal’s
formula and convolution theorem for the proposed transform. We then used theory
1D-QQPFT to obtain an inversion formula for two-dimensional quaternion quadratic-
phase Fourier transform. Our future work on the two-sided quaternion quadratic-phase
Fourier transform and two-sided Gabor quaternion quadratic-phase Fourier transform is
in progress.
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